Spaces:
Running
Running
Commit
·
c99bc7a
1
Parent(s):
c1c9e88
UPDATE: RAG process
Browse files
retrieval_augmented_generation/build_embeddings.py
CHANGED
@@ -1,11 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from sentence_transformers import SentenceTransformer
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
使用BERT + FAISS构建产品描述和Slogan的嵌入数据库
|
4 |
+
支持相似性搜索和检索
|
5 |
+
"""
|
6 |
+
|
7 |
+
import faiss
|
8 |
+
import numpy as np
|
9 |
+
import pandas as pd
|
10 |
from sentence_transformers import SentenceTransformer
|
11 |
+
from datasets import Dataset
|
12 |
+
import pickle
|
13 |
+
import json
|
14 |
+
from typing import List, Dict, Tuple
|
15 |
+
import os
|
16 |
+
|
17 |
+
class SloganEmbeddingDB:
|
18 |
+
def __init__(self, model_name: str = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"):
|
19 |
+
"""
|
20 |
+
初始化BERT+FAISS数据库
|
21 |
+
|
22 |
+
Args:
|
23 |
+
model_name: 多语言BERT模型,支持中英文
|
24 |
+
"""
|
25 |
+
print(f"📥 Loading BERT model: {model_name}")
|
26 |
+
self.model = SentenceTransformer(model_name)
|
27 |
+
self.dimension = self.model.get_sentence_embedding_dimension()
|
28 |
+
|
29 |
+
# 初始化FAISS索引
|
30 |
+
self.index = faiss.IndexFlatIP(self.dimension) # 内积相似度
|
31 |
+
self.data = [] # 存储原始数据
|
32 |
+
|
33 |
+
print(f"✅ Model loaded. Embedding dimension: {self.dimension}")
|
34 |
+
|
35 |
+
def create_sample_dataset(self) -> Dataset:
|
36 |
+
"""创建示例数据集"""
|
37 |
+
sample_data = [
|
38 |
+
# 中文品牌
|
39 |
+
{"business": "肯德基", "category": "快餐", "description": "美式炸鸡快餐连锁", "slogan": "有了肯德基生活好滋味"},
|
40 |
+
{"business": "麦当劳", "category": "快餐", "description": "全球知名汉堡快餐", "slogan": "我就喜欢"},
|
41 |
+
{"business": "星巴克", "category": "咖啡", "description": "全球连锁咖啡店", "slogan": "启发并滋润人类精神"},
|
42 |
+
{"business": "小米", "category": "电子产品", "description": "智能手机和科技产品", "slogan": "让每个人都能享受科技的乐趣"},
|
43 |
+
{"business": "华为", "category": "电子产品", "description": "通信设备和智能手机", "slogan": "构建万物互联的智能世界"},
|
44 |
+
|
45 |
+
# 英文品牌
|
46 |
+
{"business": "Nike", "category": "运动用品", "description": "Athletic footwear and apparel", "slogan": "Just Do It"},
|
47 |
+
{"business": "Apple", "category": "科技", "description": "Consumer electronics and software", "slogan": "Think Different"},
|
48 |
+
{"business": "Coca-Cola", "category": "饮料", "description": "Carbonated soft drinks", "slogan": "Open Happiness"},
|
49 |
+
{"business": "BMW", "category": "汽车", "description": "Luxury automobiles", "slogan": "The Ultimate Driving Machine"},
|
50 |
+
{"business": "Amazon", "category": "电商", "description": "E-commerce and cloud services", "slogan": "Earth's Most Customer-Centric Company"},
|
51 |
+
|
52 |
+
# 产品描述
|
53 |
+
{"business": "智能手表", "category": "可穿戴设备", "description": "健康监测和通知功能的智能手表", "slogan": "时刻关注您的健康"},
|
54 |
+
{"business": "电动汽车", "category": "新能源汽车", "description": "零排放环保电动车", "slogan": "绿色出行,智享未来"},
|
55 |
+
{"business": "在线教育平台", "category": "教育科技", "description": "AI驱动的个性化学习平台", "slogan": "让学习更智能"},
|
56 |
+
{"business": "健身APP", "category": "健康应用", "description": "AI私教健身指导应用", "slogan": "随时随地,专业健身"},
|
57 |
+
{"business": "外卖平台", "category": "生活服务", "description": "快速便捷的餐食配送服务", "slogan": "美食到家,生活更美好"},
|
58 |
+
]
|
59 |
+
|
60 |
+
return Dataset.from_pandas(pd.DataFrame(sample_data))
|
61 |
+
|
62 |
+
def build_embeddings(self, dataset: Dataset):
|
63 |
+
"""构建嵌入向量并建立FAISS索引"""
|
64 |
+
print("🔨 Building embeddings and FAISS index...")
