freddyaboulton HF staff commited on
Commit
4d05e64
·
verified ·
1 Parent(s): bb8fb6d

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. README.md +1 -1
  2. requirements.txt +4 -3
  3. run.ipynb +1 -1
README.md CHANGED
@@ -5,7 +5,7 @@ emoji: 🔥
5
  colorFrom: indigo
6
  colorTo: indigo
7
  sdk: gradio
8
- sdk_version: 4.44.1
9
  app_file: run.py
10
  pinned: false
11
  hf_oauth: true
 
5
  colorFrom: indigo
6
  colorTo: indigo
7
  sdk: gradio
8
+ sdk_version: 5.0.0
9
  app_file: run.py
10
  pinned: false
11
  hf_oauth: true
requirements.txt CHANGED
@@ -1,4 +1,5 @@
1
- gradio-client @ git+https://github.com/gradio-app/gradio@a15381b23d3f6b59180e83a94a5279feccbf79a2#subdirectory=client/python
2
- https://gradio-pypi-previews.s3.amazonaws.com/a15381b23d3f6b59180e83a94a5279feccbf79a2/gradio-4.44.1-py3-none-any.whl
3
  numpy
4
- tensorflow
 
 
1
+ gradio-client @ git+https://github.com/gradio-app/gradio@bbf9ba7e997022960c621f72baa891185bd03732#subdirectory=client/python
2
+ https://gradio-pypi-previews.s3.amazonaws.com/bbf9ba7e997022960c621f72baa891185bd03732/gradio-5.0.0-py3-none-any.whl
3
  numpy
4
+ tensorflow
5
+ requests
run.ipynb CHANGED
@@ -1 +1 @@
1
- {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: image_classifier"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio numpy tensorflow"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "os.mkdir('files')\n", "!wget -q -O files/imagenet_labels.json https://github.com/gradio-app/gradio/raw/main/demo/image_classifier/files/imagenet_labels.json\n", "os.mkdir('images')\n", "!wget -q -O images/cheetah1.jpg https://github.com/gradio-app/gradio/raw/main/demo/image_classifier/images/cheetah1.jpg\n", "!wget -q -O images/lion.jpg https://github.com/gradio-app/gradio/raw/main/demo/image_classifier/images/lion.jpg"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import os\n", "import requests\n", "import tensorflow as tf\n", "\n", "import gradio as gr\n", "\n", "inception_net = tf.keras.applications.MobileNetV2() # load the model\n", "\n", "# Download human-readable labels for ImageNet.\n", "response = requests.get(\"https://git.io/JJkYN\")\n", "labels = response.text.split(\"\\n\")\n", "\n", "def classify_image(inp):\n", " inp = inp.reshape((-1, 224, 224, 3))\n", " inp = tf.keras.applications.mobilenet_v2.preprocess_input(inp)\n", " prediction = inception_net.predict(inp).flatten()\n", " return {labels[i]: float(prediction[i]) for i in range(1000)}\n", "\n", "image = gr.Image()\n", "label = gr.Label(num_top_classes=3)\n", "\n", "demo = gr.Interface(\n", " fn=classify_image,\n", " inputs=image,\n", " outputs=label,\n", " examples=[\n", " os.path.join(os.path.abspath(''), \"images/cheetah1.jpg\"),\n", " os.path.join(os.path.abspath(''), \"images/lion.jpg\")\n", " ]\n", " )\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n", "\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
 
1
+ {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: image_classifier"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio numpy tensorflow requests "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "os.mkdir('files')\n", "!wget -q -O files/imagenet_labels.json https://github.com/gradio-app/gradio/raw/main/demo/image_classifier/files/imagenet_labels.json\n", "os.mkdir('images')\n", "!wget -q -O images/cheetah1.jpg https://github.com/gradio-app/gradio/raw/main/demo/image_classifier/images/cheetah1.jpg\n", "!wget -q -O images/lion.jpg https://github.com/gradio-app/gradio/raw/main/demo/image_classifier/images/lion.jpg"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import os\n", "import requests\n", "import tensorflow as tf\n", "\n", "import gradio as gr\n", "\n", "inception_net = tf.keras.applications.MobileNetV2() # load the model\n", "\n", "# Download human-readable labels for ImageNet.\n", "response = requests.get(\"https://git.io/JJkYN\")\n", "labels = response.text.split(\"\\n\")\n", "\n", "def classify_image(inp):\n", " inp = inp.reshape((-1, 224, 224, 3))\n", " inp = tf.keras.applications.mobilenet_v2.preprocess_input(inp)\n", " prediction = inception_net.predict(inp).flatten()\n", " return {labels[i]: float(prediction[i]) for i in range(1000)}\n", "\n", "image = gr.Image()\n", "label = gr.Label(num_top_classes=3)\n", "\n", "demo = gr.Interface(\n", " fn=classify_image,\n", " inputs=image,\n", " outputs=label,\n", " examples=[\n", " os.path.join(os.path.abspath(''), \"images/cheetah1.jpg\"),\n", " os.path.join(os.path.abspath(''), \"images/lion.jpg\")\n", " ]\n", " )\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n", "\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}