Spaces:
Runtime error
Runtime error
Hugo Massonnat
commited on
Commit
·
ac675c8
1
Parent(s):
ec9d9e0
update forecast dataframe
Browse files- forecast.py +59 -78
- requirements.txt +2 -0
forecast.py
CHANGED
|
@@ -1,11 +1,8 @@
|
|
| 1 |
import os
|
| 2 |
import xarray as xr
|
| 3 |
import pandas as pd
|
| 4 |
-
from matplotlib import pyplot as plt
|
| 5 |
-
import docs.agro_indicators as agro_indicators
|
| 6 |
-
import numpy as np
|
| 7 |
-
from datetime import datetime
|
| 8 |
|
|
|
|
| 9 |
|
| 10 |
# Mapping of variable names to metadata (title, unit, and NetCDF variable key)
|
| 11 |
VARIABLE_MAPPING = {
|
|
@@ -23,21 +20,21 @@ VARIABLE_MAPPING = {
|
|
| 23 |
|
| 24 |
|
| 25 |
# Function to load data for a given variable from the dataset at the nearest latitude and longitude
|
| 26 |
-
def load_data(variable: str, ds: xr.Dataset,
|
| 27 |
"""
|
| 28 |
Load data for a given variable from the dataset at the nearest latitude and longitude.
|
| 29 |
|
| 30 |
Args:
|
| 31 |
variable (str): The variable to extract from the dataset.
|
| 32 |
ds (xr.Dataset): The xarray dataset containing climate data.
|
| 33 |
-
|
| 34 |
-
|
| 35 |
|
| 36 |
Returns:
|
| 37 |
xr.DataArray: The data array containing the variable values for the specified location.
|
| 38 |
"""
|
| 39 |
try:
|
| 40 |
-
data = ds[variable].sel(lat=
|
| 41 |
# Convert temperature from Kelvin to Celsius for specific variables
|
| 42 |
if variable in ["tas", "tasmin", "tasmax"]:
|
| 43 |
data = data - 273.15
|
|
@@ -74,109 +71,93 @@ def get_forecast_datasets(climate_sub_files: list) -> dict:
|
|
| 74 |
|
| 75 |
|
| 76 |
# Function to extract climate data from forecast datasets and convert to a DataFrame
|
| 77 |
-
def get_forecast_data(
|
| 78 |
"""
|
| 79 |
Extract climate data from the forecast datasets for a given location and convert to a DataFrame.
|
| 80 |
|
| 81 |
Args:
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
|
| 86 |
Returns:
|
| 87 |
pd.DataFrame: A DataFrame containing time series data for each variable.
|
| 88 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
time_series_data = {'time': []}
|
| 90 |
|
| 91 |
for long_name, (title, unit, variable) in VARIABLE_MAPPING.items():
|
| 92 |
print(f"Processing {long_name} ({title}, {unit}, {variable})...")
|
| 93 |
-
data = load_data(variable, datasets[long_name],
|
| 94 |
|
| 95 |
if data is not None:
|
| 96 |
time_series_data['time'] = data.time.values
|
| 97 |
column_name = f"{title} ({unit})"
|
| 98 |
time_series_data[column_name] = data.values
|
| 99 |
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
# Function to compute reference evapotranspiration (ET0)
|
| 104 |
-
def compute_et0(df: pd.DataFrame, latitude: float, longitude: float):
|
| 105 |
-
"""
|
| 106 |
-
Compute reference evapotranspiration using the provided climate data.
|
| 107 |
-
|
| 108 |
-
Args:
|
| 109 |
-
df (pd.DataFrame): DataFrame containing climate data.
|
| 110 |
-
latitude (float): Latitude of the location.
|
| 111 |
-
longitude (float): Longitude of the location.
|
| 112 |
-
|
| 113 |
-
Returns:
|
| 114 |
-
arraylike: Daily reference evapotranspiration.
