File size: 2,457 Bytes
7066d20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be305fb
 
7066d20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61bd54d
 
7066d20
635940d
7066d20
635940d
 
7066d20
635940d
 
7066d20
635940d
 
 
7066d20
635940d
 
7066d20
635940d
 
07a7833
 
 
 
 
 
 
 
 
c1c9e88
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
title: ZeroGPU
emoji: 🖼
colorFrom: purple
colorTo: red
sdk: gradio
sdk_version: 5.25.2
app_file: app.py
pinned: false
license: apache-2.0
---

Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference

commands:

download images: python download.py -i 1 -r 2 -o /home/user/app/image_tmp -z

pip install git+https://github.com/huggingface/diffusers

accelerate launch \
  --deepspeed_config_file ds_config.json \
  diffusers/examples/dreambooth/train_dreambooth.py \
    --pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5" \
    --instance_data_dir="./nyc_ads_dataset" \
    --instance_prompt="a photo of an urbanad nyc" \
    --output_dir="./nyc-ad-model" \
    --resolution=100 \
    --train_batch_size=1 \
    --gradient_accumulation_steps=1 \
    --gradient_checkpointing \
    --learning_rate=5e-6 \
    --lr_scheduler="constant" \
    --lr_warmup_steps=0 \
    --max_train_steps=400 \
    --mixed_precision="fp16" \
    --checkpointing_steps=100 \
    --checkpoints_total_limit=1 \
    --report_to="tensorboard" \
    --logging_dir="./nyc-ad-model/logs" 

fine tune a trained model: --pretrained_model_name_or_path="./nyc-ad-model/checkpoint-400" \



export PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True


pipeline:
# 1 Fully Fine‑tune image model with ZeRO
accelerate launch --deepspeed_config_file=ds_config_zero3.json train_lora.py
fully_fine_tine_stablediffusion

# 2 SFT 120B OSS 语言模型 with QLoRA 
lauguage_model_fine_tuning

# 3 RLHF PPO 120B OSS 语言模型 with QLoRA : 训练 reward model 
lauguage_model_fine_tuning

# 4 distill 120B OSS模型给20B OSS模型
lauguage_model_fine_tuning
用 Teacher 生成 Response,student模型用LoRA fine tuning

# 5 Build RAG index embedding table
retrieval_augmented_generation

# 6 Inference with RAG
inference.py


system flow:
input: business or product description text
1.  根据input用RAG取embedding
1.	GPT‑OSS 生成 4 个广告文案 + 标题 + 口号(可选语气:专业/活泼/极简)
2.	GPT‑OSS 基于选中文案生成 扩展视觉提示词(主体、配色、镜头、艺术风格)
3.	stablediffusion model 生成 4 张草图(可选 ControlNet-Layout/Logo 插入)
4.	返回4张海报+后处理
output: an advertisement sentence and post image


design details:
LoRA fine tune teacher OSS 120B model using smangrul/ad-copy-generation (广告文案生成)
LoRA distill knowledge to OSS 20B model