File size: 13,586 Bytes
5a1fda7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
import glob
import os
import os.path as osp
import fire
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
from tqdm import tqdm
from seva.data_io import get_parser
from seva.eval import (
IS_TORCH_NIGHTLY,
compute_relative_inds,
create_transforms_simple,
infer_prior_inds,
infer_prior_stats,
run_one_scene,
)
from seva.geometry import (
generate_interpolated_path,
generate_spiral_path,
get_arc_horizontal_w2cs,
get_default_intrinsics,
get_lookat,
get_preset_pose_fov,
)
from seva.model import SGMWrapper
from seva.modules.autoencoder import AutoEncoder
from seva.modules.conditioner import CLIPConditioner
from seva.sampling import DDPMDiscretization, DiscreteDenoiser
from seva.utils import load_model
device = "cuda:0"
# Constants.
WORK_DIR = "work_dirs/demo"
if IS_TORCH_NIGHTLY:
COMPILE = True
os.environ["TORCHINDUCTOR_AUTOGRAD_CACHE"] = "1"
os.environ["TORCHINDUCTOR_FX_GRAPH_CACHE"] = "1"
else:
COMPILE = False
MODEL = SGMWrapper(load_model(device="cpu", verbose=True).eval()).to(device)
AE = AutoEncoder(chunk_size=1).to(device)
CONDITIONER = CLIPConditioner().to(device)
DISCRETIZATION = DDPMDiscretization()
DENOISER = DiscreteDenoiser(discretization=DISCRETIZATION, num_idx=1000, device=device)
VERSION_DICT = {
"H": 576,
"W": 576,
"T": 21,
"C": 4,
"f": 8,
"options": {},
}
if COMPILE:
MODEL = torch.compile(MODEL, dynamic=False)
CONDITIONER = torch.compile(CONDITIONER, dynamic=False)
AE = torch.compile(AE, dynamic=False)
def parse_task(
task,
scene,
num_inputs,
T,
version_dict,
):
options = version_dict["options"]
anchor_indices = None
anchor_c2ws = None
anchor_Ks = None
if task == "img2trajvid_s-prob":
if num_inputs is not None:
assert (
num_inputs == 1
), "Task `img2trajvid_s-prob` only support 1-view conditioning..."
else:
num_inputs = 1
num_targets = options.get("num_targets", T - 1)
num_anchors = infer_prior_stats(
T,
num_inputs,
num_total_frames=num_targets,
version_dict=version_dict,
)
input_indices = [0]
anchor_indices = np.linspace(1, num_targets, num_anchors).tolist()
all_imgs_path = [scene] + [None] * num_targets
c2ws, fovs = get_preset_pose_fov(
option=options.get("traj_prior", "orbit"),
num_frames=num_targets + 1,
start_w2c=torch.eye(4),
look_at=torch.Tensor([0, 0, 10]),
)
with Image.open(scene) as img:
W, H = img.size
aspect_ratio = W / H
Ks = get_default_intrinsics(fovs, aspect_ratio=aspect_ratio) # unormalized
Ks[:, :2] *= (
torch.tensor([W, H]).reshape(1, -1, 1).repeat(Ks.shape[0], 1, 1)
) # normalized
Ks = Ks.numpy()
anchor_c2ws = c2ws[[round(ind) for ind in anchor_indices]]
anchor_Ks = Ks[[round(ind) for ind in anchor_indices]]
else:
parser = get_parser(
parser_type="reconfusion",
data_dir=scene,
normalize=False,
)
all_imgs_path = parser.image_paths
c2ws = parser.camtoworlds
camera_ids = parser.camera_ids
Ks = np.concatenate([parser.Ks_dict[cam_id][None] for cam_id in camera_ids], 0)
if num_inputs is None:
assert len(parser.splits_per_num_input_frames.keys()) == 1
num_inputs = list(parser.splits_per_num_input_frames.keys())[0]
split_dict = parser.splits_per_num_input_frames[num_inputs] # type: ignore
elif isinstance(num_inputs, str):
split_dict = parser.splits_per_num_input_frames[num_inputs] # type: ignore
num_inputs = int(num_inputs.split("-")[0]) # for example 1_from32
else:
split_dict = parser.splits_per_num_input_frames[num_inputs] # type: ignore
num_targets = len(split_dict["test_ids"])
if task == "img2img":
