gourisankar85 commited on
Commit
af473eb
·
verified ·
1 Parent(s): d48cd84

Upload 4 files

Browse files
scripts/evaluate_negative_rejection.py CHANGED
@@ -15,10 +15,10 @@ def evaluate_negative_rejection(config):
15
  noise_rate = config['noise_rate']
16
  passage_num = config['passage_num']
17
 
18
- if config['model_name'] in config['models']:
19
- model = GroqClient(plm=config['model_name'])
20
  else:
21
- logging.warning(f"Skipping unknown model: {config['model_name']}")
22
  return
23
 
24
  # File paths
 
15
  noise_rate = config['noise_rate']
16
  passage_num = config['passage_num']
17
 
18
+ if modelname in config['models']:
19
+ model = GroqClient(plm=modelname)
20
  else:
21
+ logging.warning(f"Skipping unknown model: {modelname}")
22
  return
23
 
24
  # File paths
scripts/evaluate_noise_robustness.py CHANGED
@@ -13,9 +13,10 @@ def evaluate_noise_robustness(config):
13
  result_path = config['result_path'] + 'Noise Robustness/'
14
  noise_rate = config['noise_rate']
15
  passage_num = config['passage_num']
 
16
 
17
  # Iterate over each model specified in the config
18
- filename = os.path.join(result_path, f'prediction_{config['model_name']}_noise_{noise_rate}_passage_{passage_num}.json')
19
  ensure_directory_exists(filename)
20
 
21
  # Load existing results if file exists
@@ -56,7 +57,7 @@ def evaluate_noise_robustness(config):
56
  logging.info(f"score: {scores}")
57
  logging.info(f"Noise Robustness Accuracy: {accuracy:.2%}")
58
 
59
- score_filename = os.path.join(result_path, f'scores_{config['model_name']}_noise_{noise_rate}_passage_{passage_num}.json')
60
  with open(score_filename, 'w') as f:
61
  json.dump(scores, f, ensure_ascii=False, indent=4)
62
 
 
13
  result_path = config['result_path'] + 'Noise Robustness/'
14
  noise_rate = config['noise_rate']
15
  passage_num = config['passage_num']
16
+ model_name = config['model_name']
17
 
18
  # Iterate over each model specified in the config
19
+ filename = os.path.join(result_path, f'prediction_{model_name}_noise_{noise_rate}_passage_{passage_num}.json')
20
  ensure_directory_exists(filename)
21
 
22
  # Load existing results if file exists
 
57
  logging.info(f"score: {scores}")
58
  logging.info(f"Noise Robustness Accuracy: {accuracy:.2%}")
59
 
60
+ score_filename = os.path.join(result_path, f'scores_{model_name}_noise_{noise_rate}_passage_{passage_num}.json')
61
  with open(score_filename, 'w') as f:
62
  json.dump(scores, f, ensure_ascii=False, indent=4)
63
 
scripts/get_factual_evaluation.py CHANGED
@@ -13,9 +13,10 @@ def get_factual_evaluation(config):
13
  result_path = config['result_path'] + 'Counterfactual Robustness/'
14
  noise_rate = config['noise_rate']
15
  passage_num = config['passage_num']
 
16
 
17
  # Iterate over each model specified in the config
18
- filename = os.path.join(result_path, f'prediction_{config['model_name']}_noise_{noise_rate}_passage_{passage_num}.json')
19
  ensure_directory_exists(filename)
20
 
21
  # Load existing results if file exists
@@ -61,7 +62,7 @@ def get_factual_evaluation(config):
61
  scores['correct_tt'] = correct_tt
62
 
63
  #logging.info(f"score: {scores}")
64
- score_filename = os.path.join(result_path, f'scores_{config['model_name']}_noise_{noise_rate}_passage_{passage_num}.json')
65
  with open(score_filename, 'w') as f:
66
  json.dump(scores, f, ensure_ascii=False, indent=4)
67
 
 
13
  result_path = config['result_path'] + 'Counterfactual Robustness/'
14
  noise_rate = config['noise_rate']
15
  passage_num = config['passage_num']
16
+ model_name = config['model_name']
17
 
18
  # Iterate over each model specified in the config
19
+ filename = os.path.join(result_path, f'prediction_{model_name}_noise_{noise_rate}_passage_{passage_num}.json')
20
  ensure_directory_exists(filename)
21
 
22
  # Load existing results if file exists
 
62
  scores['correct_tt'] = correct_tt
63
 
64
  #logging.info(f"score: {scores}")
65
+ score_filename = os.path.join(result_path, f'scores_{model_name}_noise_{noise_rate}_passage_{passage_num}.json')
66
  with open(score_filename, 'w') as f:
67
  json.dump(scores, f, ensure_ascii=False, indent=4)
68
 
scripts/get_prediction_result.py CHANGED
@@ -12,16 +12,18 @@ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(
12
  def get_prediction_result(config, data_file_name):
13
  results = []
14
  dataset = load_dataset(data_file_name)
 
 
15
  # Create GroqClient instance for supported models
16
- if config['model_name'] in config['models']:
17
- model = GroqClient(plm=config['model_name'])
18
  else:
19
- logging.warning(f"Skipping unknown model: {config['model_name']}")
20
  return
21
 
22
  # Iterate through dataset and process queries
23
  for idx, instance in enumerate(dataset[:config['num_queries']], start=0):
24
- logging.info(f"Executing Query {idx + 1} for Model: {config['model_name']}")
25
 
26
  query, ans, docs = process_data(instance, config['noise_rate'], config['passage_num'], data_file_name)
27
 
 
12
  def get_prediction_result(config, data_file_name):
13
  results = []
14
  dataset = load_dataset(data_file_name)
15
+ modelname = config['model_name']
16
+
17
  # Create GroqClient instance for supported models
18
+ if modelname in config['models']:
19
+ model = GroqClient(plm=modelname)
20
  else:
21
+ logging.warning(f"Skipping unknown model: {modelname}")
22
  return
23
 
24
  # Iterate through dataset and process queries
25
  for idx, instance in enumerate(dataset[:config['num_queries']], start=0):
26
+ logging.info(f"Executing Query {idx + 1} for Model: {modelname}")
27
 
28
  query, ans, docs = process_data(instance, config['noise_rate'], config['passage_num'], data_file_name)
29