import gradio as gr import cv2 import requests import os from ultralytics import YOLO file_urls = [ 'https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2Fray-of-baggage-showing-different-objects-with-different-densities-III-ALGORITHEM_fig2_305264591&psig=AOvVaw1s-qOqWplhsbjliHEq4bqo&ust=1699106526616000&source=images&cd=vfe&opi=89978449&ved=0CBIQjRxqFwoTCNCBs5n_p4IDFQAAAAAdAAAAABAJ', 'https://www.google.com/url?sa=i&url=https%3A%2F%2Fbitrefine.group%2Faboutcompany%2Fnews%2F251-computer-system-has-learned-to-recognize-x-ray-images-and-alerts-if-it-sees-illegal-items&psig=AOvVaw1s-qOqWplhsbjliHEq4bqo&ust=1699106526616000&source=images&cd=vfe&opi=89978449&ved=0CBIQjRxqFwoTCNCBs5n_p4IDFQAAAAAdAAAAABAR' ] def download_file(url, save_name): url = url if not os.path.exists(save_name): file = requests.get(url) open(save_name, 'wb').write(file.content) for i, url in enumerate(file_urls): if 'mp4' in file_urls[i]: download_file( file_urls[i], f"video.mp4" ) else: download_file( file_urls[i], f"image_{i}.jpg" ) model = YOLO('airport_scaner.pt') path = [['image_0.jpg'], ['image_1.jpg']] # video_path = [['video.mp4']] def show_preds_image(image_path): image = cv2.imread(image_path) outputs = model.predict(source=image_path) results = outputs[0].cpu().numpy() for i, det in enumerate(results.boxes.xyxy): cv2.rectangle( image, (int(det[0]), int(det[1])), (int(det[2]), int(det[3])), color=(0, 0, 255), thickness=2, lineType=cv2.LINE_AA ) return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) inputs_image = [ gr.components.Image(type="filepath", label="Input Image"), ] outputs_image = [ gr.components.Image(type="numpy", label="Output Image"), ] interface_image = gr.Interface( fn=show_preds_image, inputs=inputs_image, outputs=outputs_image, title="Airport Luggage Weapon Detector app", examples=path, cache_examples=False, ) def show_preds_video(video_path): cap = cv2.VideoCapture(video_path) while(cap.isOpened()): ret, frame = cap.read() if ret: frame_copy = frame.copy() outputs = model.predict(source=frame) results = outputs[0].cpu().numpy() for i, det in enumerate(results.boxes.xyxy): cv2.rectangle( frame_copy, (int(det[0]), int(det[1])), (int(det[2]), int(det[3])), color=(0, 0, 255), thickness=2, lineType=cv2.LINE_AA ) yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB) inputs_video = [ gr.components.Video(), ] outputs_video = [ gr.components.Image(), ] interface_video = gr.Interface( fn=show_preds_video, inputs=inputs_video, outputs=outputs_video, title="Airport Luggage Weapon Detector", cache_examples=False, ) gr.TabbedInterface( [interface_image, interface_video], tab_names=['Image inference', 'Video inference'] ).queue().launch()