import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' from fastapi import FastAPI, UploadFile, File import json from PIL import Image from io import BytesIO from model import get_model app = FastAPI() IMAGE_WIDTH = 224 IMAGE_HEIGHT = 224 MODEL_WEIGHT_PATH = 'vgg_face_weights2.h5' model = get_model( image_shape = (IMAGE_WIDTH, IMAGE_HEIGHT, 3), num_classes = 6, model_weights = MODEL_WEIGHT_PATH ) print(model.summary()) print("Model Loaded Successfully") ######### Utilities ######### def load_image(image_data): image = Image.open(BytesIO(image_data)) return image def preprocess(image): image = image.resize((IMAGE_WIDTH, IMAGE_HEIGHT)) image = np.array(image) image = np.expand_dims(image, axis=0) return image def get_prediction(image): probs = model.predict(image)[0] label = np.argmax(probs) return { 'pred_probs': pred_probs.tolist(), 'label': int(label) } @app.get("/") def foo(): return { "status": "Face Expression Classifier" } @app.post("/get_prediction") async def predict(face_image: UploadFile = File(...)): image = load_image(await face_image.read()) image = preprocess(image) result = get_prediction(image) return { "result": json.dumps(result) }