Spaces:
Running
Running
File size: 14,423 Bytes
c1c9e88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
#!/usr/bin/env python3
"""
PPO RLHF训练脚本 - 基于Teacher模型进行人类偏好对齐
输入: SFT Teacher模型 + 人类偏好数据
输出: RLHF对齐的Teacher模型
"""
import os
import torch
import torch.nn.functional as F
from datasets import load_dataset, Dataset
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
AutoModelForSequenceClassification,
TrainingArguments,
pipeline,
logging,
)
from peft import PeftModel, LoraConfig, get_peft_model, TaskType
from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead
import wandb
import numpy as np
from typing import List, Dict, Any
import warnings
warnings.filterwarnings("ignore")
logging.set_verbosity(logging.CRITICAL)
class RLHFConfig:
"""RLHF训练配置"""
# 模型路径
teacher_model_path = "./merged_model" # 之前SFT训练的Teacher模型
reward_model_name = "OpenAssistant/reward-model-deberta-v3-large-v2" # 奖励模型
# PPO训练参数
learning_rate = 1e-5
mini_batch_size = 1
batch_size = 8
gradient_accumulation_steps = 8
ppo_epochs = 4
max_grad_norm = 1.0
# PPO特定参数
init_kl_coef = 0.02
target_kl = 0.01
adap_kl_ctrl = True
clip_reward_value = 5.0
cliprange = 0.2
cliprange_value = 0.2
gamma = 1.0
lam = 0.95
# 生成参数
max_new_tokens = 150
temperature = 0.7
top_p = 0.9
do_sample = True
# 训练控制
total_episodes = 1000
save_freq = 100
eval_freq = 50
output_dir = "./rlhf_teacher_model"
# LoRA参数(如果使用LoRA进行RLHF)
use_lora = True
lora_r = 16
lora_alpha = 32
lora_dropout = 0.1
class RewardModelWrapper:
"""奖励模型包装器"""
def __init__(self, model_name: str, device: str = "cuda"):
self.device = device
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForSequenceClassification.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="auto"
)
self.model.eval()
# 设置pad token
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
def get_reward(self, prompts: List[str], responses: List[str]) -> List[float]:
"""计算奖励分数"""
inputs = []
for prompt, response in zip(prompts, responses):
# 格式化为对话格式
text = f"Human: {prompt}\n\nAssistant: {response}"
inputs.append(text)
# 批量推理
with torch.no_grad():
encoded = self.tokenizer(
inputs,
padding=True,
truncation=True,
max_length=512,
return_tensors="pt"
).to(self.device)
outputs = self.model(**encoded)
rewards = outputs.logits.squeeze(-1).cpu().tolist()
return rewards
def load_preference_dataset():
"""加载偏好数据集"""
print("📥 Loading preference dataset...")
# 可以使用多个数据源
datasets_config = [
{
"name": "Anthropic/hh-rlhf",
"split": "train",
"weight": 0.7
},
{
"name": "OpenAssistant/oasst1",
"split": "train",
"weight": 0.3
}
]
all_prompts = []
for config in datasets_config:
try:
dataset = load_dataset(config["name"], split=config["split"])
# 处理不同数据集格式
if config["name"] == "Anthropic/hh-rlhf":
prompts = extract_prompts_from_hh(dataset)
else:
prompts = extract_prompts_from_oasst(dataset)
# 按权重采样
sample_size = int(len(prompts) * config["weight"])
prompts = prompts[:sample_size]
all_prompts.extend(prompts)
print(f"✅ Loaded {len(prompts)} prompts from {config['name']}")
except Exception as e:
print(f"⚠️ Failed to load {config['name']}: {e}")
# 创建Dataset对象
return Dataset.from_dict({"prompt": all_prompts})
def extract_prompts_from_hh(dataset):
"""从HH-RLHF数据集提取提示"""
prompts = []
for item in dataset:
# HH-RLHF格式解析
text = item.get("chosen", "")
if "Human:" in text:
prompt = text.split("Human:")[-1].split("Assistant:")[0].strip()
if len(prompt) > 10: # 过滤太短的提示
prompts.append(prompt)
return prompts
def extract_prompts_from_oasst(dataset):
"""从OpenAssistant数据集提取提示"""
prompts = []
for item in dataset:
if item.get("role") == "prompter":
prompt = item.get("text", "").strip()
if len(prompt) > 10:
prompts.append(prompt)
return prompts
def prepare_teacher_model(config: RLHFConfig):
"""准备Teacher模型用于RLHF"""
print("🤖 Preparing teacher model for RLHF...")
