diff --git a/.gitattributes b/.gitattributes
new file mode 100644
index 0000000000000000000000000000000000000000..27a5d99b6134654d00d9e2b5c4e9a5bd31e118e9
--- /dev/null
+++ b/.gitattributes
@@ -0,0 +1,36 @@
+*.7z filter=lfs diff=lfs merge=lfs -text
+*.arrow filter=lfs diff=lfs merge=lfs -text
+*.bin filter=lfs diff=lfs merge=lfs -text
+*.bz2 filter=lfs diff=lfs merge=lfs -text
+*.ckpt filter=lfs diff=lfs merge=lfs -text
+*.ftz filter=lfs diff=lfs merge=lfs -text
+*.gz filter=lfs diff=lfs merge=lfs -text
+*.h5 filter=lfs diff=lfs merge=lfs -text
+*.joblib filter=lfs diff=lfs merge=lfs -text
+*.lfs.* filter=lfs diff=lfs merge=lfs -text
+*.mlmodel filter=lfs diff=lfs merge=lfs -text
+*.model filter=lfs diff=lfs merge=lfs -text
+*.msgpack filter=lfs diff=lfs merge=lfs -text
+*.npy filter=lfs diff=lfs merge=lfs -text
+*.npz filter=lfs diff=lfs merge=lfs -text
+*.onnx filter=lfs diff=lfs merge=lfs -text
+*.ot filter=lfs diff=lfs merge=lfs -text
+*.parquet filter=lfs diff=lfs merge=lfs -text
+*.pb filter=lfs diff=lfs merge=lfs -text
+*.pickle filter=lfs diff=lfs merge=lfs -text
+*.pkl filter=lfs diff=lfs merge=lfs -text
+*.pt filter=lfs diff=lfs merge=lfs -text
+*.pth filter=lfs diff=lfs merge=lfs -text
+*.rar filter=lfs diff=lfs merge=lfs -text
+*.safetensors filter=lfs diff=lfs merge=lfs -text
+saved_model/**/* filter=lfs diff=lfs merge=lfs -text
+*.tar.* filter=lfs diff=lfs merge=lfs -text
+*.tar filter=lfs diff=lfs merge=lfs -text
+*.tflite filter=lfs diff=lfs merge=lfs -text
+*.tgz filter=lfs diff=lfs merge=lfs -text
+*.wasm filter=lfs diff=lfs merge=lfs -text
+*.xz filter=lfs diff=lfs merge=lfs -text
+*.zip filter=lfs diff=lfs merge=lfs -text
+*.zst filter=lfs diff=lfs merge=lfs -text
+*tfevents* filter=lfs diff=lfs merge=lfs -text
+wheels/nvdiffrast-0.3.3-cp310-cp310-linux_x86_64.whl filter=lfs diff=lfs merge=lfs -text
diff --git a/README.md b/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..3245013519348162e619fa6eb1cc9f6584522887
--- /dev/null
+++ b/README.md
@@ -0,0 +1,16 @@
+---
+title: TRELLIS
+emoji: 🏢
+colorFrom: indigo
+colorTo: blue
+sdk: gradio
+sdk_version: 4.44.1
+app_file: app.py
+pinned: false
+license: mit
+short_description: Scalable and Versatile 3D Generation from images
+---
+
+Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
+
+Paper: https://huggingface.co/papers/2412.01506
\ No newline at end of file
diff --git a/app.py b/app.py
new file mode 100644
index 0000000000000000000000000000000000000000..d1943aebc7519ee3f2a2c5db170c8d9e9ee60c16
--- /dev/null
+++ b/app.py
@@ -0,0 +1,414 @@
+import gradio as gr
+import spaces
+from gradio_litmodel3d import LitModel3D
+
+import os
+import shutil
+os.environ['SPCONV_ALGO'] = 'native'
+from typing import *
+import torch
+import numpy as np
+import imageio
+from easydict import EasyDict as edict
+from PIL import Image
+from trellis.pipelines import TrellisImageTo3DPipeline
+from trellis.representations import Gaussian, MeshExtractResult
+from trellis.utils import render_utils, postprocessing_utils
+
+
+MAX_SEED = np.iinfo(np.int32).max
+TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
+os.makedirs(TMP_DIR, exist_ok=True)
+
+
+def start_session(req: gr.Request):
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
+ os.makedirs(user_dir, exist_ok=True)
+
+
+def end_session(req: gr.Request):
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
+ shutil.rmtree(user_dir)
+
+
+def preprocess_image(image: Image.Image) -> Image.Image:
+ """
+ Preprocess the input image.
+
+ Args:
+ image (Image.Image): The input image.
+
+ Returns:
+ Image.Image: The preprocessed image.
+ """
+ processed_image = pipeline.preprocess_image(image)
+ return processed_image
+
+
+def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
+ """
+ Preprocess a list of input images.
+
+ Args:
+ images (List[Tuple[Image.Image, str]]): The input images.
+
+ Returns:
+ List[Image.Image]: The preprocessed images.
+ """
+ images = [image[0] for image in images]
+ processed_images = [pipeline.preprocess_image(image) for image in images]
+ return processed_images
+
+
+def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
+ return {
+ 'gaussian': {
+ **gs.init_params,
+ '_xyz': gs._xyz.cpu().numpy(),
+ '_features_dc': gs._features_dc.cpu().numpy(),
+ '_scaling': gs._scaling.cpu().numpy(),
+ '_rotation': gs._rotation.cpu().numpy(),
+ '_opacity': gs._opacity.cpu().numpy(),
+ },
+ 'mesh': {
+ 'vertices': mesh.vertices.cpu().numpy(),
+ 'faces': mesh.faces.cpu().numpy(),
+ },
+ }
+
+
+def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
+ gs = Gaussian(
+ aabb=state['gaussian']['aabb'],
+ sh_degree=state['gaussian']['sh_degree'],
+ mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
+ scaling_bias=state['gaussian']['scaling_bias'],
+ opacity_bias=state['gaussian']['opacity_bias'],
+ scaling_activation=state['gaussian']['scaling_activation'],
+ )
+ gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
+ gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
+ gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
+ gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
+ gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
+
+ mesh = edict(
+ vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
+ faces=torch.tensor(state['mesh']['faces'], device='cuda'),
+ )
+
+ return gs, mesh
+
+
+def get_seed(randomize_seed: bool, seed: int) -> int:
+ """
+ Get the random seed.
