import os import math import gradio as gr from enums import LangChainMode def make_chatbots(output_label0, output_label0_model2, **kwargs): text_outputs = [] chat_kwargs = [] for model_state_lock in kwargs['model_states']: if os.environ.get('DEBUG_MODEL_LOCK'): model_name = model_state_lock["base_model"] + " : " + model_state_lock["inference_server"] else: model_name = model_state_lock["base_model"] output_label = f'h2oGPT [{model_name}]' min_width = 250 if kwargs['gradio_size'] in ['small', 'large', 'medium'] else 160 chat_kwargs.append(dict(label=output_label, visible=kwargs['model_lock'], elem_classes='chatsmall', height=kwargs['height'] or 400, min_width=min_width)) if kwargs['model_lock_columns'] == -1: kwargs['model_lock_columns'] = len(kwargs['model_states']) if kwargs['model_lock_columns'] is None: kwargs['model_lock_columns'] = 3 ncols = kwargs['model_lock_columns'] if kwargs['model_states'] == 0: nrows = 0 else: nrows = math.ceil(len(kwargs['model_states']) / kwargs['model_lock_columns']) if kwargs['model_lock_columns'] == 0: # not using model_lock pass elif nrows <= 1: with gr.Row(): for chat_kwargs1, model_state_lock in zip(chat_kwargs, kwargs['model_states']): text_outputs.append(gr.Chatbot(**chat_kwargs1)) elif nrows == kwargs['model_states']: with gr.Row(): for chat_kwargs1, model_state_lock in zip(chat_kwargs, kwargs['model_states']): text_outputs.append(gr.Chatbot(**chat_kwargs1)) elif nrows == 2: with gr.Row(): for mii, (chat_kwargs1, model_state_lock) in enumerate(zip(chat_kwargs, kwargs['model_states'])): if mii >= len(kwargs['model_states']) / 2: continue text_outputs.append(gr.Chatbot(**chat_kwargs1)) with gr.Row(): for mii, (chat_kwargs1, model_state_lock) in enumerate(zip(chat_kwargs, kwargs['model_states'])): if mii < len(kwargs['model_states']) / 2: continue text_outputs.append(gr.Chatbot(**chat_kwargs1)) elif nrows == 3: with gr.Row(): for mii, (chat_kwargs1, model_state_lock) in enumerate(zip(chat_kwargs, kwargs['model_states'])): if mii >= 1 * len(kwargs['model_states']) / 3: continue text_outputs.append(gr.Chatbot(**chat_kwargs1)) with gr.Row(): for mii, (chat_kwargs1, model_state_lock) in enumerate(zip(chat_kwargs, kwargs['model_states'])): if mii < 1 * len(kwargs['model_states']) / 3 or mii >= 2 * len(kwargs['model_states']) / 3: continue text_outputs.append(gr.Chatbot(**chat_kwargs1)) with gr.Row(): for mii, (chat_kwargs1, model_state_lock) in enumerate(zip(chat_kwargs, kwargs['model_states'])): if mii < 2 * len(kwargs['model_states']) / 3: continue text_outputs.append(gr.Chatbot(**chat_kwargs1)) elif nrows >= 4: with gr.Row(): for mii, (chat_kwargs1, model_state_lock) in enumerate(zip(chat_kwargs, kwargs['model_states'])): if mii >= 1 * len(kwargs['model_states']) / 4: continue text_outputs.append(gr.Chatbot(**chat_kwargs1)) with gr.Row(): for mii, (chat_kwargs1, model_state_lock) in enumerate(zip(chat_kwargs, kwargs['model_states'])): if mii < 1 * len(kwargs['model_states']) / 4 or mii >= 2 * len(kwargs['model_states']) / 4: continue text_outputs.append(gr.Chatbot(**chat_kwargs1)) with gr.Row(): for mii, (chat_kwargs1, model_state_lock) in enumerate(zip(chat_kwargs, kwargs['model_states'])): if mii < 2 * len(kwargs['model_states']) / 4 or mii >= 3 * len(kwargs['model_states']) / 4: continue text_outputs.append(gr.Chatbot(**chat_kwargs1)) with gr.Row(): for mii, (chat_kwargs1, model_state_lock) in enumerate(zip(chat_kwargs, kwargs['model_states'])): if mii < 3 * len(kwargs['model_states']) / 4: continue text_outputs.append(gr.Chatbot(**chat_kwargs1)) with gr.Row(): text_output = gr.Chatbot(label=output_label0, visible=not kwargs['model_lock'], height=kwargs['height'] or 400) text_output2 = gr.Chatbot(label=output_label0_model2, visible=False and not kwargs['model_lock'], height=kwargs['height'] or 400) return text_output, text_output2, text_outputs def make_prompt_form(kwargs): if kwargs['langchain_mode'] != LangChainMode.DISABLED.value: extra_prompt_form = ". For summarization, empty submission uses first top_k_docs documents." else: extra_prompt_form = "" if kwargs['input_lines'] > 1: instruction_label = "Shift-Enter to Submit, Enter for more lines%s" % extra_prompt_form else: instruction_label = "Enter to Submit, Shift-Enter for more lines%s" % extra_prompt_form with gr.Row():#elem_id='prompt-form-area'): with gr.Column(scale=50): instruction = gr.Textbox( lines=kwargs['input_lines'], label='Ask anything', placeholder=instruction_label, info=None, elem_id='prompt-form', container=True, ) with gr.Row(): submit = gr.Button(value='Submit', variant='primary', scale=0, size='sm') stop_btn = gr.Button(value="Stop", variant='secondary', scale=0, size='sm') return instruction, submit, stop_btn