heartfailure / app.py
hackerbyhobby
app
03b8948 unverified
raw
history blame
1.68 kB
import gradio as gr
import joblib
import pandas as pd
# Load the pre-trained model
model = joblib.load("tuned_model.pkl")
# Load the features used during training
features = pd.read_csv("features_used_in_model.csv")["Feature"].tolist()
# Prediction function
def predict_heart_failure(*input_values):
try:
# Convert inputs into a dictionary
input_data = dict(zip(features, input_values))
# Convert input dictionary to DataFrame
input_df = pd.DataFrame([input_data])
# Predict probability for heart failure (class 1)
probability = model.predict_proba(input_df)[:, 1][0]
# Predict class (0 or 1)
prediction = "At Risk of Heart Failure" if probability >= 0.3 else "No Risk Detected"
# Return prediction, probability, and user inputs
return prediction, round(probability, 4), input_data
except Exception as e:
return "Error", 0, {"error": str(e)}
# Gradio Interface
inputs = [gr.Textbox(label=feature, placeholder=f"Enter value for {feature}") for feature in features]
interface = gr.Interface(
fn=predict_heart_failure,
inputs=inputs,
outputs=[
gr.Text(label="Prediction"),
gr.Number(label="Risk Probability"),
gr.JSON(label="User Inputs")
],
title="Heart Failure Prediction Model",
description=(
"Predicts the likelihood of heart failure based on health features. "
"Enter the values for the features below and receive the prediction."
)
)
# Launch the interface for local testing or Hugging Face Spaces deployment
if __name__ == "__main__":
interface.launch(share=True)