Spaces:
Build error
Build error
File size: 20,954 Bytes
8c90e7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass
from enum import Enum, auto
import math
import numpy as np
from typing import Tuple, List, Optional, Dict
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import autograd
from fairseq import checkpoint_utils, utils
from fairseq.dataclass import FairseqDataclass
from fairseq.models import BaseFairseqModel, register_model
from fairseq.modules import (
SamePad,
TransposeLast,
)
class SegmentationType(Enum):
NONE = auto()
RANDOM = auto()
UNIFORM_RANDOM = auto()
UNIFORM_RANDOM_JOIN = auto()
JOIN = auto()
@dataclass
class SegmentationConfig(FairseqDataclass):
type: SegmentationType = SegmentationType.NONE
subsample_rate: float = 0.25
mean_pool: bool = True
mean_pool_join: bool = False
remove_zeros: bool = False
@dataclass
class Wav2vec_UConfig(FairseqDataclass):
discriminator_kernel: int = 3
discriminator_dilation: int = 1
discriminator_dim: int = 256
discriminator_causal: bool = True
discriminator_linear_emb: bool = False
discriminator_depth: int = 1
discriminator_max_pool: bool = False
discriminator_act_after_linear: bool = False
discriminator_dropout: float = 0.0
discriminator_spectral_norm: bool = False
discriminator_weight_norm: bool = False
generator_kernel: int = 4
generator_dilation: int = 1
generator_stride: int = 1
generator_bias: bool = False
generator_dropout: float = 0.0
blank_weight: float = 0
blank_mode: str = "add"
blank_is_sil: bool = False
no_softmax: bool = False
smoothness_weight: float = 0.0
smoothing: float = 0.0
smoothing_one_sided: bool = False
gradient_penalty: float = 0.0
probabilistic_grad_penalty_slicing: bool = False
code_penalty: float = 0.0
gumbel: bool = False
hard_gumbel: bool = True
temp: Tuple[float, float, float] = (2, 0.1, 0.99995)
input_dim: int = 128
segmentation: SegmentationConfig = SegmentationConfig()
class Segmenter(nn.Module):
cfg: SegmentationConfig
def __init__(self, cfg: SegmentationConfig):
super().__init__()
self.cfg = cfg
self.subsample_rate = cfg.subsample_rate
def pre_segment(self, dense_x, dense_padding_mask):
return dense_x, dense_padding_mask
def logit_segment(self, logits, padding_mask):
return logits, padding_mask
class RandomSegmenter(Segmenter):
def pre_segment(self, dense_x, dense_padding_mask):
target_num = math.ceil(dense_x.size(1) * self.subsample_rate)
ones = torch.ones(dense_x.shape[:-1], device=dense_x.device)
indices, _ = ones.multinomial(target_num).sort(dim=-1)
indices_ld = indices.unsqueeze(-1).expand(-1, -1, dense_x.size(-1))
dense_x = dense_x.gather(1, indices_ld)
dense_padding_mask = dense_padding_mask.gather(1, index=indices)
return dense_x, dense_padding_mask
class UniformRandomSegmenter(Segmenter):
def pre_segment(self, dense_x, dense_padding_mask):
bsz, tsz, fsz = dense_x.shape
target_num = math.ceil(tsz * self.subsample_rate)
rem = tsz % target_num
if rem > 0:
dense_x = F.pad(dense_x, [0, 0, 0, target_num - rem])
dense_padding_mask = F.pad(
dense_padding_mask, [0, target_num - rem], value=True
)
dense_x = dense_x.view(bsz, target_num, -1, fsz)
dense_padding_mask = dense_padding_mask.view(bsz, target_num, -1)
if self.cfg.mean_pool:
dense_x = dense_x.mean(dim=-2)
