synthid-text / app.py
RyanMullins's picture
Mock version of the gamified SynthID Text Space
f5e3203
raw
history blame
4.1 kB
from collections.abc import Sequence
import random
import gradio as gr
import immutabledict
import spaces
import torch
#### Version 1: Baseline
# Step 1: Select and load your model
# Step 2: Load the test dataset (4-5 examples)
# Step 3: Run generation with and wihtout watermarking, display the outputs
# Step 4: User clicks the reveal button to see the watermarked vs not gens
#### Version 2: Gamification
# Stesp 1-3 the same
# Step 4: User marks specific generations as watermarked
# Step 5: User clicks the reveal button to see the watermarked vs not gens
# If the watewrmark is not detected, consider the use case. Could be because of
# the nature of the task (e.g., fatcual responses are lower entropy) or it could
# be another
GEMMA_2B = 'google/gemma-2b'
PROMPTS: tuple[str] = (
'prompt 1',
'prompt 2',
'prompt 3',
'prompt 4',
)
WATERMARKING_CONFIG = immutabledict.immutabledict({
"ngram_len": 5,
"keys": [
654,
400,
836,
123,
340,
443,
597,
160,
57,
29,
590,
639,
13,
715,
468,
990,
966,
226,
324,
585,
118,
504,
421,
521,
129,
669,
732,
225,
90,
960,
],
"sampling_table_size": 2**16,
"sampling_table_seed": 0,
"context_history_size": 1024,
"device": (
torch.device("cuda:0")
if torch.cuda.is_available()
else torch.device("cpu")
),
})
_CORRECT_ANSWERS: dict[str, bool] = {}
with gr.Blocks() as demo:
prompt_inputs = [
gr.Textbox(value=prompt, lines=4, label='Prompt')
for prompt in PROMPTS
]
generate_btn = gr.Button('Generate')
with gr.Column(visible=False) as generations_col:
generations_grp = gr.CheckboxGroup(
label='All generations, in random order',
info='Select the generations you think are watermarked!',
)
reveal_btn = gr.Button('Reveal', visible=False)
with gr.Column(visible=False) as detections_col:
revealed_grp = gr.CheckboxGroup(
label='Ground truth for all generations',
info=(
'Watermarked generations are checked, and your selection are '
'marked as correct or incorrect in the text.'
),
)
detect_btn = gr.Button('Detect', visible=False)
def generate(*prompts) -> Sequence[str]:
standard = [f'{prompt} response' for prompt in prompts]
watermarked = [f'{prompt} watermarked response' for prompt in prompts]
responses = standard + watermarked
random.shuffle(responses)
_CORRECT_ANSWERS.update({
response: response in watermarked
for response in responses
})
# Load model
return {
generate_btn: gr.Button(visible=False),
generations_col: gr.Column(visible=True),
generations_grp: gr.CheckboxGroup(
responses,
),
reveal_btn: gr.Button(visible=True),
}
generate_btn.click(
generate,
inputs=prompt_inputs,
outputs=[generate_btn, generations_col, generations_grp, reveal_btn]
)
def reveal(user_selections: list[str]):
choices: list[str] = []
value: list[str] = []
for response, is_watermarked in _CORRECT_ANSWERS.items():
if is_watermarked and response in user_selections:
choice = f'Correct! {response}'
elif not is_watermarked and response not in user_selections:
choice = f'Correct! {response}'
else:
choice = f'Incorrect. {response}'
choices.append(choice)
if is_watermarked:
value.append(choice)
return {
reveal_btn: gr.Button(visible=False),
detections_col: gr.Column(visible=True),
revealed_grp: gr.CheckboxGroup(choices=choices, value=value),
detect_btn: gr.Button(visible=True),
}
reveal_btn.click(
reveal,
inputs=generations_grp,
outputs=[
reveal_btn,
detections_col,
revealed_grp,
detect_btn
],
)
if __name__ == '__main__':
demo.launch()