# 加载tokenizer
tokenizer = AutoTokenizer.from_pretrained(config.teacher_model_path)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# 加载基础模型
model = AutoModelForCausalLM.from_pretrained(
config.teacher_model_path,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
)
# 如果使用LoRA进行RLHF
if config.use_lora:
print("🔧 Adding LoRA for RLHF training...")
lora_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=config.lora_r,
lora_alpha=config.lora_alpha,
lora_dropout=config.lora_dropout,
target_modules=[
"q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj",
]
)
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
# 包装为带价值头的模型
model = AutoModelForCausalLMWithValueHead.from_pretrained(
model,
torch_dtype=torch.float16,
)
# 创建参考模型(冻结)
ref_model = AutoModelForCausalLM.from_pretrained(
config.teacher_model_path,
torch_dtype=torch.float16,
device_map="auto",
)
ref_model.eval()
return model, ref_model, tokenizer
def create_ppo_trainer(model, ref_model, tokenizer, config: RLHFConfig):
"""创建PPO训练器"""
print("🏋️ Creating PPO trainer...")
ppo_config = PPOConfig(
model_name=config.teacher_model_path,
learning_rate=config.learning_rate,
mini_batch_size=config.mini_batch_size,
batch_size=config.batch_size,
gradient_accumulation_steps=config.gradient_accumulation_steps,
ppo_epochs=config.ppo_epochs,
max_grad_norm=config.max_grad_norm,
init_kl_coef=config.init_kl_coef,
target_kl=config.target_kl,
adap_kl_ctrl=config.adap_kl_ctrl,
clip_reward_value=config.clip_reward_value,
cliprange=config.cliprange,
cliprange_value=config.cliprange_value,
gamma=config.gamma,
lam=config.lam,
remove_unused_columns=False,
log_with="wandb" if wandb.run else None,
)
trainer = PPOTrainer(
config=ppo_config,
model=model,
ref_model=ref_model,
tokenizer=tokenizer,
)
return trainer
def format_prompt_for_generation(prompt: str) -> str:
"""格式化提示用于生成"""
return f"### Human: {prompt}\n### Assistant:"
def run_ppo_training():
"""主要的PPO训练循环"""
print("🚀 Starting PPO RLHF Training...")
