# import pdb # pdb.set_trace() import os import sqlite3 import warnings import pandas as pd from flask import Flask, render_template, request from langchain_community.llms import Ollama from langchain_core.prompts import PromptTemplate from langchain.chains import LLMChain print("Starting the server...") app = Flask(__name__) # Suppressing warnings warnings.filterwarnings("ignore") # Initializing the language model # Ollama model print("Initializing the language model...") llm = Ollama(model="pxlksr/defog_sqlcoder-7b-2:Q4_K") UPLOAD_FOLDER = 'uploads' app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER # Prompt template for language model print("Initializing the prompt template...") template = """ ### Task Generate a SQL query to answer [QUESTION]{user_question}[/QUESTION] ### Instructions - If you cannot answer the question with the available database schema, return 'I do not know' ### Database Schema The query will run on a database with the following schema: {table_metadata_string} ### Answer Given the database schema, here is the SQL query that answers [QUESTION]{user_question}[/QUESTION] [SQL] """ prompt = PromptTemplate(template=template, input_variables=["user_question", "table_metadata_string"]) # Function to get response from language model def get_llm_response(user_question, table_metadata_string): llm_chain = LLMChain(prompt=prompt, llm=llm) response = llm_chain.run({"user_question": user_question, "table_metadata_string": table_metadata_string}) return response def run_sql_query(csv_files, sql_query): conn = sqlite3.connect(':memory:') for file_path in csv_files: df_name = os.path.splitext(os.path.basename(file_path))[0] # Extract file name without extension df = pd.read_csv(file_path) df.to_sql(df_name, conn, index=False) result = pd.read_sql_query(sql_query, con=conn) return result.to_html() history = [] history_dll = [] print("Server started successfully!") @app.route('/', methods=['GET', 'POST']) def ddl_query(): ddl = None if request.method == 'POST': ddl = request.form['ddl'] user_question = request.form.get('user_question', None) if user_question: output = get_llm_response(user_question, ddl) # Insert the new history item at the beginning of the list history_dll.insert(0, {'query': user_question, 'response': output}) return render_template('index.html', history=history_dll, ddl=ddl) @app.route('/dbms_query', methods=['GET', 'POST']) def index(): result = None query = None if request.method == 'POST': uploaded_files = request.files.getlist('file') csv_files = [] for file in uploaded_files: if file.filename != '': file_path = os.path.join(app.config['UPLOAD_FOLDER'], file.filename) file.save(file_path) csv_files.append(file_path) sql_query = request.form['sql_query'] query = sql_query # Execute SQL query and store result in history result = run_sql_query(csv_files, sql_query) history.append({'query': sql_query, 'result': result}) return render_template('database_selection_index.html', result=result, query=query, history=history) if __name__ == '__main__': print("Running the server...") app.run(debug=True, port = 7860, host = '0.0.0.0')