+ """
+ return np.random.randint(0, MAX_SEED) if randomize_seed else seed
+
+
+@spaces.GPU
+def image_to_3d(
+ image: Image.Image,
+ multiimages: List[Tuple[Image.Image, str]],
+ is_multiimage: bool,
+ seed: int,
+ ss_guidance_strength: float,
+ ss_sampling_steps: int,
+ slat_guidance_strength: float,
+ slat_sampling_steps: int,
+ multiimage_algo: Literal["multidiffusion", "stochastic"],
+ req: gr.Request,
+) -> Tuple[dict, str]:
+ """
+ Convert an image to a 3D model.
+
+ Args:
+ image (Image.Image): The input image.
+ multiimages (List[Tuple[Image.Image, str]]): The input images in multi-image mode.
+ is_multiimage (bool): Whether is in multi-image mode.
+ seed (int): The random seed.
+ ss_guidance_strength (float): The guidance strength for sparse structure generation.
+ ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
+ slat_guidance_strength (float): The guidance strength for structured latent generation.
+ slat_sampling_steps (int): The number of sampling steps for structured latent generation.
+ multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation.
+
+ Returns:
+ dict: The information of the generated 3D model.
+ str: The path to the video of the 3D model.
+ """
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
+ if not is_multiimage:
+ outputs = pipeline.run(
+ image,
+ seed=seed,
+ formats=["gaussian", "mesh"],
+ preprocess_image=False,
+ sparse_structure_sampler_params={
+ "steps": ss_sampling_steps,
+ "cfg_strength": ss_guidance_strength,
+ },
+ slat_sampler_params={
+ "steps": slat_sampling_steps,
+ "cfg_strength": slat_guidance_strength,
+ },
+ )
+ else:
+ outputs = pipeline.run_multi_image(
+ [image[0] for image in multiimages],
+ seed=seed,
+ formats=["gaussian", "mesh"],
+ preprocess_image=False,
+ sparse_structure_sampler_params={
+ "steps": ss_sampling_steps,
+ "cfg_strength": ss_guidance_strength,
+ },
+ slat_sampler_params={
+ "steps": slat_sampling_steps,
+ "cfg_strength": slat_guidance_strength,
+ },
+ mode=multiimage_algo,
+ )
+ video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
+ video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
+ video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
+ video_path = os.path.join(user_dir, 'sample.mp4')
+ imageio.mimsave(video_path, video, fps=15)
+ state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
+ torch.cuda.empty_cache()
+ return state, video_path
+
+
+@spaces.GPU(duration=90)
+def extract_glb(
+ state: dict,
+ mesh_simplify: float,
+ texture_size: int,
+ req: gr.Request,
+) -> Tuple[str, str]:
+ """
+ Extract a GLB file from the 3D model.
+
+ Args:
+ state (dict): The state of the generated 3D model.
+ mesh_simplify (float): The mesh simplification factor.
+ texture_size (int): The texture resolution.
+
+ Returns:
+ str: The path to the extracted GLB file.
+ """
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
+ gs, mesh = unpack_state(state)
+ glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
+ glb_path = os.path.join(user_dir, 'sample.glb')
+ glb.export(glb_path)
+ torch.cuda.empty_cache()
+ return glb_path, glb_path
+
+
+@spaces.GPU
+def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
+ """
+ Extract a Gaussian file from the 3D model.
+
+ Args:
+ state (dict): The state of the generated 3D model.
+
+ Returns:
+ str: The path to the extracted Gaussian file.
+ """
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
+ gs, _ = unpack_state(state)
+ gaussian_path = os.path.join(user_dir, 'sample.ply')
+ gs.save_ply(gaussian_path)
+ torch.cuda.empty_cache()
+ return gaussian_path, gaussian_path
+
+
+def prepare_multi_example() -> List[Image.Image]:
+ multi_case = list(set([i.split('_')[0] for i in os.listdir("assets/example_multi_image")]))
+ images = []
+ for case in multi_case:
+ _images = []
+ for i in range(1, 4):
+ img = Image.open(f'assets/example_multi_image/{case}_{i}.png')
+ W, H = img.size
+ img = img.resize((int(W / H * 512), 512))
+ _images.append(np.array(img))
+ images.append(Image.fromarray(np.concatenate(_images, axis=1)))
+ return images
+
+
+def split_image(image: Image.Image) -> List[Image.Image]:
+ """
+ Split an image into multiple views.
+ """
+ image = np.array(image)
+ alpha = image[..., 3]
+ alpha = np.any(alpha>0, axis=0)
+ start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist()
+ end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist()
+ images = []
+ for s, e in zip(start_pos, end_pos):
+ images.append(Image.fromarray(image[:, s:e+1]))
+ return [preprocess_image(image) for image in images]
+
+
+with gr.Blocks(delete_cache=(600, 600)) as demo:
+ gr.Markdown("""
+ ## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
+ * Upload an image and click "Generate" to create a 3D asset. If the image has alpha channel, it be used as the mask. Otherwise, we use `rembg` to remove the background.
+ * If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
+
+ ✨New: 1) Experimental multi-image support. 2) Gaussian file extraction.
+ """)
+
+ with gr.Row():
+ with gr.Column():
+ with gr.Tabs() as input_tabs:
+ with gr.Tab(label="Single Image", id=0) as single_image_input_tab:
+ image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
+ with gr.Tab(label="Multiple Images", id=1) as multiimage_input_tab:
+ multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3)
+ gr.Markdown("""
+ Input different views of the object in separate images.