dense_padding_mask = dense_padding_mask.all(dim=-1)
else:
ones = torch.ones((bsz, dense_x.size(2)), device=dense_x.device)
indices = ones.multinomial(1)
indices = indices.unsqueeze(-1).expand(-1, target_num, -1)
indices_ld = indices.unsqueeze(-1).expand(-1, -1, -1, fsz)
dense_x = dense_x.gather(2, indices_ld).reshape(bsz, -1, fsz)
dense_padding_mask = dense_padding_mask.gather(2, index=indices).reshape(
bsz, -1
)
return dense_x, dense_padding_mask
class JoinSegmenter(Segmenter):
def logit_segment(self, logits, padding_mask):
preds = logits.argmax(dim=-1)
if padding_mask.any():
preds[padding_mask] = -1 # mark pad
uniques = []
bsz, tsz, csz = logits.shape
for p in preds:
uniques.append(
p.cpu().unique_consecutive(return_inverse=True, return_counts=True)
)
new_tsz = max(u[0].numel() for u in uniques)
new_logits = logits.new_zeros(bsz, new_tsz, csz)
new_pad = padding_mask.new_zeros(bsz, new_tsz)
for b in range(bsz):
u, idx, c = uniques[b]
keep = u != -1
if self.cfg.remove_zeros:
keep.logical_and_(u != 0)
if self.training and not self.cfg.mean_pool_join:
u[0] = 0
u[1:] = c.cumsum(0)[:-1]
m = c > 1
r = torch.rand(m.sum())
o = (c[m] * r).long()
u[m] += o
new_logits[b, : u.numel()] = logits[b, u]
else:
new_logits[b].index_add_(
dim=0, index=idx.to(new_logits.device), source=logits[b]
)
new_logits[b, : c.numel()] /= c.unsqueeze(-1).to(new_logits.device)
new_sz = keep.sum()
if not keep.all():
kept_logits = new_logits[b, : c.numel()][keep]
new_logits[b, :new_sz] = kept_logits
if new_sz < new_tsz:
pad = new_tsz - new_sz
new_logits[b, -pad:] = 0
new_pad[b, -pad:] = True
return new_logits, new_pad
class UniformRandomJoinSegmenter(UniformRandomSegmenter, JoinSegmenter):
pass
SEGMENT_FACTORY = {
SegmentationType.NONE: Segmenter,
SegmentationType.RANDOM: RandomSegmenter,
SegmentationType.UNIFORM_RANDOM: UniformRandomSegmenter,
SegmentationType.UNIFORM_RANDOM_JOIN: UniformRandomJoinSegmenter,
SegmentationType.JOIN: JoinSegmenter,
}
class Discriminator(nn.Module):
def __init__(self, dim, cfg: Wav2vec_UConfig):
super().__init__()
inner_dim = cfg.discriminator_dim
kernel = cfg.discriminator_kernel
dilation = cfg.discriminator_dilation
self.max_pool = cfg.discriminator_max_pool
if cfg.discriminator_causal:
padding = kernel - 1
else:
padding = kernel // 2
def make_conv(in_d, out_d, k, p=0, has_dilation=True):
conv = nn.Conv1d(
in_d,
out_d,
kernel_size=k,
padding=p,
dilation=dilation if has_dilation else 1,
)
if cfg.discriminator_spectral_norm:
conv = nn.utils.spectral_norm(conv)
elif cfg.discriminator_weight_norm:
conv = nn.utils.weight_norm(conv)
return conv
inner_net = [
nn.Sequential(
make_conv(inner_dim, inner_dim, kernel, padding),
SamePad(kernel_size=kernel, causal=cfg.discriminator_causal),
nn.Dropout(cfg.discriminator_dropout),
nn.GELU(),
)
for _ in range(cfg.discriminator_depth - 1)
] + [
make_conv(inner_dim, 1, kernel, padding, has_dilation=False),
SamePad(kernel_size=kernel, causal=cfg.discriminator_causal),
]
if cfg.discriminator_linear_emb:
emb_net = [make_conv(dim, inner_dim, 1)]
else:
emb_net = [
make_conv(dim, inner_dim, kernel, padding),
SamePad(kernel_size=kernel, causal=cfg.discriminator_causal),
]
if cfg.discriminator_act_after_linear:
emb_net.append(nn.GELU())
self.net = nn.Sequential(
*emb_net,
nn.Dropout(cfg.discriminator_dropout),
*inner_net,
)
def forward(self, x, padding_mask):
x = x.transpose(1, 2) # BTC -> BCT
x = self.net(x)
x = x.transpose(1, 2)
x_sz = x.size(1)
if padding_mask is not None and padding_mask.any() and padding_mask.dim() > 1:
padding_mask = padding_mask[:, : x.size(1)]
x[padding_mask] = float("-inf") if self.max_pool else 0
x_sz = x_sz - padding_mask.sum(dim=-1)
x = x.squeeze(-1)
if self.max_pool:
x, _ = x.max(dim=-1)
else:
x = x.sum(dim=-1)
x = x / x_sz
return x
class Generator(nn.Module):
def __init__(self, input_dim, output_dim, cfg: Wav2vec_UConfig):
super().__init__()
self.cfg = cfg
self.output_dim = output_dim
self.stride = cfg.generator_stride
self.dropout = nn.Dropout(cfg.generator_dropout)
padding = cfg.generator_kernel // 2
self.proj = nn.Sequential(
TransposeLast(),
nn.Conv1d(
input_dim,
output_dim,
kernel_size=cfg.generator_kernel,
stride=cfg.generator_stride,
dilation=cfg.generator_dilation,
padding=padding,
bias=cfg.generator_bias,
),
TransposeLast(),
)
def forward(self, dense_x, tokens, dense_padding_mask):
dense_x = self.dropout(dense_x)
dense_x = self.proj(dense_x)
if self.stride > 1:
dense_padding_mask = dense_padding_mask[:, :: self.stride]
if dense_padding_mask.size(1) != dense_x.size(1):
new_padding = dense_padding_mask.new_zeros(dense_x.shape[:-1])
diff = new_padding.size(1) - dense_padding_mask.size(1)
assert (
diff > 0
), f"{new_padding.shape}, {dense_padding_mask.shape}, {dense_x.shape}, {diff}"
if diff > 0:
new_padding[:, diff:] = dense_padding_mask
else:
assert diff < 0
new_padding = dense_padding_mask[:, :diff]
dense_padding_mask = new_padding
result = {}
token_x = None
if tokens is not None:
token_x = dense_x.new_zeros(tokens.numel(), self.output_dim)
token_x.scatter_(1, tokens.view(-1, 1).long(), 1)
token_x = token_x.view(tokens.shape + (self.output_dim,))
result["dense_x"] = dense_x
result["token_x"] = token_x
result["dense_padding_mask"] = dense_padding_mask
return result
@register_model("wav2vec_u", dataclass=Wav2vec_UConfig)
class Wav2vec_U(BaseFairseqModel):
def calc_gradient_penalty(self, real_data, fake_data):
b_size = min(real_data.size(0), fake_data.size(0))
t_size = min(real_data.size(1), fake_data.size(1))
if self.cfg.probabilistic_grad_penalty_slicing:
def get_slice(data, dim, target_size):
size = data.size(dim)
diff = size - target_size
if diff <= 0:
return data
start = np.random.randint(0, diff + 1)
return data.narrow(dim=dim, start=start, length=target_size)
real_data = get_slice(real_data, 0, b_size)
real_data = get_slice(real_data, 1, t_size)
fake_data = get_slice(fake_data, 0, b_size)
fake_data = get_slice(fake_data, 1, t_size)
else:
real_data = real_data[:b_size, :t_size]
fake_data = fake_data[:b_size, :t_size]
alpha = torch.rand(real_data.size(0), 1, 1)
alpha = alpha.expand(real_data.size())
alpha = alpha.to(real_data.device)
interpolates = alpha * real_data + ((1 - alpha) * fake_data)
disc_interpolates = self.discriminator(interpolates, None)
gradients = autograd.grad(
outputs=disc_interpolates,
inputs=interpolates,
grad_outputs=torch.ones(disc_interpolates.size(), device=real_data.device),
create_graph=True,
