File size: 10,031 Bytes
f5e3203
46f6023
f5e3203
fed0a26
f5e3203
 
2a04008
 
 
f5e3203
 
 
 
 
fed0a26
80c639a
f5e3203
ad5bf1a
f5e3203
 
 
 
 
2a04008
 
 
fed0a26
2a04008
80c639a
2a04008
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80c639a
 
 
2a04008
fed0a26
2a04008
80c639a
2a04008
 
 
80c639a
 
 
 
 
 
 
 
 
 
46f6023
80c639a
 
fed0a26
80c639a
 
2a04008
 
 
 
 
 
 
fed0a26
 
 
2a04008
 
 
 
 
 
 
fed0a26
80c639a
 
fed0a26
2a04008
 
f5e3203
80c639a
46f6023
80c639a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46f6023
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80c639a
 
 
 
 
 
46f6023
80c639a
 
f5e3203
 
ad5bf1a
f5e3203
 
 
 
80c639a
 
 
 
 
f5e3203
 
 
 
 
 
 
80c639a
 
 
 
 
f5e3203
 
 
 
 
 
 
 
 
ff97c38
fed0a26
 
2a04008
 
 
fed0a26
 
 
 
 
 
 
 
 
 
f5e3203
fed0a26
 
 
 
f5e3203
 
 
 
 
 
fed0a26
f5e3203
 
 
 
 
 
 
 
 
 
 
 
 
 
fed0a26
 
 
 
 
 
 
f5e3203
 
 
 
 
 
80c639a
 
 
 
f5e3203
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
from collections.abc import Sequence
import json
import random
from typing import Optional, Tuple

import gradio as gr
import spaces
import torch
import transformers

# If the watewrmark is not detected, consider the use case. Could be because of
# the nature of the task (e.g., fatcual responses are lower entropy) or it could
# be another

_MODEL_IDENTIFIER = 'google/gemma-2b-it'
_DETECTOR_IDENTIFIER = 'gg-hf/detector_2b_1.0_demo'

_PROMPTS: tuple[str] = (
    'prompt 1',
    'prompt 2',
    'prompt 3',
)

_TORCH_DEVICE = (
    torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
)
_ANSWERS = []

_WATERMARK_CONFIG_DICT = dict(
    ngram_len=5,
    keys=[
        654,
        400,
        836,
        123,
        340,
        443,
        597,
        160,
        57,
        29,
        590,
        639,
        13,
        715,
        468,
        990,
        966,
        226,
        324,
        585,
        118,
        504,
        421,
        521,
        129,
        669,
        732,
        225,
        90,
        960,
    ],
    sampling_table_size=2**16,
    sampling_table_seed=0,
    context_history_size=1024,
)

_WATERMARK_CONFIG = transformers.generation.SynthIDTextWatermarkingConfig(
    **_WATERMARK_CONFIG_DICT
)

tokenizer = transformers.AutoTokenizer.from_pretrained(_MODEL_IDENTIFIER, padding_side="left")
tokenizer.pad_token_id = tokenizer.eos_token_id

model = transformers.AutoModelForCausalLM.from_pretrained(_MODEL_IDENTIFIER)
model.to(_TORCH_DEVICE)

logits_processor = transformers.generation.SynthIDTextWatermarkLogitsProcessor(
    **_WATERMARK_CONFIG_DICT,
    device=_TORCH_DEVICE,
)

detector_module = transformers.generation.BayesianDetectorModel.from_pretrained(
    _DETECTOR_IDENTIFIER,
)
detector_module.to(_TORCH_DEVICE)

detector = transformers.generation.watermarking.SynthIDTextWatermarkDetector(
    detector_module=detector_module,
    logits_processor=logits_processor,
    tokenizer=tokenizer,
)


@spaces.GPU
def generate_outputs(
  prompts: Sequence[str],
  watermarking_config: Optional[
      transformers.generation.SynthIDTextWatermarkingConfig
  ] = None,
) -> Tuple[Sequence[str], torch.Tensor]:
  tokenized_prompts = tokenizer(prompts, return_tensors='pt', padding="longest").to(_TORCH_DEVICE)
  input_length = tokenized_prompts.input_ids.shape[1]
  output_sequences = model.generate(
      **tokenized_prompts,
      watermarking_config=watermarking_config,
      do_sample=True,
      max_length=500,
      top_k=40,
  )
  output_sequences = output_sequences[:, input_length:]
  detections = detector(output_sequences)
  print(detections)
  return (tokenizer.batch_decode(output_sequences, skip_special_tokens=True), detections)


with gr.Blocks() as demo:
  gr.Markdown(
    f'''
    # Using SynthID Text in your Genreative AI projects

    [SynthID][synthid] is a Google DeepMind technology that watermarks and
    identifies AI-generated content by embedding digital watermarks directly
    into AI-generated images, audio, text or video.

    SynthID Text is an open source implementation of this technology available
    in Hugging Face Transformers that has two major components:

    *   A [logits processor][synthid-hf-logits-processor] that is
        [configured][synthid-hf-config] on a per-model basis and activated when
        calling `.generate()`; and
    *   A [detector][synthid-hf-detector] trained to recognized watermarked text
        generated by a specific model with a specific configuraiton.

    This Space demonstrates:

    1.  How to use SynthID Text to apply a watermark to text generated by your
        model; and
    1.  How to indetify that text using a ready-made detector.

    Note that this detector is trained specifically fore this demonstration. You
    should maintain a specific watermarking configuration for every model you
    use and protect that configuration as you would any other secret. See the
    [end-to-end guide][synthid-hf-detector-e2e] for more on training your own
    detectors, and the [SynthID Text documentaiton][raitk-synthid] for more on
    how this technology works.