# Note in this setting, we should refrain from using all the other camera
# info except ones from sampled_indices, and most importantly, the order.
num_anchors = infer_prior_stats(
T,
num_inputs,
num_total_frames=num_targets,
version_dict=version_dict,
)
sampled_indices = np.sort(
np.array(split_dict["train_ids"] + split_dict["test_ids"])
) # we always sort all indices first
traj_prior = options.get("traj_prior", None)
if traj_prior == "spiral":
assert parser.bounds is not None
anchor_c2ws = generate_spiral_path(
c2ws[sampled_indices] @ np.diagflat([1, -1, -1, 1]),
parser.bounds[sampled_indices],
n_frames=num_anchors + 1,
n_rots=2,
zrate=0.5,
endpoint=False,
)[1:] @ np.diagflat([1, -1, -1, 1])
elif traj_prior == "interpolated":
assert num_inputs > 1
anchor_c2ws = generate_interpolated_path(
c2ws[split_dict["train_ids"], :3],
round((num_anchors + 1) / (num_inputs - 1)),
endpoint=False,
)[1 : num_anchors + 1]
elif traj_prior == "orbit":
c2ws_th = torch.as_tensor(c2ws)
lookat = get_lookat(
c2ws_th[sampled_indices, :3, 3],
c2ws_th[sampled_indices, :3, 2],
)
anchor_c2ws = torch.linalg.inv(
get_arc_horizontal_w2cs(
torch.linalg.inv(c2ws_th[split_dict["train_ids"][0]]),
lookat,
-F.normalize(
c2ws_th[split_dict["train_ids"]][:, :3, 1].mean(0),
dim=-1,
),
num_frames=num_anchors + 1,
endpoint=False,
)
).numpy()[1:, :3]
else:
anchor_c2ws = None
# anchor_Ks is default to be the first from target_Ks
all_imgs_path = [all_imgs_path[i] for i in sampled_indices]
c2ws = c2ws[sampled_indices]
Ks = Ks[sampled_indices]
# absolute to relative indices
input_indices = compute_relative_inds(
sampled_indices,
np.array(split_dict["train_ids"]),
)
anchor_indices = np.arange(
sampled_indices.shape[0],
sampled_indices.shape[0] + num_anchors,
).tolist() # the order has no meaning here
elif task == "img2vid":
num_targets = len(all_imgs_path) - num_inputs
num_anchors = infer_prior_stats(
T,
num_inputs,
num_total_frames=num_targets,
version_dict=version_dict,
)
input_indices = split_dict["train_ids"]
anchor_indices = infer_prior_inds(
c2ws,
num_prior_frames=num_anchors,
input_frame_indices=input_indices,
options=options,
).tolist()
num_anchors = len(anchor_indices)
anchor_c2ws = c2ws[anchor_indices, :3]
anchor_Ks = Ks[anchor_indices]
elif task == "img2trajvid":
num_anchors = infer_prior_stats(
T,
num_inputs,
num_total_frames=num_targets,
version_dict=version_dict,
)
target_c2ws = c2ws[split_dict["test_ids"], :3]
target_Ks = Ks[split_dict["test_ids"]]
anchor_c2ws = target_c2ws[
np.linspace(0, num_targets - 1, num_anchors).round().astype(np.int64)
]
anchor_Ks = target_Ks[
np.linspace(0, num_targets - 1, num_anchors).round().astype(np.int64)
]
sampled_indices = split_dict["train_ids"] + split_dict["test_ids"]
all_imgs_path = [all_imgs_path[i] for i in sampled_indices]
c2ws = c2ws[sampled_indices]
Ks = Ks[sampled_indices]
input_indices = np.arange(num_inputs).tolist()
anchor_indices = np.linspace(
num_inputs, num_inputs + num_targets - 1, num_anchors
).tolist()
else:
raise ValueError(f"Unknown task: {task}")
return (
all_imgs_path,
num_inputs,
num_targets,
input_indices,
anchor_indices,
torch.tensor(c2ws[:, :3]).float(),
torch.tensor(Ks).float(),
(torch.tensor(anchor_c2ws[:, :3]).float() if anchor_c2ws is not None else None),
(torch.tensor(anchor_Ks).float() if anchor_Ks is not None else None),
)
def main(