retain_graph=True,
only_inputs=True,
)[0]
gradient_penalty = (gradients.norm(2, dim=1) - 1) ** 2
return gradient_penalty
def set_num_updates(self, num_updates):
super().set_num_updates(num_updates)
self.update_num = num_updates
self.curr_temp = max(
self.max_temp * self.temp_decay ** num_updates, self.min_temp
)
def discrim_step(self, num_updates):
return num_updates % 2 == 1
def get_groups_for_update(self, num_updates):
return "discriminator" if self.discrim_step(num_updates) else "generator"
def __init__(self, cfg: Wav2vec_UConfig, target_dict):
super().__init__()
self.cfg = cfg
self.zero_index = target_dict.index("<SIL>") if "<SIL>" in target_dict else 0
self.smoothness_weight = cfg.smoothness_weight
output_size = len(target_dict)
self.pad = target_dict.pad()
self.eos = target_dict.eos()
self.smoothing = cfg.smoothing
self.smoothing_one_sided = cfg.smoothing_one_sided
self.no_softmax = cfg.no_softmax
self.gumbel = cfg.gumbel
self.hard_gumbel = cfg.hard_gumbel
self.last_acc = None
self.gradient_penalty = cfg.gradient_penalty
self.code_penalty = cfg.code_penalty
self.blank_weight = cfg.blank_weight
self.blank_mode = cfg.blank_mode
self.blank_index = target_dict.index("<SIL>") if cfg.blank_is_sil else 0
assert self.blank_index != target_dict.unk()
self.discriminator = Discriminator(output_size, cfg)
for p in self.discriminator.parameters():
p.param_group = "discriminator"
self.pca_A = self.pca_b = None
d = cfg.input_dim
self.segmenter = SEGMENT_FACTORY[cfg.segmentation.type](cfg.segmentation)
self.generator = Generator(d, output_size, cfg)
for p in self.generator.parameters():
p.param_group = "generator"
for p in self.segmenter.parameters():
p.param_group = "generator"
self.max_temp, self.min_temp, self.temp_decay = cfg.temp
self.curr_temp = self.max_temp
self.update_num = 0
@classmethod
def build_model(cls, cfg, task):
return cls(cfg, task.target_dictionary)
def get_logits(
self,
net_output: Optional[Dict[str, List[Optional[torch.Tensor]]]],
normalize: bool = False,
):
logits = net_output["logits"]
if self.blank_weight != 0:
if self.blank_mode == "add":
logits[..., self.blank_index] += self.blank_weight
elif self.blank_mode == "set":
logits[..., self.blank_index] = self.blank_weight
else:
raise Exception(f"invalid blank mode {self.blank_mode}")
padding = net_output["padding_mask"]
if padding.any():
logits[padding] = float("-inf")
logits[padding][..., self.blank_index] = float("inf")
if normalize:
logits = utils.log_softmax(logits.float(), dim=-1)
return logits.transpose(0, 1)
def get_normalized_probs(
self,
net_output: Tuple[
torch.Tensor, Optional[Dict[str, List[Optional[torch.Tensor]]]]
],
log_probs: bool,
sample: Optional[Dict[str, torch.Tensor]] = None,
):
logits = self.get_logits(net_output)
probs = super().get_normalized_probs(logits, log_probs, sample)
# BTC -> TBC for ctc
probs = probs.transpose(0, 1)
return probs
def normalize(self, dense_x):
bsz, tsz, csz = dense_x.shape
if dense_x.numel() == 0:
raise Exception(dense_x.shape)
_, k = dense_x.max(-1)
hard_x = (
dense_x.new_zeros(bsz * tsz, csz)
.scatter_(-1, k.view(-1, 1), 1.0)
.view(-1, csz)
)
hard_probs = torch.mean(hard_x.float(), dim=0)
code_perplexity = torch.exp(
