import openai import gradio as gr import os from gtts import gTTS from pdfminer.high_level import extract_text openai.api_key = os.getenv("OPENAI_API_KEY") from transformers import pipeline p = pipeline("automatic-speech-recognition",model="openai/whisper-tiny") def text_to_speech(text): myobj = gTTS(text=text, lang='en', slow=False) myobj.save("test.wav") return 'test.wav' def transcribe(audio): text = p(audio)["text"] return text def sentiment(text): response = openai.Completion.create( model="text-davinci-003", prompt=f"calssify the text into below sentiment category\n\ntext : {text}\"\n\n['positive','negative','neutral']\n", temperature=1, max_tokens=256, top_p=1, frequency_penalty=0, presence_penalty=0) return response.choices[0].text.strip() messages = [ {"role": "system", "content": "you name is Rebecca and you are a Pepsico call center assistant and your job is to take the order from the customer and also analysis the sentiment of the customer"} ] def chatbot(input1,input2): if input1: input =input1 input = transcribe(input) messages.append({"role": "user", "content": input}) if sentiment(input) == 'negative': reply = "Sorry for any inconvinience. We are tranfering your call." else: chat = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages, temperature=0.2, max_tokens=320, top_p=1, frequency_penalty=0, presence_penalty=0) reply = chat.choices[0].message.content messages.append({"role": "assistant", "content": reply}) return reply elif input2: input =input2 messages.append({"role": "user", "content": input}) if sentiment(input) == 'negative': reply = "Sorry for any inconvinience. We are tranfering your call." else: chat = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages, temperature=0.2, max_tokens=320, top_p=1, frequency_penalty=0, presence_penalty=0) reply = chat.choices[0].message.content messages.append({"role": "assistant", "content": reply}) return text_to_speech(reply) ##inputs = gr.inputs.Textbox(lines=7, label="Chat with PepsiCo AI assitant") #inputs= gr.Audio(source="microphone", type="filepath") inputs= [ gr.Audio(source="microphone", type="filepath"), gr.inputs.Textbox(lines=7)] #outputs = gr.outputs.Textbox(label="Reply") gr.Interface(fn= chatbot, inputs= inputs, outputs= 'audio', title="PepsiCo-chatbot", description="Give your order", theme="compact").launch() # gr.Interface( # fn=transcribe, # inputs= inputs, # outputs="text" # ).launch()