h1r41 commited on
Commit
65e29e2
·
1 Parent(s): 67894ac

initial commit

Browse files
Files changed (2) hide show
  1. app.py +64 -0
  2. requirements.txt +0 -0
app.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import streamlit as st
3
+ from llama_cpp import Llama
4
+ from huggingface_hub import hf_hub_download
5
+
6
+ # Hugging FaceのAPIトークンを設定
7
+ os.environ["HUGGINGFACE_TOKEN"] = os.getenv("HUGGINGFACE_TOKEN")
8
+
9
+ model_name_or_path = "TheBloke/OpenBuddy-Llama2-13B-v11.1-GGUF"
10
+ model_basename = "openbuddy-llama2-13b-v11.1.Q2_K.gguf"
11
+
12
+ model_path = hf_hub_download(repo_id=model_name_or_path, filename=model_basename, revision="main")
13
+ llama = Llama(model_path)
14
+
15
+ def predict(messages):
16
+ # Llamaでの回答を取得(ストリーミングオン)
17
+ streamer = llama.create_chat_completion(messages, stream=True)
18
+
19
+ partial_message = ""
20
+ for msg in streamer:
21
+ message = msg['choices'][0]['delta']
22
+ if 'content' in message:
23
+ partial_message += message['content']
24
+ yield partial_message
25
+
26
+
27
+ def main():
28
+ st.title("Chat with ChatGPT Clone!")
29
+
30
+ # Session state for retaining messages
31
+ if 'messages' not in st.session_state:
32
+ st.session_state.messages = []
33
+
34
+ # Display chat messages from history on app rerun
35
+ for message in st.session_state.messages:
36
+ with st.chat_message(message["role"]):
37
+ st.markdown(f"{message['content']}")
38
+
39
+ # Input for the user message
40
+ user_message = st.chat_input("Your Message")
41
+
42
+ # React to user input
43
+ if user_message:
44
+ # Display user message in chat message container
45
+ with st.chat_message("user"):
46
+ st.markdown(f"{user_message}")
47
+ # Add user message to chat history
48
+ st.session_state.messages.append({"role": "user", "content": user_message})
49
+
50
+ with st.chat_message("assistant"):
51
+ message_placeholder = st.empty()
52
+ full_response = ""
53
+
54
+ for char in predict([{"role": m["role"], "content": m["content"]} for m in st.session_state.messages]):
55
+ full_response = char #+= char
56
+ message_placeholder.markdown(full_response + " ❚ ")
57
+
58
+ message_placeholder.markdown(full_response)
59
+
60
+ st.session_state.messages.append({"role": "assistant", "content": full_response})
61
+
62
+
63
+ if __name__ == "__main__":
64
+ main()
requirements.txt ADDED
Binary file (2 kB). View file