|
| 115 |
-
"""
|
| 116 |
-
irradiance = df.irradiance
|
| 117 |
-
Tmin = df.air_temperature_min
|
| 118 |
-
Tmax = df.air_temperature_max
|
| 119 |
-
T = (Tmin + Tmax) / 2 # Average temperature
|
| 120 |
-
RHmin = df.relative_humidity_min
|
| 121 |
-
RHmax = df.relative_humidity_max
|
| 122 |
-
WS = df.wind_speed
|
| 123 |
-
JJulien = df.day_of_year
|
| 124 |
-
|
| 125 |
-
et0_values = agro_indicators.et0(irradiance, T, Tmax, Tmin, RHmin, RHmax, WS, JJulien, latitude, longitude)
|
| 126 |
-
return et0_values
|
| 127 |
-
|
| 128 |
|
| 129 |
-
|
| 130 |
-
def main():
|
| 131 |
-
# Define the directory to parse
|
| 132 |
-
folder_to_parse = "../climate_data_pessimist/"
|
| 133 |
-
|
| 134 |
-
# Retrieve the subfolders and files to parse
|
| 135 |
-
climate_sub_folder = [os.path.join(folder_to_parse, e) for e in os.listdir(folder_to_parse) if os.path.isdir(os.path.join(folder_to_parse, e))]
|
| 136 |
-
climate_sub_files = [os.path.join(e, i) for e in climate_sub_folder for i in os.listdir(e) if i.endswith('.nc')]
|
| 137 |
-
|
| 138 |
-
# Load the forecast datasets
|
| 139 |
-
datasets = get_forecast_datasets(climate_sub_files)
|
| 140 |
-
|
| 141 |
-
# Get the forecast data for a specific latitude and longitude
|
| 142 |
-
lat, lon = 47.0, 5.0 # Example coordinates
|
| 143 |
-
final_df = get_forecast_data(datasets, lat, lon)
|
| 144 |
|
| 145 |
-
coef = 1
|
| 146 |
|
| 147 |
-
|
| 148 |
-
|
| 149 |
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
data_test["wind_speed"] = data_test['Near Surface Wind Speed (m/s)']
|
| 158 |
|
| 159 |
# Convert 'time' to datetime and calculate Julian day
|
| 160 |
-
|
| 161 |
-
|
| 162 |
|
| 163 |
# Compute ET0
|
| 164 |
-
et0 = compute_et0(
|
| 165 |
-
|
| 166 |
|
| 167 |
# Convert Precipitation from kg/m²/s to mm/day
|
| 168 |
-
|
| 169 |
|
| 170 |
# Calculate Water Deficit: Water Deficit = ET0 - P + M
|
| 171 |
-
|
| 172 |
-
(
|
| 173 |
-
|
| 174 |
)
|
| 175 |
|
| 176 |
-
|
| 177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
-
return
|
| 180 |
|
| 181 |
|
| 182 |
# Run the main function
|
|
|
|
| 1 |
import os
|
| 2 |
import xarray as xr
|
| 3 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
from compute_et0_adjusted import compute_et0
|
| 6 |
|
| 7 |
# Mapping of variable names to metadata (title, unit, and NetCDF variable key)
|
| 8 |
VARIABLE_MAPPING = {
|
|
|
|
| 20 |
|
| 21 |
|
| 22 |
# Function to load data for a given variable from the dataset at the nearest latitude and longitude
|
| 23 |
+
def load_data(variable: str, ds: xr.Dataset, latitude: float, longitude: float) -> xr.DataArray:
|
| 24 |
"""
|
| 25 |
Load data for a given variable from the dataset at the nearest latitude and longitude.
|
| 26 |
|
| 27 |
Args:
|
| 28 |
variable (str): The variable to extract from the dataset.
|
| 29 |
ds (xr.Dataset): The xarray dataset containing climate data.
|
| 30 |
+
latitude(float): Latitude for nearest data point.
|
| 31 |
+
longitude (float): Longitude for nearest data point.
|
| 32 |
|
| 33 |
Returns:
|
| 34 |
xr.DataArray: The data array containing the variable values for the specified location.
|
| 35 |
"""
|
| 36 |
try:
|
| 37 |
+
data = ds[variable].sel(lat=latitude, lon=longitude, method="nearest")
|
| 38 |
# Convert temperature from Kelvin to Celsius for specific variables
|
| 39 |
if variable in ["tas", "tasmin", "tasmax"]:
|
| 40 |
data = data - 273.15
|
|
|
|
| 71 |
|
| 72 |
|
| 73 |
# Function to extract climate data from forecast datasets and convert to a DataFrame
|
| 74 |
+
def get_forecast_data(latitude: float, longitude: float, scenario: str, shading_coef: float) -> pd.DataFrame:
|
| 75 |
"""
|
| 76 |
Extract climate data from the forecast datasets for a given location and convert to a DataFrame.
|
| 77 |
|
| 78 |
Args:
|
| 79 |
+
latitude(float): Latitude of the location to extract data for.
|
| 80 |
+
longitude (float): Longitude of the location to extract data for.
|
| 81 |
+
scenario (str): The scenario to extract data for.
|
| 82 |
|
| 83 |
Returns:
|
| 84 |
pd.DataFrame: A DataFrame containing time series data for each variable.
|
| 85 |
"""
|
| 86 |
+
assert scenario in ["moderate", "pessimist"]
|
| 87 |
+
assert 0 <= shading_coef <= 1
|
| 88 |
+
|
| 89 |
+
# Define the directory to parse
|
| 90 |
+
folder_to_parse = f"data/climate_data_{scenario}/"
|
| 91 |
+
|
| 92 |
+
# Retrieve the subfolders and files to parse
|
| 93 |
+
climate_sub_folder = [os.path.join(folder_to_parse, e) for e in os.listdir(folder_to_parse) if
|
| 94 |
+
os.path.isdir(os.path.join(folder_to_parse, e))]
|
| 95 |
+
climate_sub_files = [os.path.join(e, i) for e in climate_sub_folder for i in os.listdir(e) if i.endswith('.nc')]
|
| 96 |
+
|
| 97 |
+
# Load the forecast datasets
|
| 98 |
+
datasets = get_forecast_datasets(climate_sub_files)
|
| 99 |
+
|
| 100 |
time_series_data = {'time': []}
|
| 101 |
|
| 102 |
for long_name, (title, unit, variable) in VARIABLE_MAPPING.items():
|
| 103 |
print(f"Processing {long_name} ({title}, {unit}, {variable})...")
