import gradio as gr from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig import json with open("tag_map.json") as tag_map_file: tag_map = json.load(tag_map_file) reverse_map = {j: i for i, j in tag_map.items()} model_name_or_path = "roberta-base" config = AutoConfig.from_pretrained(model_name_or_path) config.num_classes = len(tag_map) model = AutoModelForSequenceClassification.from_pretrained( model_name_or_path, config=config ) tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) def classify(text): return reverse_map[ model(**tokenizer(text, return_tensors="pt")).logits.argmax(-1).item() ] iface = gr.Interface(fn=classify, inputs="text", outputs="text") iface.launch()