Spaces:
Sleeping
Sleeping
import os | |
import numpy as np | |
import tensorflow as tf | |
from module import encoder, decoder | |
from glob import glob | |
import runway | |
def setup(opts): | |
sess = tf.Session() | |
init_op = tf.global_variables_initializer() | |
sess.run(init_op) | |
with tf.name_scope("placeholder"): | |
input_photo = tf.placeholder( | |
dtype=tf.float32, shape=[1, None, None, 3], name="photo" | |
) | |
input_photo_features = encoder( | |
image=input_photo, options={"gf_dim": 32}, reuse=False | |
) | |
output_photo = decoder( | |
features=input_photo_features, options={"gf_dim": 32}, reuse=False | |
) | |
saver = tf.train.Saver() | |
path = opts["styleCheckpoint"] | |
model_name = [p for p in os.listdir(path) if os.path.isdir(os.path.join(path, p))][ | |
0 | |
] | |
checkpoint_dir = os.path.join(path, model_name, "checkpoint_long") | |
ckpt = tf.train.get_checkpoint_state(checkpoint_dir) | |
ckpt_name = os.path.basename(ckpt.model_checkpoint_path) | |
saver.restore(sess, os.path.join(checkpoint_dir, ckpt_name)) | |
return dict(sess=sess, input_photo=input_photo, output_photo=output_photo) | |
def stylize(model, inp): | |
img = inp["contentImage"] | |
img = np.array(img) | |
img = img / 127.5 - 1.0 | |
img = np.expand_dims(img, axis=0) | |
img = model["sess"].run( | |
model["output_photo"], feed_dict={model["input_photo"]: img} | |
) | |
img = (img + 1.0) * 127.5 | |
img = img.astype("uint8") | |
img = img[0] | |
return dict(stylizedImage=img) | |
if __name__ == "__main__": | |
#print("External Service port is:" + os.environ.get("SPORT",7860)) | |
#set env var: RW_PORT=7860 | |
os.environ["RW_PORT"] = "7860" | |
runway.run() | |