Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -5,7 +5,7 @@ emoji: 🔥
|
|
5 |
colorFrom: indigo
|
6 |
colorTo: indigo
|
7 |
sdk: gradio
|
8 |
-
sdk_version:
|
9 |
app_file: run.py
|
10 |
pinned: false
|
11 |
hf_oauth: true
|
|
|
5 |
colorFrom: indigo
|
6 |
colorTo: indigo
|
7 |
sdk: gradio
|
8 |
+
sdk_version: 4.0.2
|
9 |
app_file: run.py
|
10 |
pinned: false
|
11 |
hf_oauth: true
|
requirements.txt
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
-
https://gradio-builds.s3.amazonaws.com/
|
2 |
tensorflow
|
|
|
1 |
+
https://gradio-builds.s3.amazonaws.com/874005938d65543c4cefe610a17e58d2ec7b3fb1/gradio-4.0.2-py3-none-any.whl
|
2 |
tensorflow
|
run.ipynb
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: digit_classifier"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio tensorflow"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["from urllib.request import urlretrieve\n", "\n", "import tensorflow as tf\n", "\n", "import gradio as gr\n", "\n", "urlretrieve(\n", " \"https://gr-models.s3-us-west-2.amazonaws.com/mnist-model.h5\", \"mnist-model.h5\"\n", ")\n", "model = tf.keras.models.load_model(\"mnist-model.h5\")\n", "\n", "\n", "def recognize_digit(image):\n", " image = image.reshape(1, -1)\n", " prediction = model.predict(image).tolist()[0]\n", " return {str(i): prediction[i] for i in range(10)}\n", "\n", "\n", "im = gr.Image(shape=(28, 28), image_mode=\"L\", invert_colors=False, source=\"canvas\")\n", "\n", "demo = gr.Interface(\n", " recognize_digit,\n", " im,\n", " gr.Label(num_top_classes=3),\n", " live=True,\n", "
|
|
|
1 |
+
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: digit_classifier"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio tensorflow"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["from urllib.request import urlretrieve\n", "\n", "import tensorflow as tf\n", "\n", "import gradio as gr\n", "\n", "urlretrieve(\n", " \"https://gr-models.s3-us-west-2.amazonaws.com/mnist-model.h5\", \"mnist-model.h5\"\n", ")\n", "model = tf.keras.models.load_model(\"mnist-model.h5\")\n", "\n", "\n", "def recognize_digit(image):\n", " image = image.reshape(1, -1)\n", " prediction = model.predict(image).tolist()[0]\n", " return {str(i): prediction[i] for i in range(10)}\n", "\n", "\n", "im = gr.Image(shape=(28, 28), image_mode=\"L\", invert_colors=False, source=\"canvas\")\n", "\n", "demo = gr.Interface(\n", " recognize_digit,\n", " im,\n", " gr.Label(num_top_classes=3),\n", " live=True,\n", " capture_session=True,\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
run.py
CHANGED
@@ -23,7 +23,6 @@ demo = gr.Interface(
|
|
23 |
im,
|
24 |
gr.Label(num_top_classes=3),
|
25 |
live=True,
|
26 |
-
interpretation="default",
|
27 |
capture_session=True,
|
28 |
)
|
29 |
|
|
|
23 |
im,
|
24 |
gr.Label(num_top_classes=3),
|
25 |
live=True,
|
|
|
26 |
capture_session=True,
|
27 |
)
|
28 |
|