Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -99,7 +99,6 @@ def get_leaderboard_df():
|
|
99 |
|
100 |
|
101 |
def get_evaluation_queue_df():
|
102 |
-
# todo @saylortwift: replace the repo by the one you created for the eval queue
|
103 |
if eval_queue:
|
104 |
print("Pulling changes for the evaluation queue.")
|
105 |
eval_queue.git_pull()
|
@@ -141,7 +140,7 @@ def get_evaluation_queue_df():
|
|
141 |
data["model"] = make_clickable_model(data["model"])
|
142 |
all_evals.append(data)
|
143 |
|
144 |
-
pending_list = [e for e in all_evals if e["status"]
|
145 |
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
|
146 |
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED")]
|
147 |
df_pending = pd.DataFrame.from_records(pending_list, columns=EVAL_COLS)
|
@@ -179,6 +178,7 @@ def add_new_eval(
|
|
179 |
precision: str,
|
180 |
private: bool,
|
181 |
weight_type: str,
|
|
|
182 |
):
|
183 |
precision = precision.split(" ")[0]
|
184 |
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
@@ -209,6 +209,7 @@ def add_new_eval(
|
|
209 |
"weight_type": weight_type,
|
210 |
"status": "PENDING",
|
211 |
"submitted_time": current_time,
|
|
|
212 |
}
|
213 |
|
214 |
user_name = ""
|
@@ -296,7 +297,7 @@ with demo:
|
|
296 |
)
|
297 |
|
298 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
299 |
-
with gr.TabItem("π
LLM Benchmark
|
300 |
leaderboard_table_lite = gr.components.Dataframe(
|
301 |
value=leaderboard_df[COLS_LITE],
|
302 |
headers=COLS_LITE,
|
@@ -318,7 +319,7 @@ with demo:
|
|
318 |
leaderboard_table_lite,
|
319 |
)
|
320 |
|
321 |
-
with gr.TabItem("
|
322 |
leaderboard_table = gr.components.Dataframe(
|
323 |
value=leaderboard_df,
|
324 |
headers=COLS,
|
@@ -340,16 +341,16 @@ with demo:
|
|
340 |
[hidden_leaderboard_table_for_search, search_bar],
|
341 |
leaderboard_table,
|
342 |
)
|
343 |
-
with gr.TabItem("About", elem_id="llm-benchmark-tab-table", id=2):
|
344 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
345 |
|
346 |
-
with gr.TabItem("
|
347 |
with gr.Column():
|
348 |
with gr.Row():
|
349 |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
350 |
|
351 |
with gr.Column():
|
352 |
-
with gr.Accordion(f"β
Finished Evaluations
|
353 |
with gr.Row():
|
354 |
finished_eval_table = gr.components.Dataframe(
|
355 |
value=finished_eval_queue_df,
|
@@ -357,7 +358,7 @@ with demo:
|
|
357 |
datatype=EVAL_TYPES,
|
358 |
max_rows=5,
|
359 |
)
|
360 |
-
with gr.Accordion(f"π Running Evaluation Queue
|
361 |
with gr.Row():
|
362 |
running_eval_table = gr.components.Dataframe(
|
363 |
value=running_eval_queue_df,
|
@@ -366,7 +367,7 @@ with demo:
|
|
366 |
max_rows=5,
|
367 |
)
|
368 |
|
369 |
-
with gr.Accordion(f"β³ Pending Evaluation Queue
|
370 |
with gr.Row():
|
371 |
pending_eval_table = gr.components.Dataframe(
|
372 |
value=pending_eval_queue_df,
|
@@ -374,6 +375,63 @@ with demo:
|
|
374 |
datatype=EVAL_TYPES,
|
375 |
max_rows=5,
|
376 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
377 |
|
378 |
with gr.Row():
|
379 |
refresh_button = gr.Button("Refresh")
|
@@ -407,4 +465,4 @@ with demo:
|
|
407 |
scheduler = BackgroundScheduler()
|
408 |
scheduler.add_job(restart_space, "interval", seconds=3600)
|
409 |
scheduler.start()
|
410 |
-
demo.queue(concurrency_count=40).launch()
|
|
|
99 |
|
100 |
|
101 |
def get_evaluation_queue_df():
|
|
|
102 |
if eval_queue:
|
103 |
print("Pulling changes for the evaluation queue.")