+
+ *NOTE: this is an experimental algorithm without training a specialized model. It may not produce the best results for all images, especially those having different poses or inconsistent details.*
+ """)
+
+ with gr.Accordion(label="Generation Settings", open=False):
+ seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
+ randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
+ gr.Markdown("Stage 1: Sparse Structure Generation")
+ with gr.Row():
+ ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
+ ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
+ gr.Markdown("Stage 2: Structured Latent Generation")
+ with gr.Row():
+ slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
+ slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
+ multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic")
+
+ generate_btn = gr.Button("Generate")
+
+ with gr.Accordion(label="GLB Extraction Settings", open=False):
+ mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
+ texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
+
+ with gr.Row():
+ extract_glb_btn = gr.Button("Extract GLB", interactive=False)
+ extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
+ gr.Markdown("""
+ *NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
+ """)
+
+ with gr.Column():
+ video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
+ model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300)
+
+ with gr.Row():
+ download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
+ download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
+
+ is_multiimage = gr.State(False)
+ output_buf = gr.State()
+
+ # Example images at the bottom of the page
+ with gr.Row() as single_image_example:
+ examples = gr.Examples(
+ examples=[
+ f'assets/example_image/{image}'
+ for image in os.listdir("assets/example_image")
+ ],
+ inputs=[image_prompt],
+ fn=preprocess_image,
+ outputs=[image_prompt],
+ run_on_click=True,
+ examples_per_page=64,
+ )
+ with gr.Row(visible=False) as multiimage_example:
+ examples_multi = gr.Examples(
+ examples=prepare_multi_example(),
+ inputs=[image_prompt],
+ fn=split_image,
+ outputs=[multiimage_prompt],
+ run_on_click=True,
+ examples_per_page=8,
+ )
+
+ # Handlers
+ demo.load(start_session)
+ demo.unload(end_session)
+
+ single_image_input_tab.select(
+ lambda: tuple([False, gr.Row.update(visible=True), gr.Row.update(visible=False)]),
+ outputs=[is_multiimage, single_image_example, multiimage_example]
+ )
+ multiimage_input_tab.select(
+ lambda: tuple([True, gr.Row.update(visible=False), gr.Row.update(visible=True)]),
+ outputs=[is_multiimage, single_image_example, multiimage_example]
+ )
+
+ image_prompt.upload(
+ preprocess_image,
+ inputs=[image_prompt],
+ outputs=[image_prompt],
+ )
+ multiimage_prompt.upload(
+ preprocess_images,
+ inputs=[multiimage_prompt],
+ outputs=[multiimage_prompt],
+ )
+
+ generate_btn.click(
+ get_seed,
+ inputs=[randomize_seed, seed],
+ outputs=[seed],
+ ).then(
+ image_to_3d,
+ inputs=[image_prompt, multiimage_prompt, is_multiimage, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo],
+ outputs=[output_buf, video_output],
+ ).then(
+ lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
+ outputs=[extract_glb_btn, extract_gs_btn],
+ )
+
+ video_output.clear(
+ lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
+ outputs=[extract_glb_btn, extract_gs_btn],
+ )
+
+ extract_glb_btn.click(
+ extract_glb,
+ inputs=[output_buf, mesh_simplify, texture_size],
+ outputs=[model_output, download_glb],
+ ).then(
+ lambda: gr.Button(interactive=True),
+ outputs=[download_glb],
+ )
+
+ extract_gs_btn.click(
+ extract_gaussian,
+ inputs=[output_buf],
+ outputs=[model_output, download_gs],
+ ).then(
+ lambda: gr.Button(interactive=True),
+ outputs=[download_gs],
+ )
+
+ model_output.clear(
+ lambda: gr.Button(interactive=False),
+ outputs=[download_glb],
+ )
+
+
+# Launch the Gradio app
+if __name__ == "__main__":
+ pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
+ pipeline.cuda()
+ try:
+ pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
+ except:
+ pass
+ demo.launch()
diff --git a/assets/example_image/T.png b/assets/example_image/T.png
new file mode 100644
index 0000000000000000000000000000000000000000..79af51bc9d711951fbc63be16b7d07c84294355b
Binary files /dev/null and b/assets/example_image/T.png differ
diff --git a/assets/example_image/typical_building_building.png b/assets/example_image/typical_building_building.png
new file mode 100644
index 0000000000000000000000000000000000000000..4f9adcf79d4297bb9b906608c23c311f9b8f23d2
Binary files /dev/null and b/assets/example_image/typical_building_building.png differ
diff --git a/assets/example_image/typical_building_castle.png b/assets/example_image/typical_building_castle.png
new file mode 100644
index 0000000000000000000000000000000000000000..5f5f50733f3b8ed168026340ed679df357ccb9ec
Binary files /dev/null and b/assets/example_image/typical_building_castle.png differ
diff --git a/assets/example_image/typical_building_colorful_cottage.png b/assets/example_image/typical_building_colorful_cottage.png
new file mode 100644
index 0000000000000000000000000000000000000000..94616b19be6a896413c287b3168b3b7886d64a56
Binary files /dev/null and b/assets/example_image/typical_building_colorful_cottage.png differ
diff --git a/assets/example_image/typical_building_maya_pyramid.png b/assets/example_image/typical_building_maya_pyramid.png
new file mode 100644
index 0000000000000000000000000000000000000000..1d87f3c3980f80eee878b4f8ab69e32279a5ea50
Binary files /dev/null and b/assets/example_image/typical_building_maya_pyramid.png differ
diff --git a/assets/example_image/typical_building_mushroom.png b/assets/example_image/typical_building_mushroom.png
new file mode 100644
