3v324v23 commited on
Commit
39075d9
·
1 Parent(s): d85369e
Files changed (3) hide show
  1. app.py +176 -0
  2. htmlTemplates.py +44 -0
  3. requirements.txt +14 -0
app.py ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from dotenv import load_dotenv
3
+ from PyPDF2 import PdfReader
4
+ from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
5
+ from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
6
+ from langchain.vectorstores import FAISS, Chroma
7
+ from langchain.embeddings import HuggingFaceEmbeddings # General embeddings from HuggingFace models.
8
+ from langchain.chat_models import ChatOpenAI
9
+ from langchain.memory import ConversationBufferMemory
10
+ from langchain.chains import ConversationalRetrievalChain
11
+ from htmlTemplates import css, bot_template, user_template
12
+ from langchain.llms import HuggingFaceHub, LlamaCpp, CTransformers # For loading transformer models.
13
+ from langchain.document_loaders import PyPDFLoader, TextLoader, JSONLoader, CSVLoader
14
+ import tempfile # 임시 파일을 생성하기 위한 라이브러리입니다.
15
+ import os
16
+
17
+
18
+ # PDF 문서로부터 텍스트를 추출하는 함수입니다.
19
+ def get_pdf_text(pdf_docs):
20
+ temp_dir = tempfile.TemporaryDirectory() # 임시 디렉토리를 생성합니다.
21
+ temp_filepath = os.path.join(temp_dir.name, pdf_docs.name) # 임시 파일 경로를 생성합니다.
22
+ with open(temp_filepath, "wb") as f: # 임시 파일을 바이너리 쓰기 모드로 엽니다.
23
+ f.write(pdf_docs.getvalue()) # PDF 문서의 내용을 임시 파일에 씁니다.
24
+ pdf_loader = PyPDFLoader(temp_filepath) # PyPDFLoader를 사용해 PDF를 로드합니다.
25
+ pdf_doc = pdf_loader.load() # 텍스트를 추출합니다.
26
+ return pdf_doc # 추출한 텍스트를 반환합니다.
27
+
28
+
29
+ # 과제
30
+ # 아래 텍스트 추출 함수를 작성
31
+ def get_text_file(text_docs):
32
+ temp_dir = tempfile.TemporaryDirectory() # 임시 디렉토리를 생성합니다.
33
+ temp_filepath = os.path.join(temp_dir.name, text_docs.name) # 임시 파일 경로를 생성합니다.
34
+
35
+ # 텍스트 파일의 내용을 읽어옵니다.
36
+ with open(temp_filepath, "r", encoding="utf-8") as f:
37
+ text_content = f.read()
38
+
39
+ # 읽어온 텍스트 내용을 반환합니다.
40
+ return text_content
41
+
42
+
43
+ def get_csv_file(csv_docs):
44
+ temp_dir = tempfile.TemporaryDirectory() # 임시 디렉토리를 생성합니다.
45
+ temp_filepath = os.path.join(temp_dir.name, csv_docs.name) # 임시 파일 경로를 생성합니다.
46
+ with open(temp_filepath, "wb") as f: # 임시 파일을 바이너리 쓰기 모드로 엽니다.
47
+ f.write(csv_docs.getvalue()) # PDF 문서의 내용을 임시 파일에 씁니다.
48
+ loader = CSVLoader(temp_filepath)
49
+ csv_doc = loader.load()
50
+ return csv_doc # 추출한 텍스트를 반환합니다.
51
+
52
+
53
+ def get_json_file(json_docs):
54
+ temp_dir = tempfile.TemporaryDirectory() # 임시 디렉토리를 생성합니다.
55
+ temp_filepath = os.path.join(temp_dir.name, json_docs.name) # 임시 파일 경로를 생성합니다.
56
+ with open(temp_filepath, "wb") as f: # 임시 파일을 바이너리 쓰기 모드로 엽니다.
57
+ f.write(json_docs.getvalue()) # PDF 문서의 내용을 임시 파일에 씁니다.
58
+ loader = JSONLoader(
59
+ file_path=temp_filepath,
60
+ jq_schema='.content',
61
+ text_content=False,
62
+ json_lines=True)
63
+
64
+ json_docs = loader.load()
65
+ return json_docs
66
+
67
+ # 문서들을 처리하여 텍스트 청크로 나누는 함수입니다.
68
+ def get_text_chunks(documents):
69
+ text_splitter = RecursiveCharacterTextSplitter(
70
+ chunk_size=1000, # 청크의 크기를 지정합니다.
71
+ chunk_overlap=200, # 청크 사이의 중복을 지정합니다.
72
+ length_function=len # 텍스트의 길이를 측정하는 함수를 지정합니다.
73
+ )
74
+
75
+ documents = text_splitter.split_documents(documents) # 문서들을 청크로 나눕니다
76
+ return documents # 나눈 청크를 반환합니다.
77
+
78
+
79
+ # 텍스트 청크들로부터 벡터 스토어를 생성하는 함수입니다.
80
+ def get_vectorstore(text_chunks):
81
+ # OpenAI 임베딩 모델을 로드합니다. (Embedding models - Ada v2)
82
+
83
+ embeddings = OpenAIEmbeddings()
84
+ vectorstore = FAISS.from_documents(text_chunks, embeddings) # FAISS 벡터 스토어를 생성합니다.
85
+
86
+ return vectorstore # 생성된 벡터 스토어를 반환합니다.