-torch.sum(hard_probs * torch.log(hard_probs + 1e-7), dim=-1)
)
avg_probs = torch.softmax(dense_x.reshape(-1, csz).float(), dim=-1).mean(dim=0)
prob_perplexity = torch.exp(
-torch.sum(avg_probs * torch.log(avg_probs + 1e-7), dim=-1)
)
if not self.no_softmax:
if self.training and self.gumbel:
dense_x = F.gumbel_softmax(
dense_x.float(), tau=self.curr_temp, hard=self.hard_gumbel
).type_as(dense_x)
else:
dense_x = dense_x.softmax(-1)
return dense_x, code_perplexity, prob_perplexity
def forward(
self,
features,
padding_mask,
random_label=None,
dense_x_only=False,
segment=True,
):
if segment:
features, padding_mask = self.segmenter.pre_segment(features, padding_mask)
orig_size = features.size(0) * features.size(1) - padding_mask.sum()
gen_result = self.generator(features, random_label, padding_mask)
orig_dense_x, token_x = gen_result["dense_x"], gen_result["token_x"]
orig_dense_padding_mask = gen_result["dense_padding_mask"]
if segment:
dense_x, dense_padding_mask = self.segmenter.logit_segment(
orig_dense_x, orig_dense_padding_mask
)
else:
dense_x = orig_dense_x
dense_padding_mask = orig_dense_padding_mask
dense_logits = dense_x
prob_perplexity = None
code_perplexity = None
if not (self.no_softmax and dense_x_only):
dense_x, code_perplexity, prob_perplexity = self.normalize(dense_logits)
if dense_x_only or self.discriminator is None:
return {
"logits": dense_x,
"padding_mask": dense_padding_mask,
}
token_padding_mask = random_label == self.pad
dense_y = self.discriminator(dense_x, dense_padding_mask)
token_y = self.discriminator(token_x, token_padding_mask)
sample_size = features.size(0)
d_step = self.discrim_step(self.update_num)
fake_smooth = self.smoothing
real_smooth = self.smoothing
if self.smoothing_one_sided:
fake_smooth = 0
zero_loss = None
smoothness_loss = None
code_pen = None
if d_step:
loss_dense = F.binary_cross_entropy_with_logits(
dense_y,
dense_y.new_ones(dense_y.shape) - fake_smooth,
reduction="sum",
)
loss_token = F.binary_cross_entropy_with_logits(
token_y,
token_y.new_zeros(token_y.shape) + real_smooth,
reduction="sum",
)
if self.training and self.gradient_penalty > 0:
grad_pen = self.calc_gradient_penalty(token_x, dense_x)
grad_pen = grad_pen.sum() * self.gradient_penalty
else:
grad_pen = None
else:
grad_pen = None
loss_token = None
loss_dense = F.binary_cross_entropy_with_logits(
dense_y,
dense_y.new_zeros(dense_y.shape) + fake_smooth,
reduction="sum",
)
num_vars = dense_x.size(-1)
if prob_perplexity is not None:
code_pen = (num_vars - prob_perplexity) / num_vars
code_pen = code_pen * sample_size * self.code_penalty
if self.smoothness_weight > 0:
smoothness_loss = F.mse_loss(
dense_logits[:, :-1], dense_logits[:, 1:], reduction="none"
)
smoothness_loss[dense_padding_mask[:, 1:]] = 0
smoothness_loss = (
smoothness_loss.mean() * sample_size * self.smoothness_weight
)
result = {
"losses": {
"grad_pen": grad_pen,
"code_pen": code_pen,
"smoothness": smoothness_loss,
},
"temp": self.curr_temp,
"code_ppl": code_perplexity,
"prob_ppl": prob_perplexity,
"d_steps": int(d_step),
"sample_size": sample_size,
}
suff = "_d" if d_step else "_g"
result["losses"]["dense" + suff] = loss_dense
result["losses"]["token" + suff] = loss_token
return result
|