File size: 2,166 Bytes
d1eeaf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d48cd84
5b260bd
d1eeaf0
5b260bd
d1eeaf0
 
 
5b260bd
 
d1eeaf0
5b260bd
d1eeaf0
 
d48cd84
d1eeaf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b260bd
d1eeaf0
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import logging
from scripts.helper import adaptive_delay, load_dataset
from scripts.process_data import process_data
from scripts.groq_client import GroqClient
from scripts.prediction import predict

# Set up logging configuration
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# Get prediction from LLM based on different dataset

def get_prediction_result(config, data_file_name):
    results = []
    dataset = load_dataset(data_file_name)
    # Create GroqClient instance for supported models
    if config['model_name'] in config['models']:
        model = GroqClient(plm=config['model_name'])
    else:
        logging.warning(f"Skipping unknown model: {config['model_name']}")
        return
    
    # Iterate through dataset and process queries
    for idx, instance in enumerate(dataset[:config['num_queries']], start=0):
        logging.info(f"Executing Query {idx + 1} for Model: {config['model_name']}")

        query, ans, docs = process_data(instance, config['noise_rate'], config['passage_num'], data_file_name)

        # Retry mechanism for prediction
        for attempt in range(1, config['retry_attempts'] + 1):
            label, prediction, factlabel = predict(query, ans, docs, model, "Document:\n{DOCS} \n\nQuestion:\n{QUERY}", 0.7)
            if prediction:  # If response is not empty, break retry loop
                break
            adaptive_delay(attempt)

        # Check correctness and log the result
        is_correct = all(x == 1 for x in label)  # True if all values are 1 (correct), else False
        logging.info(f"Model Response: {prediction}")
        logging.info(f"Correctness: {is_correct}")

        # Save result for this query
        instance['label'] = label
        new_instance = {
            'id': instance['id'],
            'query': query,
            'ans': ans,
            'label': label,
            'prediction': prediction,
            'docs': docs,
            'noise_rate': config['noise_rate'],
            'factlabel': factlabel
        }
        results.append(new_instance)

    return results