index 0000000000000000000000000000000000000000..c4db49d4284e6fec83b2ea548e7e85d489711b84
Binary files /dev/null and b/assets/example_image/typical_building_mushroom.png differ
diff --git a/assets/example_image/typical_building_space_station.png b/assets/example_image/typical_building_space_station.png
new file mode 100644
index 0000000000000000000000000000000000000000..e37a5806d403dccc098d82492d687d71afa36850
Binary files /dev/null and b/assets/example_image/typical_building_space_station.png differ
diff --git a/assets/example_image/typical_creature_dragon.png b/assets/example_image/typical_creature_dragon.png
new file mode 100644
index 0000000000000000000000000000000000000000..c3fb92ff0400451c69f44fb75156f50db93da6ec
Binary files /dev/null and b/assets/example_image/typical_creature_dragon.png differ
diff --git a/assets/example_image/typical_creature_elephant.png b/assets/example_image/typical_creature_elephant.png
new file mode 100644
index 0000000000000000000000000000000000000000..6fc3cf1776c66b91e739cad8e839b52074a57e4c
Binary files /dev/null and b/assets/example_image/typical_creature_elephant.png differ
diff --git a/assets/example_image/typical_creature_furry.png b/assets/example_image/typical_creature_furry.png
new file mode 100644
index 0000000000000000000000000000000000000000..eb4e8d6c6cac1e03a206429eaf7de261c6f14072
Binary files /dev/null and b/assets/example_image/typical_creature_furry.png differ
diff --git a/assets/example_image/typical_creature_quadruped.png b/assets/example_image/typical_creature_quadruped.png
new file mode 100644
index 0000000000000000000000000000000000000000..b246e08e05702051fb22cced1366ab765cd6fbb0
Binary files /dev/null and b/assets/example_image/typical_creature_quadruped.png differ
diff --git a/assets/example_image/typical_creature_robot_crab.png b/assets/example_image/typical_creature_robot_crab.png
new file mode 100644
index 0000000000000000000000000000000000000000..8b4e10b353e0e9b60634ea272ff8fd9135fdd640
Binary files /dev/null and b/assets/example_image/typical_creature_robot_crab.png differ
diff --git a/assets/example_image/typical_creature_robot_dinosour.png b/assets/example_image/typical_creature_robot_dinosour.png
new file mode 100644
index 0000000000000000000000000000000000000000..7f8f51728fe1fecb0532673756b1601ef46edc2c
Binary files /dev/null and b/assets/example_image/typical_creature_robot_dinosour.png differ
diff --git a/assets/example_image/typical_creature_rock_monster.png b/assets/example_image/typical_creature_rock_monster.png
new file mode 100644
index 0000000000000000000000000000000000000000..29dc243b197d9b3ee4df9355a5f08752ef0b9b9e
Binary files /dev/null and b/assets/example_image/typical_creature_rock_monster.png differ
diff --git a/assets/example_image/typical_humanoid_block_robot.png b/assets/example_image/typical_humanoid_block_robot.png
new file mode 100644
index 0000000000000000000000000000000000000000..195212e38e6a8e331b02c2d58728ba41dba429a1
Binary files /dev/null and b/assets/example_image/typical_humanoid_block_robot.png differ
diff --git a/assets/example_image/typical_humanoid_dragonborn.png b/assets/example_image/typical_humanoid_dragonborn.png
new file mode 100644
index 0000000000000000000000000000000000000000..61ca2d9e69634c12ee9ae6f7e77f84839df83fdb
Binary files /dev/null and b/assets/example_image/typical_humanoid_dragonborn.png differ
diff --git a/assets/example_image/typical_humanoid_dwarf.png b/assets/example_image/typical_humanoid_dwarf.png
new file mode 100644
index 0000000000000000000000000000000000000000..16de1631fff3cc42a3a5d6a8b0f638da75ad7b2f
Binary files /dev/null and b/assets/example_image/typical_humanoid_dwarf.png differ
diff --git a/assets/example_image/typical_humanoid_goblin.png b/assets/example_image/typical_humanoid_goblin.png
new file mode 100644
index 0000000000000000000000000000000000000000..4e4fe04517801d5722817e8dfaed2af83b31d67e
Binary files /dev/null and b/assets/example_image/typical_humanoid_goblin.png differ
diff --git a/assets/example_image/typical_humanoid_mech.png b/assets/example_image/typical_humanoid_mech.png
new file mode 100644
index 0000000000000000000000000000000000000000..f0fbbdf6cda5636f517b6e2fa3f20e15e56e3777
Binary files /dev/null and b/assets/example_image/typical_humanoid_mech.png differ
diff --git a/assets/example_image/typical_misc_crate.png b/assets/example_image/typical_misc_crate.png
new file mode 100644
index 0000000000000000000000000000000000000000..c3086f885bf9fc27c398b5bacfb04a65bd7dfbd9
Binary files /dev/null and b/assets/example_image/typical_misc_crate.png differ
diff --git a/assets/example_image/typical_misc_fireplace.png b/assets/example_image/typical_misc_fireplace.png
new file mode 100644
index 0000000000000000000000000000000000000000..82d79bc10346604a8b8b9cc8e2c317e8dc6d8c47
Binary files /dev/null and b/assets/example_image/typical_misc_fireplace.png differ
diff --git a/assets/example_image/typical_misc_gate.png b/assets/example_image/typical_misc_gate.png
new file mode 100644
index 0000000000000000000000000000000000000000..fa77919f9d9faabc26b9287b35c4dd3b4006163e
Binary files /dev/null and b/assets/example_image/typical_misc_gate.png differ
diff --git a/assets/example_image/typical_misc_lantern.png b/assets/example_image/typical_misc_lantern.png
new file mode 100644
index 0000000000000000000000000000000000000000..4c93f5dea2638a5a169dd1557a36f6d34b57144d
Binary files /dev/null and b/assets/example_image/typical_misc_lantern.png differ
diff --git a/assets/example_image/typical_misc_magicbook.png b/assets/example_image/typical_misc_magicbook.png
new file mode 100644
index 0000000000000000000000000000000000000000..7dc521a10fda176694c30170811809050f478a66
Binary files /dev/null and b/assets/example_image/typical_misc_magicbook.png differ
