gruhit-patel commited on
Commit
a85377e
·
verified ·
1 Parent(s): e6b1756

Update model.py

Browse files
Files changed (1) hide show
  1. model.py +38 -38
model.py CHANGED
@@ -1,39 +1,39 @@
1
- import os
2
- os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
3
-
4
- import keras
5
- from keras.layers import Input, Dropout, Dense
6
- from keras.models import Model
7
- from keras_vggface.vggface import VGGFace
8
-
9
- def get_model(image_shape, num_classes, model_weights, unfreeze_layers=-3, drop_rate=0.5):
10
-
11
- input_layer = Input(shape=image_shape)
12
- vgg_base_model = VGGFace(include_top = False, input_shape = image_shape, pooling='avg')
13
-
14
- # Freeze all the layers till unfreeze layers
15
- for layer in vgg_base_model.layers[:unfreeze_layers]:
16
- layer.trainable = False
17
-
18
- for layer in vgg_base_model.layers[unfreeze_layers:]:
19
- layer.trainable = True
20
-
21
- x = vgg_base_model(input_layer)
22
-
23
- x = Dropout(drop_rate)(x)
24
- output = Dense(num_classes, activation='softmax')(x)
25
-
26
- model = Model(inputs=[input_layer], outputs=[output], name="Expression_Classifier")
27
- model.load_weights(model_weights)
28
- return model
29
-
30
-
31
- if __name__ == "__main__":
32
- model_path = "vgg_face_weights2.h5"
33
- model = get_model(
34
- image_shape = (224, 224, 3),
35
- num_classes = 6,
36
- model_weights = model_path
37
- )
38
-
39
  print(model.summary())
 
1
+ import os
2
+ os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
3
+
4
+ import keras
5
+ from keras.layers import Input, Dropout, Dense
6
+ from keras.models import Model
7
+ from keras_vggface.vggface import VGGFace
8
+
9
+ def get_model(image_shape, num_classes, model_weights, unfreeze_layers=-3, drop_rate=0.5):
10
+
11
+ input_layer = Input(shape=image_shape)
12
+ vgg_base_model = VGGFace(include_top = False, input_shape = image_shape, pooling='avg')
13
+
14
+ # Freeze all the layers till unfreeze layers
15
+ for layer in vgg_base_model.layers[:unfreeze_layers]:
16
+ layer.trainable = True
17
+
18
+ # for layer in vgg_base_model.layers[unfreeze_layers:]:
19
+ # layer.trainable = True
20
+
21
+ x = vgg_base_model(input_layer)
22
+
23
+ x = Dropout(drop_rate)(x)
24
+ output = Dense(num_classes, activation='softmax')(x)
25
+
26
+ model = Model(inputs=[input_layer], outputs=[output], name="Expression_Classifier")
27
+ model.load_weights(model_weights)
28
+ return model
29
+
30
+
31
+ if __name__ == "__main__":
32
+ model_path = "vgg_face_weights2.h5"
33
+ model = get_model(
34
+ image_shape = (224, 224, 3),
35
+ num_classes = 6,
36
+ model_weights = model_path
37
+ )
38
+
39
  print(model.summary())