|
65 |
+
|
66 |
+
# 准备数据
|
67 |
+
texts = []
|
68 |
+
for item in dataset:
|
69 |
+
# 组合文本:业务名称 + 类别 + 描述
|
70 |
+
combined_text = f"{item['business']} {item['category']} {item['description']}"
|
71 |
+
texts.append(combined_text)
|
72 |
+
|
73 |
+
# 保存原始数据
|
74 |
+
self.data.append({
|
75 |
+
"business": item["business"],
|
76 |
+
"category": item["category"],
|
77 |
+
"description": item["description"],
|
78 |
+
"slogan": item["slogan"],
|
79 |
+
"combined_text": combined_text
|
80 |
+
})
|
81 |
+
|
82 |
+
# 生成嵌入向量
|
83 |
+
print(f"📊 Generating embeddings for {len(texts)} items...")
|
84 |
+
embeddings = self.model.encode(texts, show_progress_bar=True)
|
85 |
+
|
86 |
+
# 标准化向量(用于余弦相似度)
|
87 |
+
embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True)
|
88 |
+
|
89 |
+
# 添加到FAISS索引
|
90 |
+
self.index.add(embeddings.astype('float32'))
|
91 |
+
|
92 |
+
print(f"✅ Built FAISS index with {self.index.ntotal} vectors")
|
93 |
+
|
94 |
+
def search_similar(self, query: str, top_k: int = 5) -> List[Dict]:
|
95 |
+
"""搜索相似的业务描述"""
|
96 |
+
print(f"🔍 Searching for: '{query}'")
|
97 |
+
|
98 |
+
# 生成查询向量
|
99 |
+
query_embedding = self.model.encode([query])
|
100 |
+
query_embedding = query_embedding / np.linalg.norm(query_embedding, axis=1, keepdims=True)
|
101 |
+
|
102 |
+
# FAISS搜索
|
103 |
+
scores, indices = self.index.search(query_embedding.astype('float32'), top_k)
|
104 |
+
|
105 |
+
# 整理结果
|
106 |
+
results = []
|
107 |
+
for i, (score, idx) in enumerate(zip(scores[0], indices[0])):
|
108 |
+
if idx < len(self.data):
|
109 |
+
result = self.data[idx].copy()
|
110 |
+
result["similarity_score"] = float(score)
|
111 |
+
result["rank"] = i + 1
|
112 |
+
results.append(result)
|
113 |
+
|
114 |
+
return results
|
115 |
+
|
116 |
+
def save_database(self, save_path: str = "./slogan_db"):
|
117 |
+
"""保存数据库"""
|
118 |
+
os.makedirs(save_path, exist_ok=True)
|
119 |
+
|
120 |
+
# 保存FAISS索引
|
121 |
+
faiss.write_index(self.index, f"{save_path}/faiss.index")
|
122 |
+
|
123 |
+
# 保存数据
|
124 |
+
with open(f"{save_path}/data.pkl", "wb") as f:
|
125 |
+
pickle.dump(self.data, f)
|
126 |
+
|
127 |
+
# 保存配置
|
128 |
+
config = {
|
129 |
+
"model_name": self.model._modules['0'].auto_model.config.name_or_path,
|
130 |
+
"dimension": self.dimension,
|
131 |
+
"total_items": len(self.data)
|
132 |
+
}
|
133 |
+
with open(f"{save_path}/config.json", "w", encoding="utf-8") as f:
|
134 |
+
json.dump(config, f, ensure_ascii=False, indent=2)
|
135 |
+
|
136 |
+
print(f"💾 Database saved to {save_path}")
|
137 |
+
|
138 |
+
def load_database(self, load_path: str = "./slogan_db"):
|
139 |
+
"""加载数据库"""
|
140 |
+
print(f"📂 Loading database from {load_path}")
|
141 |
+
|
142 |
+
# 加载FAISS索引
|
143 |
+
self.index = faiss.read_index(f"{load_path}/faiss.index")
|
144 |
+
|
145 |
+
# 加载数据
|
146 |
+
with open(f"{load_path}/data.pkl", "rb") as f:
|
147 |
+
self.data = pickle.load(f)
|
148 |
+
|
149 |
+
print(f"✅ Loaded database with {len(self.data)} items")
|
150 |
+
|
151 |
+
def add_new_item(self, business: str, category: str, description: str, slogan: str):
|
152 |
+
"""动态添加新项目"""
|
153 |
+
combined_text = f"{business} {category} {description}"
|
154 |
+
|
155 |
+
# 生成嵌入
|
156 |
+
embedding = self.model.encode([combined_text])
|
157 |
+
embedding = embedding / np.linalg.norm(embedding, axis=1, keepdims=True)