87
+
88
+
89
+ def get_conversation_chain(vectorstore):
90
+ gpt_model_name = 'gpt-3.5-turbo'
91
+ llm = ChatOpenAI(model_name = gpt_model_name) #gpt-3.5 모델 로드
92
+
93
+ # 대화 기록을 저장하기 위한 메모리를 생성합니다.
94
+ memory = ConversationBufferMemory(
95
+ memory_key='chat_history', return_messages=True)
96
+ # 대화 검색 체인을 생성합니다.
97
+ conversation_chain = ConversationalRetrievalChain.from_llm(
98
+ llm=llm,
99
+ retriever=vectorstore.as_retriever(),
100
+ memory=memory
101
+ )
102
+ return conversation_chain
103
+
104
+ # 사용자 입력을 처리하는 함수입니다.
105
+ def handle_userinput(user_question):
106
+ # 대화 체인을 사용하여 사용자 질문에 대한 응답을 생성합니다.
107
+ response = st.session_state.conversation({'question': user_question})
108
+ # 대화 기록을 저장합니다.
109
+ st.session_state.chat_history = response['chat_history']
110
+
111
+ for i, message in enumerate(st.session_state.chat_history):
112
+ if i % 2 == 0:
113
+ st.write(user_template.replace(
114
+ "{{MSG}}", message.content), unsafe_allow_html=True)
115
+ else:
116
+ st.write(bot_template.replace(
117
+ "{{MSG}}", message.content), unsafe_allow_html=True)
118
+
119
+
120
+ def main():
121
+ load_dotenv()
122
+ st.set_page_config(page_title="Chat with multiple Files",
123
+ page_icon=":books:")
124
+ st.write(css, unsafe_allow_html=True)
125
+
126
+ if "conversation" not in st.session_state:
127
+ st.session_state.conversation = None
128
+ if "chat_history" not in st.session_state:
129
+ st.session_state.chat_history = None
130
+
131
+ st.header("Chat with multiple Files :")
132
+ user_question = st.text_input("Ask a question about your documents:")
133
+ if user_question:
134
+ handle_userinput(user_question)
135
+
136
+ with st.sidebar:
137
+ openai_key = st.text_input("Paste your OpenAI API key (sk-...)")
138
+ if openai_key:
139
+ os.environ["OPENAI_API_KEY"] = openai_key
140
+
141
+ st.subheader("Your documents")
142
+ docs = st.file_uploader(
143
+ "Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
144
+ if st.button("Process"):
145
+ with st.spinner("Processing"):
146
+ # get pdf text
147
+ doc_list = []
148
+
149
+ for file in docs:
150
+ print('file - type : ', file.type)
151
+ if file.type == 'text/plain':
152
+ # file is .txt
153
+ doc_list.extend(get_text_file(file))
154
+ elif file.type in ['application/octet-stream', 'application/pdf']:
155
+ # file is .pdf
156
+ doc_list.extend(get_pdf_text(file))
157
+ elif file.type == 'text/csv':
158
+ # file is .csv
159
+ doc_list.extend(get_csv_file(file))
160
+ elif file.type == 'application/json':
161
+ # file is .json
162
+ doc_list.extend(get_json_file(file))
163
+
164
+ # get the text chunks
165
+ text_chunks = get_text_chunks(doc_list)
166
+
167
+ # create vector store
168
+ vectorstore = get_vectorstore(text_chunks)
169
+
170
+ # create conversation chain
171
+ st.session_state.conversation = get_conversation_chain(
172
+ vectorstore)
173
+
174
+
175
+ if __name__ == '__main__':
176
+ main()
htmlTemplates.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ css = '''
2
+ <style>
3
+ .chat-message {
4
+ padding: 1.5rem; border-radius: 0.5rem; margin-bottom: 1rem; display: flex
5
+ }
6
+ .chat-message.user {
7
+ background-color: #2b313e
8
+ }
9
+ .chat-message.bot {
10
+ background-color: #475063
11
+ }
12
+ .chat-message .avatar {
13
+ width: 20%;
14
+ }
15
+ .chat-message .avatar img {
16
+ max-width: 78px;
17
+ max-height: 78px;
18
+ border-radius: 50%;
19
+ object-fit: cover;
20
+ }
21
+ .chat-message .message {
22
+ width: 80%;
23
+ padding: 0 1.5rem;
24
+ color: #fff;
25
+ }
26
+ '''
27
+
28
+ bot_template = '''
29
+ <div class="chat-message bot">
30
+ <div class="avatar">
31
+ <img src="https://i.ibb.co/cN0nmSj/Screenshot-2023-05-28-at-02-37-21.png" style="max-height: 78px; max-width: 78px; border-radius: 50%; object-fit: cover;">
32
+ </div>
33
+ <div class="message">{{MSG}}</div>
34
+ </div>
35
+ '''
36
+
37
+ user_template = '''
38
+ <div class="chat-message user">
39
+ <div class="avatar">
40
+ <img src="https://i.ibb.co/rdZC7LZ/Photo-logo-1.png">
41
+ </div>
42
+ <div class="message">{{MSG}}</div>
43
+ </div>
44
+ '''
requirements.txt ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ langchain
2
+ llama-cpp-python
3
+ PyPDF2==3.0.1
4
+ faiss-cpu==1.7.4
5
+ ctransformers
6
+ pypdf
7
+ chromadb
8
+ tiktoken
9
+ pysqlite3-binary
10
+ streamlit-extras
11
+ InstructorEmbedding
12
+ sentence-transformers
13
+ jq
14
+ openai