data_path,
data_items=None,
task="img2img",
save_subdir="",
H=None,
W=None,
T=None,
use_traj_prior=False,
**overwrite_options,
):
if H is not None:
VERSION_DICT["H"] = H
if W is not None:
VERSION_DICT["W"] = W
if T is not None:
VERSION_DICT["T"] = [int(t) for t in T.split(",")] if isinstance(T, str) else T
options = VERSION_DICT["options"]
options["chunk_strategy"] = "nearest-gt"
options["video_save_fps"] = 30.0
options["beta_linear_start"] = 5e-6
options["log_snr_shift"] = 2.4
options["guider_types"] = 1
options["cfg"] = 2.0
options["camera_scale"] = 2.0
options["num_steps"] = 50
options["cfg_min"] = 1.2
options["encoding_t"] = 1
options["decoding_t"] = 1
options["num_inputs"] = None
options["seed"] = 23
options.update(overwrite_options)
num_inputs = options["num_inputs"]
seed = options["seed"]
if data_items is not None:
if not isinstance(data_items, (list, tuple)):
data_items = data_items.split(",")
scenes = [os.path.join(data_path, item) for item in data_items]
else:
scenes = glob.glob(osp.join(data_path, "*"))
for scene in tqdm(scenes):
save_path_scene = os.path.join(
WORK_DIR, task, save_subdir, os.path.splitext(os.path.basename(scene))[0]
)
if options.get("skip_saved", False) and os.path.exists(
os.path.join(save_path_scene, "transforms.json")
):
print(f"Skipping {scene} as it is already sampled.")
continue
# parse_task -> infer_prior_stats modifies VERSION_DICT["T"] in-place.
(
all_imgs_path,
num_inputs,
num_targets,
input_indices,
anchor_indices,
c2ws,
Ks,
anchor_c2ws,
anchor_Ks,
) = parse_task(
task,
scene,
num_inputs,
VERSION_DICT["T"],
VERSION_DICT,
)
assert num_inputs is not None
# Create image conditioning.
image_cond = {
"img": all_imgs_path,
"input_indices": input_indices,
"prior_indices": anchor_indices,
}
# Create camera conditioning.
camera_cond = {
"c2w": c2ws.clone(),
"K": Ks.clone(),
"input_indices": list(range(num_inputs + num_targets)),
}
# run_one_scene -> transform_img_and_K modifies VERSION_DICT["H"] and VERSION_DICT["W"] in-place.
video_path_generator = run_one_scene(
task,
VERSION_DICT, # H, W maybe updated in run_one_scene
model=MODEL,
ae=AE,
conditioner=CONDITIONER,
denoiser=DENOISER,
image_cond=image_cond,
camera_cond=camera_cond,
save_path=save_path_scene,
use_traj_prior=use_traj_prior,
traj_prior_Ks=anchor_Ks,
traj_prior_c2ws=anchor_c2ws,
seed=seed, # to ensure sampled video can be reproduced in regardless of start and i
)
for _ in video_path_generator:
pass
# Convert from OpenCV to OpenGL camera format.
c2ws = c2ws @ torch.tensor(np.diag([1, -1, -1, 1])).float()
img_paths = sorted(glob.glob(osp.join(save_path_scene, "samples-rgb", "*.png")))
if len(img_paths) != len(c2ws):
input_img_paths = sorted(
glob.glob(osp.join(save_path_scene, "input", "*.png"))
)
assert len(img_paths) == num_targets
assert len(input_img_paths) == num_inputs
assert c2ws.shape[0] == num_inputs + num_targets
target_indices = [i for i in range(c2ws.shape[0]) if i not in input_indices]
img_paths = [
input_img_paths[input_indices.index(i)]
if i in input_indices
else img_paths[target_indices.index(i)]
for i in range(c2ws.shape[0])
]
create_transforms_simple(
save_path=save_path_scene,
img_paths=img_paths,
img_whs=np.array([VERSION_DICT["W"], VERSION_DICT["H"]])[None].repeat(
num_inputs + num_targets, 0
),
c2ws=c2ws,
Ks=Ks,
)
if __name__ == "__main__":
fire.Fire(main)
|