|
158 |
+
|
159 |
+
# 添加到索引
|
160 |
+
self.index.add(embedding.astype('float32'))
|
161 |
+
|
162 |
+
# 添加到数据
|
163 |
+
self.data.append({
|
164 |
+
"business": business,
|
165 |
+
"category": category,
|
166 |
+
"description": description,
|
167 |
+
"slogan": slogan,
|
168 |
+
"combined_text": combined_text
|
169 |
+
})
|
170 |
+
|
171 |
+
print(f"➕ Added new item: {business}")
|
172 |
+
|
173 |
+
def generate_slogan_suggestions(self, business_description: str, top_k: int = 3) -> List[str]:
|
174 |
+
"""根据业务描述生成Slogan建议"""
|
175 |
+
similar_items = self.search_similar(business_description, top_k)
|
176 |
+
|
177 |
+
suggestions = []
|
178 |
+
for item in similar_items:
|
179 |
+
suggestions.append({
|
180 |
+
"slogan": item["slogan"],
|
181 |
+
"reference": f"{item['business']} ({item['category']})",
|
182 |
+
"similarity": item["similarity_score"]
|
183 |
+
})
|
184 |
+
|
185 |
+
return suggestions
|
186 |
+
|
187 |
+
def main():
|
188 |
+
"""主函数演示"""
|
189 |
+
# 初始化数据库
|
190 |
+
db = SloganEmbeddingDB()
|
191 |
+
|
192 |
+
# 创建或加载数据
|
193 |
+
if os.path.exists("./slogan_db"):
|
194 |
+
print("📂 Found existing database, loading...")
|
195 |
+
db.load_database()
|
196 |
+
else:
|
197 |
+
print("🆕 Creating new database...")
|
198 |
+
dataset = db.create_sample_dataset()
|
199 |
+
db.build_embeddings(dataset)
|
200 |
+
db.save_database()
|
201 |
+
|
202 |
+
# 测试搜索
|
203 |
+
test_queries = [
|
204 |
+
"智能穿戴设备健康监测",
|
205 |
+
"环保新能源汽车",
|
206 |
+
"人工智能学习平台",
|
207 |
+
"美式快餐炸鸡",
|
208 |
+
"luxury sports car",
|
209 |
+
"mobile phone technology"
|
210 |
+
]
|
211 |
+
|
212 |
+
print("\n" + "="*60)
|
213 |
+
print("🔍 SEARCH RESULTS")
|
214 |
+
print("="*60)
|
215 |
+
|
216 |
+
for query in test_queries:
|
217 |
+
print(f"\n🔍 Query: {query}")
|
218 |
+
results = db.search_similar(query, top_k=3)
|
219 |
+
|
220 |
+
for result in results:
|
221 |
+
print(f" {result['rank']}. {result['business']} ({result['category']})")
|
222 |
+
print(f" 描述: {result['description']}")
|
223 |
+
print(f" Slogan: {result['slogan']}")
|
224 |
+
print(f" 相似度: {result['similarity_score']:.3f}")
|
225 |
+
print()
|
226 |
+
|
227 |
+
# 测试Slogan��成建议
|
228 |
+
print("\n" + "="*60)
|
229 |
+
print("💡 SLOGAN SUGGESTIONS")
|
230 |
+
print("="*60)
|
231 |
+
|
232 |
+
new_business = "AI智能音箱语音助手设备"
|
233 |
+
print(f"\n💡 为 '{new_business}' 生成Slogan建议:")
|
234 |
+
|
235 |
+
suggestions = db.generate_slogan_suggestions(new_business)
|
236 |
+
for i, suggestion in enumerate(suggestions, 1):
|
237 |
+
print(f" {i}. \"{suggestion['slogan']}\"")
|
238 |
+
print(f" 参考: {suggestion['reference']}")
|
239 |
+
print(f" 相似度: {suggestion['similarity']:.3f}")
|
240 |
+
print()
|
241 |
+
|
242 |
+
# 演示动态添加
|
243 |
+
print("\n" + "="*60)
|
244 |
+
print("➕ ADDING NEW ITEM")
|
245 |
+
print("="*60)
|
246 |
+
|
247 |
+
db.add_new_item(
|
248 |
+
business="智能眼镜",
|
249 |
+
category="AR设备",
|
250 |
+
description="增强现实智能眼镜产品",
|
251 |
+
slogan="看见未来,触手可及"
|
252 |
+
)
|
253 |
+
|
254 |
+
# 重新搜索测试
|
255 |
+
print(f"\n🔍 搜索 'AR增强现实产品':")
|
256 |
+
results = db.search_similar("AR增强现实产品", top_k=2)
|
257 |
+
for result in results:
|
258 |
+
print(f" - {result['business']}: {result['slogan']} (相似度: {result['similarity_score']:.3f})")
|
259 |
+
|
260 |
+
if __name__ == "__main__":
|
261 |
+
main()
|