diff --git a/assets/example_image/typical_misc_mailbox.png b/assets/example_image/typical_misc_mailbox.png
new file mode 100644
index 0000000000000000000000000000000000000000..b6e8bc50cd270bb7462eee2af7a6d5649ef54cf2
Binary files /dev/null and b/assets/example_image/typical_misc_mailbox.png differ
diff --git a/assets/example_image/typical_misc_monster_chest.png b/assets/example_image/typical_misc_monster_chest.png
new file mode 100644
index 0000000000000000000000000000000000000000..6d544370fa306138e7dbab3e548d6e05b8ef2317
Binary files /dev/null and b/assets/example_image/typical_misc_monster_chest.png differ
diff --git a/assets/example_image/typical_misc_paper_machine.png b/assets/example_image/typical_misc_paper_machine.png
new file mode 100644
index 0000000000000000000000000000000000000000..a630074dbfe32c53f52f2f27e5b6b3eff8469a9e
Binary files /dev/null and b/assets/example_image/typical_misc_paper_machine.png differ
diff --git a/assets/example_image/typical_misc_phonograph.png b/assets/example_image/typical_misc_phonograph.png
new file mode 100644
index 0000000000000000000000000000000000000000..668662d741344ac16427259fc966186ef8ca97a9
Binary files /dev/null and b/assets/example_image/typical_misc_phonograph.png differ
diff --git a/assets/example_image/typical_misc_portal2.png b/assets/example_image/typical_misc_portal2.png
new file mode 100644
index 0000000000000000000000000000000000000000..666daa75fbaf7df55585f7143906d158175be6be
Binary files /dev/null and b/assets/example_image/typical_misc_portal2.png differ
diff --git a/assets/example_image/typical_misc_storage_chest.png b/assets/example_image/typical_misc_storage_chest.png
new file mode 100644
index 0000000000000000000000000000000000000000..38f4bd31f8eb62badcc5e1a51d4612e528b4069e
Binary files /dev/null and b/assets/example_image/typical_misc_storage_chest.png differ
diff --git a/assets/example_image/typical_misc_telephone.png b/assets/example_image/typical_misc_telephone.png
new file mode 100644
index 0000000000000000000000000000000000000000..a0a7d65a300d9f1adc55b2fc36951731f5abb355
Binary files /dev/null and b/assets/example_image/typical_misc_telephone.png differ
diff --git a/assets/example_image/typical_misc_television.png b/assets/example_image/typical_misc_television.png
new file mode 100644
index 0000000000000000000000000000000000000000..1d6b5882b42ce532f6a60080ad55bda7053530c0
Binary files /dev/null and b/assets/example_image/typical_misc_television.png differ
diff --git a/assets/example_image/typical_misc_workbench.png b/assets/example_image/typical_misc_workbench.png
new file mode 100644
index 0000000000000000000000000000000000000000..88024f960ff56aa619b0c496f85de390076bbf5a
Binary files /dev/null and b/assets/example_image/typical_misc_workbench.png differ
diff --git a/assets/example_image/typical_vehicle_biplane.png b/assets/example_image/typical_vehicle_biplane.png
new file mode 100644
index 0000000000000000000000000000000000000000..7427cad3270d8ed33dad05c7a2ae1b0092b4beb2
Binary files /dev/null and b/assets/example_image/typical_vehicle_biplane.png differ
diff --git a/assets/example_image/typical_vehicle_bulldozer.png b/assets/example_image/typical_vehicle_bulldozer.png
new file mode 100644
index 0000000000000000000000000000000000000000..17ffe389498d9561ef92766de654ef17b5755f60
Binary files /dev/null and b/assets/example_image/typical_vehicle_bulldozer.png differ
diff --git a/assets/example_image/typical_vehicle_cart.png b/assets/example_image/typical_vehicle_cart.png
new file mode 100644
index 0000000000000000000000000000000000000000..137bb4887f3879691ffff21227951790eb1840b4
Binary files /dev/null and b/assets/example_image/typical_vehicle_cart.png differ
diff --git a/assets/example_image/typical_vehicle_excavator.png b/assets/example_image/typical_vehicle_excavator.png
new file mode 100644
index 0000000000000000000000000000000000000000..c434e8b0ab142ecc35caf91d42df5f4541825b8f
Binary files /dev/null and b/assets/example_image/typical_vehicle_excavator.png differ
diff --git a/assets/example_image/typical_vehicle_helicopter.png b/assets/example_image/typical_vehicle_helicopter.png
new file mode 100644
index 0000000000000000000000000000000000000000..39c2497d22ea519cddf576c6504954c338f943e4
Binary files /dev/null and b/assets/example_image/typical_vehicle_helicopter.png differ
diff --git a/assets/example_image/typical_vehicle_locomotive.png b/assets/example_image/typical_vehicle_locomotive.png
new file mode 100644
index 0000000000000000000000000000000000000000..dac6a2a2de9e8830bac53d3893aa1d3741916b1a
Binary files /dev/null and b/assets/example_image/typical_vehicle_locomotive.png differ
diff --git a/assets/example_image/typical_vehicle_pirate_ship.png b/assets/example_image/typical_vehicle_pirate_ship.png
new file mode 100644
index 0000000000000000000000000000000000000000..9eed1529f309c64fc6237caba97631cc1f2bab53
Binary files /dev/null and b/assets/example_image/typical_vehicle_pirate_ship.png differ
diff --git a/assets/example_image/weatherworn_misc_paper_machine3.png b/assets/example_image/weatherworn_misc_paper_machine3.png
new file mode 100644
index 0000000000000000000000000000000000000000..46e8a9dc123aaf71a41e994a8e50eabb4e53e721
Binary files /dev/null and b/assets/example_image/weatherworn_misc_paper_machine3.png differ
diff --git a/assets/example_multi_image/character_1.png b/assets/example_multi_image/character_1.png
new file mode 100644
index 0000000000000000000000000000000000000000..743117c4458af4a9db717c7c7c6b05b6b08037dc
Binary files /dev/null and b/assets/example_multi_image/character_1.png differ
diff --git a/assets/example_multi_image/character_2.png b/assets/example_multi_image/character_2.png
new file mode 100644
index 0000000000000000000000000000000000000000..5fc37f61179b2dc4293a40bec2959ac82fd7503c
