Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import CLIPModel, CLIPProcessor
|
3 |
import torch
|
4 |
from PIL import Image
|
5 |
|
@@ -35,20 +35,31 @@ def inference_clip(options, image, processor, model):
|
|
35 |
#################################
|
36 |
#### LAYOUT
|
37 |
|
38 |
-
CLIP_large = load_clip(model_size='large')
|
|
|
|
|
39 |
|
|
|
40 |
picture_file = st.file_uploader("Picture :", type=["jpg", "jpeg", "png"])
|
41 |
if picture_file is not None:
|
42 |
image = Image.open(picture_file)
|
43 |
st.image(image, caption='Please upload an image of the damage', use_column_width=True)
|
44 |
|
|
|
|
|
45 |
#image
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import CLIPModel, CLIPProcessor, pipeline
|
3 |
import torch
|
4 |
from PIL import Image
|
5 |
|
|
|
35 |
#################################
|
36 |
#### LAYOUT
|
37 |
|
38 |
+
#CLIP_large = load_clip(model_size='large')
|
39 |
+
model_name = "openai/clip-vit-large-patch14-336"
|
40 |
+
classifier = pipeline("zero-shot-image-classification", model = model_name)
|
41 |
|
42 |
+
#### Loading picture
|
43 |
picture_file = st.file_uploader("Picture :", type=["jpg", "jpeg", "png"])
|
44 |
if picture_file is not None:
|
45 |
image = Image.open(picture_file)
|
46 |
st.image(image, caption='Please upload an image of the damage', use_column_width=True)
|
47 |
|
48 |
+
col_l, col_r = st.columns(2)
|
49 |
+
|
50 |
#image
|
51 |
+
with col_l:
|
52 |
+
default_options = ['black', 'white', 'gray', 'red', 'blue', 'silver', 'red', 'brown', 'green', 'orange', 'beige', 'pruple', 'gold', 'yellow']
|
53 |
+
options = st.text_input(label="Please enter the classes", value=default_options)
|
54 |
+
#options = list(options)
|
55 |
+
|
56 |
+
# button to launch compute
|
57 |
+
if st.button("Compute"):
|
58 |
+
#clip_processor, clip_model = load_clip(model_size='large')
|
59 |
+
#result = inference_clip(options = options, image = image, processor=clip_processor, model=clip_model)
|
60 |
+
scores = classifier(image,
|
61 |
+
candidate_labels = options)
|
62 |
+
|
63 |
+
with col_r:
|
64 |
+
#st.write(result)
|
65 |
+
st.dataframe(scores)
|