|
| 104 |
+
data = load_data(variable, datasets[long_name], latitude, longitude)
|
| 105 |
|
| 106 |
if data is not None:
|
| 107 |
time_series_data['time'] = data.time.values
|
| 108 |
column_name = f"{title} ({unit})"
|
| 109 |
time_series_data[column_name] = data.values
|
| 110 |
|
| 111 |
+
forecast_data = pd.DataFrame(time_series_data)
|
| 112 |
+
forecast_data = preprocess_forectast_data(forecast_data, latitude, longitude, shading_coef)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
+
return pd.DataFrame(time_series_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
|
|
|
| 116 |
|
| 117 |
+
def preprocess_forectast_data(df: pd.DataFrame, latitude, longitude, shading_coef=0) -> pd.DataFrame:
|
| 118 |
+
assert 0 <= shading_coef <= 1
|
| 119 |
|
| 120 |
+
preprocessed_data = df.copy()
|
| 121 |
+
preprocessed_data["irradiance"] = preprocessed_data['Surface Downwelling Shortwave Radiation (W/m²)'] * (1 - shading_coef)
|
| 122 |
+
preprocessed_data["air_temperature_min"] = preprocessed_data['Daily Minimum Near Surface Air Temperature (°C)']
|
| 123 |
+
preprocessed_data["air_temperature_max"] = preprocessed_data['Daily Maximum Near Surface Air Temperature (°C)']
|
| 124 |
+
preprocessed_data["relative_humidity_min"] = preprocessed_data['Relative Humidity (%)']
|
| 125 |
+
preprocessed_data["relative_humidity_max"] = preprocessed_data['Relative Humidity (%)']
|
| 126 |
+
preprocessed_data["wind_speed"] = preprocessed_data['Near Surface Wind Speed (m/s)']
|
|
|
|
| 127 |
|
| 128 |
# Convert 'time' to datetime and calculate Julian day
|
| 129 |
+
preprocessed_data['time'] = pd.to_datetime(preprocessed_data['time'], errors='coerce')
|
| 130 |
+
preprocessed_data['day_of_year'] = preprocessed_data['time'].dt.dayofyear
|
| 131 |
|
| 132 |
# Compute ET0
|
| 133 |
+
et0 = compute_et0(preprocessed_data, latitude, longitude)
|
| 134 |
+
preprocessed_data['Evaporation (mm/day)'] = et0
|
| 135 |
|
| 136 |
# Convert Precipitation from kg/m²/s to mm/day
|
| 137 |
+
preprocessed_data['Precipitation (mm/day)'] = 86400 * preprocessed_data['Precipitation (kg m-2 s-1)']
|
| 138 |
|
| 139 |
# Calculate Water Deficit: Water Deficit = ET0 - P + M
|
| 140 |
+
preprocessed_data['Water Deficit (mm/day)'] = (
|
| 141 |
+
(preprocessed_data['Evaporation (mm/day)'] - (preprocessed_data['Precipitation (mm/day)']) +
|
| 142 |
+
preprocessed_data['Moisture in Upper Portion of Soil Column (kg m-2)'])
|
| 143 |
)
|
| 144 |
|
| 145 |
+
return preprocessed_data
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
# Main processing workflow
|
| 149 |
+
def main():
|
| 150 |
+
# Get the forecast data for a specific latitude and longitude
|
| 151 |
+
latitude, longitude = 47.0, 5.0 # Example coordinates
|
| 152 |
+
scenario = "pessimist"
|
| 153 |
+
shading_coef = 0
|
| 154 |
+
forecast_data = get_forecast_data(latitude, longitude, scenario=scenario, shading_coef=shading_coef)
|
| 155 |
+
|
| 156 |
+
# Display the resulting DataFrame
|
| 157 |
+
print(forecast_data.head())
|
| 158 |
+
print(forecast_data.columns)
|
| 159 |
|
| 160 |
+
return forecast_data
|
| 161 |
|
| 162 |
|
| 163 |
# Run the main function
|
requirements.txt
CHANGED
|
@@ -22,3 +22,5 @@ matplotlib
|
|
| 22 |
xarray
|
| 23 |
folium
|
| 24 |
netcdf4
|
|
|
|
|
|
|
|
|
| 22 |
xarray
|
| 23 |
folium
|
| 24 |
netcdf4
|
| 25 |
+
geopy
|
| 26 |
+
geopandas
|