Binary files /dev/null and b/assets/example_multi_image/character_2.png differ
diff --git a/assets/example_multi_image/character_3.png b/assets/example_multi_image/character_3.png
new file mode 100644
index 0000000000000000000000000000000000000000..c6e8cb9fb2ab3e86e749405f96ee026273e1e99b
Binary files /dev/null and b/assets/example_multi_image/character_3.png differ
diff --git a/assets/example_multi_image/mushroom_1.png b/assets/example_multi_image/mushroom_1.png
new file mode 100644
index 0000000000000000000000000000000000000000..982645f790b3c374ccab05f33371b2979b5a4031
Binary files /dev/null and b/assets/example_multi_image/mushroom_1.png differ
diff --git a/assets/example_multi_image/mushroom_2.png b/assets/example_multi_image/mushroom_2.png
new file mode 100644
index 0000000000000000000000000000000000000000..48e961e28e6996bce3259b114da8c6aced35e777
Binary files /dev/null and b/assets/example_multi_image/mushroom_2.png differ
diff --git a/assets/example_multi_image/mushroom_3.png b/assets/example_multi_image/mushroom_3.png
new file mode 100644
index 0000000000000000000000000000000000000000..16f2022458343da9a084013d8dba92faad0c2103
Binary files /dev/null and b/assets/example_multi_image/mushroom_3.png differ
diff --git a/assets/example_multi_image/orangeguy_1.png b/assets/example_multi_image/orangeguy_1.png
new file mode 100644
index 0000000000000000000000000000000000000000..5221021f6bde7d3fcb25fe0002ca3de528e4443d
Binary files /dev/null and b/assets/example_multi_image/orangeguy_1.png differ
diff --git a/assets/example_multi_image/orangeguy_2.png b/assets/example_multi_image/orangeguy_2.png
new file mode 100644
index 0000000000000000000000000000000000000000..156aea1f404d7748b73694c34037b1b13d87db66
Binary files /dev/null and b/assets/example_multi_image/orangeguy_2.png differ
diff --git a/assets/example_multi_image/orangeguy_3.png b/assets/example_multi_image/orangeguy_3.png
new file mode 100644
index 0000000000000000000000000000000000000000..0c15598b97acb46301876c4cdde34aacc8580a68
Binary files /dev/null and b/assets/example_multi_image/orangeguy_3.png differ
diff --git a/assets/example_multi_image/popmart_1.png b/assets/example_multi_image/popmart_1.png
new file mode 100644
index 0000000000000000000000000000000000000000..81f1838f3a3698441d3d33bf04f0fce5dcdf05f3
Binary files /dev/null and b/assets/example_multi_image/popmart_1.png differ
diff --git a/assets/example_multi_image/popmart_2.png b/assets/example_multi_image/popmart_2.png
new file mode 100644
index 0000000000000000000000000000000000000000..ac6fdf3c53aa95dd0763a4e865ba7583768f2ac8
Binary files /dev/null and b/assets/example_multi_image/popmart_2.png differ
diff --git a/assets/example_multi_image/popmart_3.png b/assets/example_multi_image/popmart_3.png
new file mode 100644
index 0000000000000000000000000000000000000000..c83ea960e3aa151151260427d10fc5671619cbee
Binary files /dev/null and b/assets/example_multi_image/popmart_3.png differ
diff --git a/assets/example_multi_image/rabbit_1.png b/assets/example_multi_image/rabbit_1.png
new file mode 100644
index 0000000000000000000000000000000000000000..0cd5708a752cb3951d5edb41165d23f1246955e1
Binary files /dev/null and b/assets/example_multi_image/rabbit_1.png differ
diff --git a/assets/example_multi_image/rabbit_2.png b/assets/example_multi_image/rabbit_2.png
new file mode 100644
index 0000000000000000000000000000000000000000..95492498199904f299a88ba06a80fc0742f874f9
Binary files /dev/null and b/assets/example_multi_image/rabbit_2.png differ
diff --git a/assets/example_multi_image/rabbit_3.png b/assets/example_multi_image/rabbit_3.png
new file mode 100644
index 0000000000000000000000000000000000000000..a83285e29702f9680cd5530fa2ab9526e7812352
Binary files /dev/null and b/assets/example_multi_image/rabbit_3.png differ
diff --git a/assets/example_multi_image/tiger_1.png b/assets/example_multi_image/tiger_1.png
new file mode 100644
index 0000000000000000000000000000000000000000..c4f87f93b63873a81c1e2bda18937a165d49a773
Binary files /dev/null and b/assets/example_multi_image/tiger_1.png differ
diff --git a/assets/example_multi_image/tiger_2.png b/assets/example_multi_image/tiger_2.png
new file mode 100644
index 0000000000000000000000000000000000000000..8fb9818ab2c6920be720811c04babb4024372c40
Binary files /dev/null and b/assets/example_multi_image/tiger_2.png differ
diff --git a/assets/example_multi_image/tiger_3.png b/assets/example_multi_image/tiger_3.png
new file mode 100644
index 0000000000000000000000000000000000000000..53689b9b2e3deeeb968628f6fcb636cf6d1223a4
Binary files /dev/null and b/assets/example_multi_image/tiger_3.png differ
diff --git a/assets/example_multi_image/yoimiya_1.png b/assets/example_multi_image/yoimiya_1.png
new file mode 100644
index 0000000000000000000000000000000000000000..da323f970a288542665e316a8447b1cccf54998d
Binary files /dev/null and b/assets/example_multi_image/yoimiya_1.png differ
diff --git a/assets/example_multi_image/yoimiya_2.png b/assets/example_multi_image/yoimiya_2.png
new file mode 100644
index 0000000000000000000000000000000000000000..d38d854fc264025034ded35f3363e95cf509a0b4
Binary files /dev/null and b/assets/example_multi_image/yoimiya_2.png differ
diff --git a/assets/example_multi_image/yoimiya_3.png b/assets/example_multi_image/yoimiya_3.png
new file mode 100644
index 0000000000000000000000000000000000000000..f2c8a7ca4085badda0fede3e4ca92dac1565ed24
Binary files /dev/null and b/assets/example_multi_image/yoimiya_3.png differ
diff --git a/extensions/nvdiffrast/LICENSE.txt b/extensions/nvdiffrast/LICENSE.txt
new file mode 100644
index 0000000000000000000000000000000000000000..9ef3a30911b6676b2fefa11e4e6044beb5b0bc8e
--- /dev/null
+++ b/extensions/nvdiffrast/LICENSE.txt
@@ -0,0 +1,97 @@
+Copyright (c) 2020, NVIDIA Corporation. All rights reserved.
