gaia / forecast.py
Hugo Massonnat
fix yield computation
8ff070c
import os
import xarray as xr
import pandas as pd
from compute_et0_adjusted import compute_et0
# Mapping of variable names to metadata (title, unit, and NetCDF variable key)
VARIABLE_MAPPING = {
'surface_downwelling_shortwave_radiation': ('Surface Downwelling Shortwave Radiation', 'W/m²', 'rsds'),
'moisture_in_upper_portion_of_soil_column': ('Moisture in Upper Portion of Soil Column', 'kg m-2', 'mrsos'),
'precipitation': ('Precipitation', 'kg m-2 s-1', 'pr'),
'near_surface_relative_humidity': ('Relative Humidity', '%', 'hurs'),
'evaporation_including_sublimation_and_transpiration': ('Evaporation (including sublimation and transpiration)', 'kg m-2 s-1', 'evspsbl'),
'total_runoff': ('Total Runoff', 'kg m-2 s-1', 'mrro'),
'daily_minimum_near_surface_air_temperature': ('Daily Minimum Near Surface Air Temperature', '°C', 'tasmin'),
'daily_maximum_near_surface_air_temperature': ('Daily Maximum Near Surface Air Temperature', '°C', 'tasmax'),
'near_surface_wind_speed': ('Near Surface Wind Speed', 'm/s', 'sfcWind'),
'near_surface_air_temperature': ('Near Surface Air Temperature', '°C', 'tas'),
}
# Function to load data for a given variable from the dataset at the nearest latitude and longitude
def load_data(variable: str, ds: xr.Dataset, latitude: float, longitude: float) -> xr.DataArray:
"""
Load data for a given variable from the dataset at the nearest latitude and longitude.
Args:
variable (str): The variable to extract from the dataset.
ds (xr.Dataset): The xarray dataset containing climate data.
latitude(float): Latitude for nearest data point.
longitude (float): Longitude for nearest data point.
Returns:
xr.DataArray: The data array containing the variable values for the specified location.
"""
try:
data = ds[variable].sel(lat=latitude, lon=longitude, method="nearest")
# Convert temperature from Kelvin to Celsius for specific variables
if variable in ["tas", "tasmin", "tasmax"]:
data = data - 273.15
return data
except Exception as e:
print(f"Error loading {variable}: {e}")
return None
# Function to load forecast datasets from NetCDF files based on variable mapping
def get_forecast_datasets(climate_sub_files: list) -> dict:
"""
Get the forecast datasets by loading NetCDF files for each variable.
Args:
climate_sub_files (list): List of file paths to the NetCDF files.
Returns:
dict: Dictionary with variable names as keys and xarray datasets as values.
"""
datasets = {}
for file_path in climate_sub_files:
filename = os.path.basename(file_path)
for long_name, (title, unit, var_key) in VARIABLE_MAPPING.items():
if var_key in filename:
if var_key in ["tas", "tasmax", "tasmin"]:
if f"_{var_key}_" in f"_{filename}_" or filename.endswith(f"_{var_key}.nc"):
datasets[long_name] = xr.open_dataset(file_path, engine="netcdf4")
else:
datasets[long_name] = xr.open_dataset(file_path, engine="netcdf4")
return datasets
# Function to extract climate data from forecast datasets and convert to a DataFrame
def get_forecast_data(latitude: float, longitude: float, scenario: str, shading_coef: float = 0) -> pd.DataFrame:
"""
Extract climate data from the forecast datasets for a given location and convert to a DataFrame.
Args:
latitude(float): Latitude of the location to extract data for.
longitude (float): Longitude of the location to extract data for.
scenario (str): The scenario to extract data for.
shading_coef (float, optional): Shading coefficient to use. Defaults to 0 (for no shading)..
Returns:
pd.DataFrame: A DataFrame containing time series data for each variable.
"""
assert scenario in ["moderate", "pessimist"]
assert 0 <= shading_coef <= 1
# Define the directory to parse
folder_to_parse = f"data/climate_data_{scenario}/"
# Retrieve the subfolders and files to parse
climate_sub_folder = [os.path.join(folder_to_parse, e) for e in os.listdir(folder_to_parse) if
os.path.isdir(os.path.join(folder_to_parse, e))]
climate_sub_files = [os.path.join(e, i) for e in climate_sub_folder for i in os.listdir(e) if i.endswith('.nc')]
# Load the forecast datasets
datasets = get_forecast_datasets(climate_sub_files)
time_series_data = {'time': []}
for long_name, (title, unit, variable) in VARIABLE_MAPPING.items():
print(f"Processing {long_name} ({title}, {unit}, {variable})...")
data = load_data(variable, datasets[long_name], latitude, longitude)
if data is not None:
time_series_data['time'] = data.time.values
column_name = f"{title} ({unit})"
time_series_data[column_name] = data.values
forecast_data = pd.DataFrame(time_series_data)
forecast_data = preprocess_forectast_data(forecast_data, latitude, longitude, shading_coef)
return forecast_data
def preprocess_forectast_data(df: pd.DataFrame, latitude, longitude, shading_coef) -> pd.DataFrame:
assert 0 <= shading_coef <= 1
preprocessed_data = df.copy()
preprocessed_data["irradiance"] = preprocessed_data['Surface Downwelling Shortwave Radiation (W/m²)'] * (1 - shading_coef)
preprocessed_data["air_temperature_min"] = preprocessed_data['Daily Minimum Near Surface Air Temperature (°C)']
preprocessed_data["air_temperature_max"] = preprocessed_data['Daily Maximum Near Surface Air Temperature (°C)']
preprocessed_data["relative_humidity_min"] = preprocessed_data['Relative Humidity (%)']
preprocessed_data["relative_humidity_max"] = preprocessed_data['Relative Humidity (%)']
preprocessed_data["wind_speed"] = preprocessed_data['Near Surface Wind Speed (m/s)']
# Convert 'time' to datetime and calculate Julian day
preprocessed_data['time'] = pd.to_datetime(preprocessed_data['time'], errors='coerce')
preprocessed_data['month'] = preprocessed_data['time'].dt.month
preprocessed_data['day_of_year'] = preprocessed_data['time'].dt.dayofyear
# Compute ET0
et0 = compute_et0(preprocessed_data, latitude, longitude)
preprocessed_data['Evaporation (mm/day)'] = et0.clip(lower=0)
# Convert Precipitation from kg/m²/s to mm/day
preprocessed_data['Precipitation (mm/day)'] = 86400 * preprocessed_data['Precipitation (kg m-2 s-1)']
# Calculate Water Deficit: Water Deficit = ET0 - P + M
preprocessed_data['Water Deficit (mm/day)'] = (
preprocessed_data['Evaporation (mm/day)'] - preprocessed_data['Precipitation (mm/day)']
# + preprocessed_data['Moisture in Upper Portion of Soil Column (kg m-2)'])
)
return preprocessed_data
# Main processing workflow
def main():
# Get the forecast data for a specific latitude and longitude
latitude, longitude = 47.0, 5.0 # Example coordinates
scenario = "pessimist"
shading_coef = 0
forecast_data = get_forecast_data(latitude, longitude, scenario=scenario, shading_coef=shading_coef)
# Display the resulting DataFrame
print(forecast_data.head())
print(forecast_data.columns)
return forecast_data
# Run the main function
if __name__ == "__main__":
main()