halimbahae commited on
Commit
0f89651
·
verified ·
1 Parent(s): f67ea55

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +81 -34
app.py CHANGED
@@ -1,64 +1,111 @@
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
 
 
20
  for val in history:
21
  if val[0]:
22
  messages.append({"role": "user", "content": val[0]})
23
  if val[1]:
24
  messages.append({"role": "assistant", "content": val[1]})
 
25
 
26
- messages.append({"role": "user", "content": message})
27
-
28
  response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
  max_tokens=max_tokens,
33
  stream=True,
34
  temperature=temperature,
35
  top_p=top_p,
36
  ):
37
- token = message.choices[0].delta.content
38
-
39
  response += token
40
  yield response
41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
- respond,
48
  additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
 
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
+ import os
2
  import gradio as gr
3
  from huggingface_hub import InferenceClient
4
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
5
+ from langchain.vectorstores import Chroma
6
+ from langchain.embeddings import HuggingFaceBgeEmbeddings
7
+ from langchain.document_loaders import PyPDFLoader, UnstructuredFileLoader, CSVLoader
8
+ from langchain.chains import RetrievalQA
9
+ from langchain.prompts import PromptTemplate
10
 
11
+ # Initialize the Zephyr client
 
 
12
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
13
 
14
+ # Function to load documents based on file type
15
+ def load_documents(file_path):
16
+ if file_path.endswith(".pdf"):
17
+ loader = PyPDFLoader(file_path)
18
+ elif file_path.endswith(".txt") or file_path.endswith(".docx"):
19
+ loader = UnstructuredFileLoader(file_path)
20
+ elif file_path.endswith(".csv"):
21
+ loader = CSVLoader(file_path)
22
+ else:
23
+ raise ValueError("Unsupported file format")
24
+
25
+ documents = loader.load()
26
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
27
+ return text_splitter.split_documents(documents)
28
 
29
+ # Function to create or update vector store
30
+ def create_vector_store(documents, persist_dir="vector_db"):
31
+ embeddings = HuggingFaceBgeEmbeddings(
32
+ model_name="BAAI/bge-large-en",
33
+ model_kwargs={"device": "cpu"}
34
+ )
35
+ vector_store = Chroma.from_documents(documents, embeddings, persist_directory=persist_dir)
36
+ return vector_store
37
+
38
+ # Function to handle user queries
39
+ def respond(message, history, system_message, max_tokens, temperature, top_p, retriever):
40
+ # Retrieve relevant context
41
+ relevant_docs = retriever.get_relevant_documents(message)
42
+ context = "\n".join([doc.page_content for doc in relevant_docs])
43
+
44
+ # Format the prompt
45
+ prompt_template = """
46
+ Use the following context to answer the user's question.
47
+ If you don't know the answer, say "I don't know."
48
+
49
+ Context:
50
+ {context}
51
+
52
+ Question:
53
+ {question}
54
+
55
+ Answer:
56
+ """
57
+ formatted_prompt = prompt_template.format(context=context, question=message)
58
 
59
+ # Build conversational history
60
+ messages = [{"role": "system", "content": system_message}]
61
  for val in history:
62
  if val[0]:
63
  messages.append({"role": "user", "content": val[0]})
64
  if val[1]:
65
  messages.append({"role": "assistant", "content": val[1]})
66
+ messages.append({"role": "user", "content": formatted_prompt})
67
 
68
+ # Stream response from Zephyr
 
69
  response = ""
70
+ for msg in client.chat_completion(
71
+ messages=messages,
 
72
  max_tokens=max_tokens,
73
  stream=True,
74
  temperature=temperature,
75
  top_p=top_p,
76
  ):
77
+ token = msg.choices[0].delta.content
 
78
  response += token
79
  yield response
80
 
81
+ # Initialize the vector store
82
+ persist_dir = "vector_db"
83
+ retriever = None # Will be initialized dynamically
84
+
85
+ def handle_query(message, history, system_message, max_tokens, temperature, top_p, file=None):
86
+ global retriever
87
+ if file: # Process uploaded file
88
+ documents = load_documents(file.name)
89
+ vector_store = create_vector_store(documents, persist_dir)
90
+ retriever = vector_store.as_retriever()
91
+ if not retriever:
92
+ return "No documents have been uploaded yet. Please upload a file to provide context."
93
+ return respond(message, history, system_message, max_tokens, temperature, top_p, retriever)
94
 
95
+ # Gradio app setup
 
 
96
  demo = gr.ChatInterface(
97
+ fn=handle_query,
98
  additional_inputs=[
99
+ gr.File(label="Upload File", type="file"),
100
+ gr.Textbox(value="You are a knowledgeable assistant.", label="System Message"),
101
+ gr.Slider(1, 2048, step=1, value=512, label="Max Tokens"),
102
+ gr.Slider(0.1, 4.0, step=0.1, value=0.7, label="Temperature"),
103
+ gr.Slider(0.1, 1.0, step=0.05, value=0.95, label="Top-p"),
 
 
 
 
 
104
  ],
105
+ outputs="text",
106
+ title="RAG with Zephyr-7B",
107
+ description="A Retrieval-Augmented Generation chatbot powered by Zephyr-7B and Chroma vector database.",
108
  )
109
 
 
110
  if __name__ == "__main__":
111
  demo.launch()