+
+
+Nvidia Source Code License (1-Way Commercial)
+
+=======================================================================
+
+1. Definitions
+
+"Licensor" means any person or entity that distributes its Work.
+
+"Software" means the original work of authorship made available under
+this License.
+
+"Work" means the Software and any additions to or derivative works of
+the Software that are made available under this License.
+
+The terms "reproduce," "reproduction," "derivative works," and
+"distribution" have the meaning as provided under U.S. copyright law;
+provided, however, that for the purposes of this License, derivative
+works shall not include works that remain separable from, or merely
+link (or bind by name) to the interfaces of, the Work.
+
+Works, including the Software, are "made available" under this License
+by including in or with the Work either (a) a copyright notice
+referencing the applicability of this License to the Work, or (b) a
+copy of this License.
+
+2. License Grants
+
+ 2.1 Copyright Grant. Subject to the terms and conditions of this
+ License, each Licensor grants to you a perpetual, worldwide,
+ non-exclusive, royalty-free, copyright license to reproduce,
+ prepare derivative works of, publicly display, publicly perform,
+ sublicense and distribute its Work and any resulting derivative
+ works in any form.
+
+3. Limitations
+
+ 3.1 Redistribution. You may reproduce or distribute the Work only
+ if (a) you do so under this License, (b) you include a complete
+ copy of this License with your distribution, and (c) you retain
+ without modification any copyright, patent, trademark, or
+ attribution notices that are present in the Work.
+
+ 3.2 Derivative Works. You may specify that additional or different
+ terms apply to the use, reproduction, and distribution of your
+ derivative works of the Work ("Your Terms") only if (a) Your Terms
+ provide that the use limitation in Section 3.3 applies to your
+ derivative works, and (b) you identify the specific derivative
+ works that are subject to Your Terms. Notwithstanding Your Terms,
+ this License (including the redistribution requirements in Section
+ 3.1) will continue to apply to the Work itself.
+
+ 3.3 Use Limitation. The Work and any derivative works thereof only
+ may be used or intended for use non-commercially. The Work or
+ derivative works thereof may be used or intended for use by Nvidia
+ or its affiliates commercially or non-commercially. As used herein,
+ "non-commercially" means for research or evaluation purposes only
+ and not for any direct or indirect monetary gain.
+
+ 3.4 Patent Claims. If you bring or threaten to bring a patent claim
+ against any Licensor (including any claim, cross-claim or
+ counterclaim in a lawsuit) to enforce any patents that you allege
+ are infringed by any Work, then your rights under this License from
+ such Licensor (including the grant in Section 2.1) will terminate
+ immediately.
+
+ 3.5 Trademarks. This License does not grant any rights to use any
+ Licensor's or its affiliates' names, logos, or trademarks, except
+ as necessary to reproduce the notices described in this License.
+
+ 3.6 Termination. If you violate any term of this License, then your
+ rights under this License (including the grant in Section 2.1) will
+ terminate immediately.
+
+4. Disclaimer of Warranty.
+
+THE WORK IS PROVIDED "AS IS" WITHOUT WARRANTIES OR CONDITIONS OF ANY
+KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OR CONDITIONS OF
+MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR
+NON-INFRINGEMENT. YOU BEAR THE RISK OF UNDERTAKING ANY ACTIVITIES UNDER
+THIS LICENSE.
+
+5. Limitation of Liability.
+
+EXCEPT AS PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL
+THEORY, WHETHER IN TORT (INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE
+SHALL ANY LICENSOR BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY DIRECT,
+INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
+OR RELATED TO THIS LICENSE, THE USE OR INABILITY TO USE THE WORK
+(INCLUDING BUT NOT LIMITED TO LOSS OF GOODWILL, BUSINESS INTERRUPTION,
+LOST PROFITS OR DATA, COMPUTER FAILURE OR MALFUNCTION, OR ANY OTHER
+COMMERCIAL DAMAGES OR LOSSES), EVEN IF THE LICENSOR HAS BEEN ADVISED OF
+THE POSSIBILITY OF SUCH DAMAGES.
+
+=======================================================================
diff --git a/extensions/nvdiffrast/README.md b/extensions/nvdiffrast/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..c17baacc4209f34d3d74efdbd7cbb080d0451ca9
--- /dev/null
+++ b/extensions/nvdiffrast/README.md
@@ -0,0 +1,42 @@
+## Nvdiffrast – Modular Primitives for High-Performance Differentiable Rendering
+
+![Teaser image](./docs/img/teaser.png)
+
+**Modular Primitives for High-Performance Differentiable Rendering**
+Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, Timo Aila
+[http://arxiv.org/abs/2011.03277](http://arxiv.org/abs/2011.03277)
+
+Nvdiffrast is a PyTorch/TensorFlow library that provides high-performance primitive operations for rasterization-based differentiable rendering.
+Please refer to ☞☞ [nvdiffrast documentation](https://nvlabs.github.io/nvdiffrast) ☜☜ for more information.
+
+## Licenses
+
+Copyright © 2020–2024, NVIDIA Corporation. All rights reserved.
