|
import multiprocessing |
|
import os |
|
import re |
|
import sys |
|
import requests |
|
import html |
|
import hashlib |
|
import PIL.Image |
|
import PIL.ImageFile |
|
import numpy as np |
|
import scipy.ndimage |
|
import threading |
|
import queue |
|
import time |
|
import json |
|
import uuid |
|
import glob |
|
import argparse |
|
import itertools |
|
import shutil |
|
from collections import OrderedDict, defaultdict |
|
import cv2 |
|
from tqdm import tqdm |
|
import multiprocessing |
|
import scipy.io |
|
|
|
PIL.ImageFile.LOAD_TRUNCATED_IMAGES = True |
|
|
|
|
|
import sys |
|
name = sys.argv[1] |
|
custom_folder = sys.argv[2] |
|
temp_folder = sys.argv[3] |
|
lm_file = open('%s/%s_lm2d.txt'%(custom_folder,name),'r') |
|
lm = np.zeros((68,2),dtype=np.float32) |
|
lines = lm_file.readlines() |
|
for i in range(68): |
|
lm[i,0] = lines[i].strip().split(' ')[0] |
|
lm[i,1] = lines[i].strip().split(' ')[1] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def process_image(lm): |
|
|
|
output_size = 1300 |
|
transform_size =4096 |
|
enable_padding = True |
|
|
|
|
|
|
|
|
|
|
|
|
|
lm_chin = lm[0 : 17] |
|
lm_eyebrow_left = lm[17 : 22] |
|
lm_eyebrow_right = lm[22 : 27] |
|
lm_nose = lm[27 : 31] |
|
lm_nostrils = lm[31 : 36] |
|
lm_eye_left = lm[36 : 42] |
|
lm_eye_right = lm[42 : 48] |
|
lm_mouth_outer = lm[48 : 60] |
|
lm_mouth_inner = lm[60 : 68] |
|
|
|
|
|
eye_left = np.mean(lm_eye_left, axis=0) |
|
eye_right = np.mean(lm_eye_right, axis=0) |
|
eye_avg = (eye_left + eye_right) * 0.5 |
|
eye_to_eye = eye_right - eye_left |
|
mouth_left = lm_mouth_outer[0] |
|
mouth_right = lm_mouth_outer[6] |
|
mouth_avg = (mouth_left + mouth_right) * 0.5 |
|
eye_to_mouth = mouth_avg - eye_avg |
|
|
|
|
|
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] |
|
x /= np.hypot(*x) |
|
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) |
|
y = np.flipud(x) * [-1, 1] |
|
q_scale = 1.8 |
|
x = q_scale * x |
|
y = q_scale * y |
|
c = eye_avg + eye_to_mouth * 0.1 |
|
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) |
|
qsize = np.hypot(*x) * 2 |
|
|
|
|
|
src_file ='%s/%s.jpg'%(custom_folder,name) |
|
if not os.path.exists(src_file): |
|
src_file ='%s/%s.png'%(custom_folder,name) |
|
img = PIL.Image.open(src_file) |
|
print(img.size) |
|
import time |
|
|
|
|
|
start_time = time.time() |
|
shrink = int(np.floor(qsize / output_size * 0.5)) |
|
if shrink > 1: |
|
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink))) |
|
img = img.resize(rsize, PIL.Image.ANTIALIAS) |
|
quad /= shrink |
|
qsize /= shrink |
|
|
|
|
|
|
|
start_time = time.time() |
|
border = max(int(np.rint(qsize * 0.1)), 3) |
|
crop = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1])))) |
|
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1])) |
|
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]: |
|
img = img.crop(crop) |
|
quad -= crop[0:2] |
|
|
|
|
|
|
|
start_time = time.time() |
|
pad = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1])))) |
|
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0)) |
|
if enable_padding and max(pad) > border - 4: |
|
pad = np.maximum(pad, int(np.rint(qsize * 0.3))) |
|
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') |
|
h, w, _ = img.shape |
|
y, x, _ = np.ogrid[:h, :w, :1] |
|
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w-1-x) / pad[2]), 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h-1-y) / pad[3])) |
|
low_res = cv2.resize(img, (0,0), fx=0.1, fy=0.1, interpolation = cv2.INTER_AREA) |
|
blur = qsize * 0.02*0.1 |
|
low_res = scipy.ndimage.gaussian_filter(low_res, [blur, blur, 0]) |
|
low_res = cv2.resize(low_res, (img.shape[1], img.shape[0]), interpolation = cv2.INTER_LANCZOS4) |
|
img += (low_res - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) |
|
median = cv2.resize(img, (0,0), fx=0.1, fy=0.1, interpolation = cv2.INTER_AREA) |
|
median = np.median(median, axis=(0,1)) |
|
img += (median - img) * np.clip(mask, 0.0, 1.0) |
|
img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB') |
|
quad += pad[:2] |
|
|
|
|
|
|
|
start_time = time.time() |
|
img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR) |
|
if output_size < transform_size: |
|
img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS) |
|
|
|
|
|
|
|
os.makedirs('%s/'%(temp_folder),exist_ok=True) |
|
img.save('%s/%s.png'%(temp_folder,name)) |
|
|
|
process_image(lm) |