

Module 3: AST-1

TITLE: Transitioning from Research to Production Environment

LEARNING OBJECTIVES:

At the end of the experiment, you will be able to transition from the research environment to the

production environment. You will understand the concept of modularization and convert the model

developed in Jupyter Notebook into different modules tailored to specific functionalities: Data

Manager, Training, Pipeline, Predict, etc.

You will be able to understand and implement the following aspects:

1. VS code setup and understanding interface components

2. Creating virtual environment, installing requirement, running .py & .ipynb file

3. Understanding __name__ == “__main__” and building our own modules

4. Modularization: Converting a ML model from research environment format (Notebook)

to product environment format (.py files)

A) Creating different modules specific to functionality: Data Manager, Training,

Pipeline, Predict

B) Understanding folder structure

C) Separating configuration files

D) Concept of YAML file

INTRODUCTION:

What is a production code?

Production code is designed to be deployed to end users as opposed to research code, which is for

experimentation, and building proof of concepts, and research code tends to be more short-term in

nature.

The following are considerations with production code:

● Testability and maintainability: Dividing code into modules that are more extensible and

easier to maintain & test.

● Separating configuration from code where possible, and ensuring that functionality is

tested and documented.

● May need to refactor inefficient parts of the code base and finally, reproducibility.

● Ensuring version control with clear processes for tracking releases and release versions,

requirements, a mark of which dependencies and which versions are used by the code.

● Ensure that code adheres to standards like PEP8 so that it's easy for others to read and

work.

● Scalability and performance are also important areas to consider: The production code

needs to be ready to be deployed to infrastructure that can be scaled.In modern web

applications, this typically means containerization for vertical or horizontal scaling.

Understanding the folder structure in production environment:

As per the new considerations for production-level code, the following are the reasoning behind

the structure of the production code -

1) Reliability/Reproducibility

2) Maintainability & Adaptability

3) Testability

4) Scalability

5) Version control

Understanding the functionality of each file and folder

Given below is the project folder structure showing all files and sub-folders. In the explanation,

the numberings are given to show how each component is connected one after the other in a logical

sequence, and the explanation is written in front of the corresponding file in the folder structure

for ease of traceability of each file location.

1. requirements: Dependencies-libraries, packages.

2. core.py : It accesses the config.yml file & setups the path

for dataset folder trained models etc.

● datasets: Raw dataset is stored here.

3. data_manger.py: It contains pre-pipeline functions, and

functionality for loading of data, saving & loading of trained

models, and removing old version models.

4. features.py : It contains custom built transformation classes

if any.

5. validation.py: To validate the user input data before

feeding into the model for prediction. This is imported and

used inside predict.py.

● trained_models: The trained model is stored inside this

folder

6. config.yml: All the configurations and setting parameters,

features name are stored here.

7. pipeline.py : It contains the complete pipeline using

transformation classes and modeling algorithm

8. train_pipeline.py : Model training and saving of model

9. predict.py: provide inference for any new sample by

loading the saved model.

● VERSION : Contains the version tag.

● __init__.py : This file lets the Python interpreter know that a directory contains code for

a Python module. An __init__.py file can be blank. Without this, importing modules from

another folder into your project is not possible.

PROCEDURE

The following steps involve downloading the project folder and uploading it to VS code, creating

a virtual environment within the project, installing necessary dependencies, and executing specific

scripts for training and prediction. It allows us to effectively configure the project and execute it

within the VS code environment.

Step1: Environment Setup in your local system : Go through the Environment setup document

and complete the VS code installation and along with the Python in your system.

Step 2: Go through the Experiment Phase-1 and Experiment Phase-2 colab notebooks and

try to understand different steps viz. data exploration, pre-processing: pre-pipeline & pipeline

processing, custom transformation class and final pipeline building. Note understanding these

steps are essential to transition from the research phase to the production phase.

Step 3: Download the Project folder and upload in your VS code and follow the steps below:

1. Upload the Project folder in VS code

2. Inside Project create virtual environment :

A. Open terminal, it should point to …….\projects>

B. For creating virtual environment run the following command :

 python -m venv path of project folder\venv

For example:

 ….\project> python -m venv C:\Users\karna\Desktop\MLOps_M3_M4\project\venv

C. Go inside venv\Scripts by command : ….> cd venv\Scripts

 Now type activate and enter : project\venv\Scripts> activate

D. Now press : ctrl +shift+p; select Interpreter which contains venv

 Close the terminal and open new terminal, we are inside ven like this:

 (venv) ………………………………..\project>

3. Go inside requirements[cd requirements] folder and run :

…> pip install -r requirements.txt

4. Come out of requirements folder [cd..] and go inside titanic_model folder and run :

py train_pipeline.py

5. Now run : py predict.py

Note: If you are getting errors while creating and activating a virtual environment follow the last

few steps mentioned in the Environment setup document.