# 初始化wandb
wandb.init(
project="rlhf-teacher-training",
config=vars(RLHFConfig),
name="ppo-teacher-rlhf"
)
config = RLHFConfig()
# 准备模型
model, ref_model, tokenizer = prepare_teacher_model(config)
# 创建PPO训练器
ppo_trainer = create_ppo_trainer(model, ref_model, tokenizer, config)
# 加载奖励模型
reward_model = RewardModelWrapper(config.reward_model_name)
# 加载数据集
dataset = load_preference_dataset()
print(f"📊 Training on {len(dataset)} prompts")
print(f"🎯 Target episodes: {config.total_episodes}")
# 训练循环
for episode in range(config.total_episodes):
# 随机采样prompts
batch_prompts = np.random.choice(
dataset["prompt"],
size=config.batch_size,
replace=False
).tolist()
# 格式化输入
formatted_prompts = [format_prompt_for_generation(p) for p in batch_prompts]
# 生成响应
prompt_tensors = []
for prompt in formatted_prompts:
prompt_tensor = tokenizer.encode(
prompt,
return_tensors="pt",
padding=False,
truncation=True,
max_length=256
).squeeze()
prompt_tensors.append(prompt_tensor)
# 批量生成
response_tensors = []
with torch.no_grad():
for prompt_tensor in prompt_tensors:
prompt_tensor = prompt_tensor.unsqueeze(0).to(model.device)
response = ppo_trainer.generate(
prompt_tensor,
max_new_tokens=config.max_new_tokens,
temperature=config.temperature,
top_p=config.top_p,
do_sample=config.do_sample,
pad_token_id=tokenizer.eos_token_id,
)
# 只保留新生成的部分
response = response.squeeze()[prompt_tensor.shape[1]:]
response_tensors.append(response)
# 解码响应
responses = [
tokenizer.decode(r, skip_special_tokens=True).strip()
for r in response_tensors
]
# 计算奖励
rewards = reward_model.get_reward(batch_prompts, responses)
rewards = [torch.tensor(r, dtype=torch.float) for r in rewards]
# PPO训练步骤
stats = ppo_trainer.step(prompt_tensors, response_tensors, rewards)
# 记录统计信息
ppo_trainer.log_stats(
stats,
batch_prompts,
[list(p) + list(r) for p, r in zip(prompt_tensors, response_tensors)],
rewards
)
# 打印进度
if episode % 10 == 0:
mean_reward = np.mean([r.item() for r in rewards])
print(f"📈 Episode {episode}: Mean Reward = {mean_reward:.4f}")
# 记录到wandb
wandb.log({
"episode": episode,
"mean_reward": mean_reward,
"kl_divergence": stats.get("objective/kl", 0),
"policy_loss": stats.get("ppo/loss/policy", 0),
"value_loss": stats.get("ppo/loss/value", 0),
})
# 评估模型
if episode % config.eval_freq == 0 and episode > 0:
evaluate_model(ppo_trainer.model, tokenizer, episode)
# 保存检查点
if episode % config.save_freq == 0 and episode > 0:
save_checkpoint(ppo_trainer.model, tokenizer, config.output_dir, episode)
# 保存最终模型
print("💾 Saving final RLHF model...")
ppo_trainer.model.save_pretrained(config.output_dir)
tokenizer.save_pretrained(config.output_dir)
wandb.finish()
print("✅ RLHF training completed!")
def evaluate_model(model, tokenizer, episode):
"""评估模型性能"""
print(f"🧪 Evaluating model at episode {episode}...")
test_prompts = [
"Create an advertisement for a revolutionary smartphone with AI capabilities",
"Write marketing copy for an eco-friendly clothing brand",
"Generate a slogan for a fitness app targeting busy professionals",
]
model.eval()
results = []
for prompt in test_prompts:
formatted_prompt = format_prompt_for_generation(prompt)
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=150,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
generated_text = response[len(formatted_prompt):].strip()
results.append({
"prompt": prompt,
"response": generated_text
})
print(f"🔍 Prompt: {prompt}")
print(f"📝 Response: {generated_text}")
print("-" * 80)
model.train()
return results
def save_checkpoint(model, tokenizer, output_dir, episode):
"""保存训练检查点"""
checkpoint_dir = f"{output_dir}/checkpoint-{episode}"
os.makedirs(checkpoint_dir, exist_ok=True)
model.save_pretrained(checkpoint_dir)
tokenizer.save_pretrained(checkpoint_dir)
print(f"💾 Checkpoint saved to {checkpoint_dir}")
def load_checkpoint_and_continue(checkpoint_path):
"""从检查点继续训练"""
print(f"📥 Loading checkpoint from {checkpoint_path}")
# 实现检查点恢复逻辑
pass
if __name__ == "__main__":
# 设置环境变量
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3" # 多GPU设置
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# 检查GPU资源
if torch.cuda.is_available():
print(f"🔥 Using {torch.cuda.device_count()} GPUs")
for i in range(torch.cuda.device_count()):
print(f" GPU {i}: {torch.cuda.get_device_name(i)}")
else:
raise RuntimeError("❌ CUDA not available! RLHF requires GPU.")
# 开始训练
run_ppo_training() |