    ## Getting started

    Practically speaking, SynthID Text is a logits processor, applied to your
    model's generation pipeline after [Top-K and Top-P][cloud-parameter-values],
    that augments the model's logits using a pseudorandom _g_-function to encode
    watermarking information in a way that balances generation quality with
    watermark detectability. See the [paper][synthid-nature] for a complete
    technical description of the algorithm and analyses of how different
    configuration values affect performance.

    Watermarks are [configured][synthid-hf-config] to parameterize the
    _g_-function and how it is applied during generation. We use the following
    configuration for all demos. It should not be used for any production
    purposes.

    ```json
    {json.dumps(_WATERMARK_CONFIG_DICT)}
    ```

    Watermarks are applied by initializing a `SynthIDTextWatermarkingConfig`
    and passing that as the `watermarking_config=` parameter in your call to
    `.generate()`, as shown in the snippet below.

    ```python
    from transformers import AutoModelForCausalLM, AutoTokenizer
    from transformers.generation import SynthIDTextWatermarkingConfig

    # Standard model and toeknizer initialization
    tokenizer = AutoTokenizer.from_pretrained('repo/id')
    model = AutoModelForCausalLM.from_pretrained('repo/id')

    # SynthID Text configuration
    watermarking_config = SynthIDTextWatermarkingConfig(...)

    # Generation with watermarking
    tokenized_prompts = tokenizer(["your prompts here"])
    output_sequences = model.generate(
        **tokenized_prompts,
        watermarking_config=watermarking_config,
        do_sample=True,
    )
    watermarked_text = tokenizer.batch_decode(output_sequences)
    ```

    Enter up to three prompts then click the generate button. After you click,
    [Gemma 2B][gemma] will generate a watermarked and non-watermarked repsonses
    for each non-empty prompt.

    [cloud-parameter-values]: https://cloud.google.com/vertex-ai/generative-ai/docs/learn/prompts/adjust-parameter-values
    [gemma]: https://huggingface.co/google/gemma-2b
    [raitk-synthid]: /responsible/docs/safeguards/synthid
    [synthid]: https://deepmind.google/technologies/synthid/
    [synthid-hf-config]: https://github.com/huggingface/transformers/blob/v4.46.0/src/transformers/generation/configuration_utils.py
    [synthid-hf-detector]: https://github.com/huggingface/transformers/blob/v4.46.0/src/transformers/generation/watermarking.py
    [synthid-hf-detector-e2e]: https://github.com/huggingface/transformers/blob/v4.46.0/examples/research_projects/synthid_text/detector_bayesian.py
    [synthid-hf-logits-processor]: https://github.com/huggingface/transformers/blob/v4.46.0/src/transformers/generation/logits_process.py
    [synthid-nature]: https://www.nature.com/articles/s41586-024-08025-4
    '''
  )
  prompt_inputs = [
      gr.Textbox(value=prompt, lines=4, label='Prompt')
      for prompt in _PROMPTS
  ]
  generate_btn = gr.Button('Generate')

  with gr.Column(visible=False) as generations_col:
    gr.Markdown(
      '''
      # SynthID: Tool
      '''
    )
    generations_grp = gr.CheckboxGroup(
        label='All generations, in random order',
        info='Select the generations you think are watermarked!',
    )
    reveal_btn = gr.Button('Reveal', visible=False)

  with gr.Column(visible=False) as detections_col:
    gr.Markdown(
      '''
      # SynthID: Tool
      '''
    )
    revealed_grp = gr.CheckboxGroup(
        label='Ground truth for all generations',
        info=(
            'Watermarked generations are checked, and your selection are '
            'marked as correct or incorrect in the text.'
        ),
    )
    detect_btn = gr.Button('Detect', visible=False)

  def generate(*prompts):
    standard, standard_detector = generate_outputs(prompts=prompts)
    watermarked, watermarked_detector = generate_outputs(
        prompts=prompts,
        watermarking_config=_WATERMARK_CONFIG,
    )
    upper_threshold = 0.9501
    lower_threshold = 0.1209

    def decision(score: float) -> str:
      if score > upper_threshold:
        return 'Watermarked'
      elif lower_threshold < score < upper_threshold:
        return 'Indeterminate'
      else:
        return 'Not watermarked'

    responses = [(text, decision(score)) for text, score in zip(standard, standard_detector[0])]
    responses += [(text, decision(score)) for text, score in zip(watermarked, watermarked_detector[0])]
    random.shuffle(responses)
    _ANSWERS = responses

    # Load model
    return {
        generate_btn: gr.Button(visible=False),
        generations_col: gr.Column(visible=True),
        generations_grp: gr.CheckboxGroup(
            [response[0] for response in responses],
        ),
        reveal_btn: gr.Button(visible=True),
    }

  generate_btn.click(
     generate,
     inputs=prompt_inputs,
     outputs=[generate_btn, generations_col, generations_grp, reveal_btn]
  )

  def reveal(user_selections: list[str]):
    choices: list[str] = []
    value: list[str] = []

    for (response, decision) in _ANSWERS:
      if decision == "Watermarked":
        value.append(choice)
        if response in user_selections:
          choice = f'Correct! {response}
      elif decision == 'Indeterminate':
        choice = f'Uncertain! {response}'
      else:
        choice = f'Incorrect. {response}'

      choices.append(choice)

    return {
        reveal_btn: gr.Button(visible=False),
        detections_col: gr.Column(visible=True),
        revealed_grp: gr.CheckboxGroup(choices=choices, value=value),
        detect_btn: gr.Button(visible=True),
    }

  reveal_btn.click(
    reveal,
    inputs=generations_grp,
    outputs=[
        reveal_btn,
        detections_col,
        revealed_grp,
        detect_btn
    ],
  )

if __name__ == '__main__':
  demo.launch()