|
104 |
eval_queue.git_pull()
|
|
|
140 |
data["model"] = make_clickable_model(data["model"])
|
141 |
all_evals.append(data)
|
142 |
|
143 |
+
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
|
144 |
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
|
145 |
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED")]
|
146 |
df_pending = pd.DataFrame.from_records(pending_list, columns=EVAL_COLS)
|
|
|
178 |
precision: str,
|
179 |
private: bool,
|
180 |
weight_type: str,
|
181 |
+
model_type: str,
|
182 |
):
|
183 |
precision = precision.split(" ")[0]
|
184 |
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
|
|
209 |
"weight_type": weight_type,
|
210 |
"status": "PENDING",
|
211 |
"submitted_time": current_time,
|
212 |
+
"model_type": model_type,
|
213 |
}
|
214 |
|
215 |
user_name = ""
|
|
|
297 |
)
|
298 |
|
299 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
300 |
+
with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
301 |
leaderboard_table_lite = gr.components.Dataframe(
|
302 |
value=leaderboard_df[COLS_LITE],
|
303 |
headers=COLS_LITE,
|
|
|
319 |
leaderboard_table_lite,
|
320 |
)
|
321 |
|
322 |
+
with gr.TabItem("π Extended model view", elem_id="llm-benchmark-tab-table", id=1):
|
323 |
leaderboard_table = gr.components.Dataframe(
|
324 |
value=leaderboard_df,
|
325 |
headers=COLS,
|
|
|
341 |
[hidden_leaderboard_table_for_search, search_bar],
|
342 |
leaderboard_table,
|
343 |
)
|
344 |
+
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
|
345 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
346 |
|
347 |
+
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
348 |
with gr.Column():
|
349 |
with gr.Row():
|
350 |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
351 |
|
352 |
with gr.Column():
|
353 |
+
with gr.Accordion(f"β
Finished Evaluations ({len(finished_eval_queue_df)})", open=False):
|
354 |
with gr.Row():
|
355 |
finished_eval_table = gr.components.Dataframe(
|
356 |
value=finished_eval_queue_df,
|
|
|
358 |
datatype=EVAL_TYPES,
|
359 |
max_rows=5,
|
360 |
)
|
361 |
+
with gr.Accordion(f"π Running Evaluation Queue ({len(running_eval_queue_df)})", open=False):
|
362 |
with gr.Row():
|
363 |
running_eval_table = gr.components.Dataframe(
|
364 |
value=running_eval_queue_df,
|
|
|
367 |
max_rows=5,
|
368 |
)
|
369 |
|
370 |
+
with gr.Accordion(f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})", open=False):
|
371 |
with gr.Row():
|
372 |
pending_eval_table = gr.components.Dataframe(
|
373 |
value=pending_eval_queue_df,
|
|
|
375 |
datatype=EVAL_TYPES,
|
376 |
max_rows=5,
|
377 |
)
|
378 |
+
with gr.Row():
|
379 |
+
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
|
380 |
+
|
381 |
+
with gr.Row():
|
382 |
+
with gr.Column():
|
383 |
+
model_name_textbox = gr.Textbox(label="Model name")
|
384 |
+
revision_name_textbox = gr.Textbox(
|
385 |
+
label="revision", placeholder="main"
|
386 |
+
)
|
387 |
+
private = gr.Checkbox(
|
388 |
+
False, label="Private", visible=not IS_PUBLIC
|
389 |
+
)
|
390 |
+
model_type = gr.Dropdown(
|
391 |
+
choices=["pretrained", "fine-tuned", "with RL"],
|
392 |
+
label="Model type",
|
393 |
+
multiselect=False,
|
394 |
+
value="pretrained",
|
395 |
+
max_choices=1,
|
396 |
+
interactive=True,
|
397 |
+
)
|
398 |
+
|
399 |
+
with gr.Column():
|
400 |
+
precision = gr.Dropdown(
|
401 |
+
choices=["float16", "bfloat16", "8bit (LLM.int8)", "4bit (QLoRA / FP4)"],
|
402 |
+
label="Precision",
|
403 |
+
multiselect=False,
|
404 |
+
value="float16",
|
405 |
+
max_choices=1,
|
406 |
+
interactive=True,
|
407 |
+
)
|
408 |
+
weight_type = gr.Dropdown(
|
409 |
+
choices=["Original", "Delta", "Adapter"],
|
410 |
+
label="Weights type",
|
411 |
+
multiselect=False,
|
412 |
+
value="Original",
|
413 |
+
max_choices=1,
|
414 |
+
interactive=True,
|
415 |
+
)
|
416 |
+
base_model_name_textbox = gr.Textbox(
|
417 |
+
label="Base model (for delta or adapter weights)"
|
418 |
+
)
|
419 |
+
|
420 |
+
submit_button = gr.Button("Submit Eval")
|
421 |
+
submission_result = gr.Markdown()
|
422 |
+
submit_button.click(
|
423 |
+
add_new_eval,
|
424 |
+
[
|
425 |
+
model_name_textbox,
|
426 |
+
base_model_name_textbox,
|
427 |
+
revision_name_textbox,
|
428 |
+
precision,
|
429 |
+
private,
|
430 |
+
weight_type,
|
431 |
+
model_type
|
432 |
+
],
|
433 |
+
submission_result,
|
434 |
+
)
|
435 |
|
436 |
with gr.Row():
|
437 |
refresh_button = gr.Button("Refresh")
|
|
|
465 |
scheduler = BackgroundScheduler()
|
466 |
scheduler.add_job(restart_space, "interval", seconds=3600)
|
467 |
scheduler.start()
|
468 |
+
demo.queue(concurrency_count=40).launch()
|