+
+This work is made available under the [Nvidia Source Code License](https://github.com/NVlabs/nvdiffrast/blob/main/LICENSE.txt).
+
+For business inquiries, please visit our website and submit the form: [NVIDIA Research Licensing](https://www.nvidia.com/en-us/research/inquiries/)
+
+We do not currently accept outside code contributions in the form of pull requests.
+
+Environment map stored as part of `samples/data/envphong.npz` is derived from a Wave Engine
+[sample material](https://github.com/WaveEngine/Samples-2.5/tree/master/Materials/EnvironmentMap/Content/Assets/CubeMap.cubemap)
+originally shared under
+[MIT License](https://github.com/WaveEngine/Samples-2.5/blob/master/LICENSE.md).
+Mesh and texture stored as part of `samples/data/earth.npz` are derived from
+[3D Earth Photorealistic 2K](https://www.turbosquid.com/3d-models/3d-realistic-earth-photorealistic-2k-1279125)
+model originally made available under
+[TurboSquid 3D Model License](https://blog.turbosquid.com/turbosquid-3d-model-license/#3d-model-license).
+
+## Citation
+
+```
+@article{Laine2020diffrast,
+ title = {Modular Primitives for High-Performance Differentiable Rendering},
+ author = {Samuli Laine and Janne Hellsten and Tero Karras and Yeongho Seol and Jaakko Lehtinen and Timo Aila},
+ journal = {ACM Transactions on Graphics},
+ year = {2020},
+ volume = {39},
+ number = {6}
+}
+```
diff --git a/extensions/nvdiffrast/nvdiffrast/__init__.py b/extensions/nvdiffrast/nvdiffrast/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..f3d077dd95e58d52169d5699b6d3ede78a309c21
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/__init__.py
@@ -0,0 +1,9 @@
+# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
+#
+# NVIDIA CORPORATION and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+__version__ = '0.3.3'
diff --git a/extensions/nvdiffrast/nvdiffrast/common/antialias.cu b/extensions/nvdiffrast/nvdiffrast/common/antialias.cu
new file mode 100644
index 0000000000000000000000000000000000000000..a62c1b34bc63788bf2e8f960f8bb2d7d2c9d1d45
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/common/antialias.cu
@@ -0,0 +1,558 @@
+// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#include "antialias.h"
+
+//------------------------------------------------------------------------
+// Helpers.
+
+#define F32_MAX (3.402823466e+38f)
+static __forceinline__ __device__ bool same_sign(float a, float b) { return (__float_as_int(a) ^ __float_as_int(b)) >= 0; }
+static __forceinline__ __device__ bool rational_gt(float n0, float n1, float d0, float d1) { return (n0*d1 > n1*d0) == same_sign(d0, d1); }
+static __forceinline__ __device__ int max_idx3(float n0, float n1, float n2, float d0, float d1, float d2)
+{
+ bool g10 = rational_gt(n1, n0, d1, d0);
+ bool g20 = rational_gt(n2, n0, d2, d0);
+ bool g21 = rational_gt(n2, n1, d2, d1);
+ if (g20 && g21) return 2;
+ if (g10) return 1;
+ return 0;
+}
+
+//------------------------------------------------------------------------
+// Format of antialiasing work items stored in work buffer. Usually accessed directly as int4.
+
+struct AAWorkItem
+{
+ enum
+ {
+ EDGE_MASK = 3, // Edge index in lowest bits.
+ FLAG_DOWN_BIT = 2, // Down instead of right.
+ FLAG_TRI1_BIT = 3, // Edge is from other pixel's triangle.
+ };
+
+ int px, py; // Pixel x, y.
+ unsigned int pz_flags; // High 16 bits = pixel z, low 16 bits = edge index and flags.
+ float alpha; // Antialiasing alpha value. Zero if no AA.
+};
+
+//------------------------------------------------------------------------
+// Hash functions. Adapted from public-domain code at http://www.burtleburtle.net/bob/hash/doobs.html
+
+#define JENKINS_MAGIC (0x9e3779b9u)
+static __device__ __forceinline__ void jenkins_mix(unsigned int& a, unsigned int& b, unsigned int& c)
+{
+ a -= b; a -= c; a ^= (c>>13);
+ b -= c; b -= a; b ^= (a<<8);
+ c -= a; c -= b; c ^= (b>>13);
+ a -= b; a -= c; a ^= (c>>12);
+ b -= c; b -= a; b ^= (a<<16);
+ c -= a; c -= b; c ^= (b>>5);
+ a -= b; a -= c; a ^= (c>>3);
+ b -= c; b -= a; b ^= (a<<10);
+ c -= a; c -= b; c ^= (b>>15);
+}
+
+// Helper class for hash index iteration. Implements simple odd-skip linear probing with a key-dependent skip.
+class HashIndex
+{
+public:
+ __device__ __forceinline__ HashIndex(const AntialiasKernelParams& p, uint64_t key)
+ {
+ m_mask = (p.allocTriangles << AA_LOG_HASH_ELEMENTS_PER_TRIANGLE(p.allocTriangles)) - 1; // This should work until triangle count exceeds 1073741824.
+ m_idx = (uint32_t)(key & 0xffffffffu);
+ m_skip = (uint32_t)(key >> 32);
+ uint32_t dummy = JENKINS_MAGIC;
+ jenkins_mix(m_idx, m_skip, dummy);
+ m_idx &= m_mask;
+ m_skip &= m_mask;
+ m_skip |= 1;
+ }
+ __device__ __forceinline__ int get(void) const { return m_idx; }
+ __device__ __forceinline__ void next(void) { m_idx = (m_idx + m_skip) & m_mask; }
+private:
+ uint32_t m_idx, m_skip, m_mask;
+};
+
+static __device__ __forceinline__ void hash_insert(const AntialiasKernelParams& p, uint64_t key, int v)
+{
+ HashIndex idx(p, key);
+ while(1)
+ {
+ uint64_t prev = atomicCAS((unsigned long long*)&p.evHash[idx.get()], 0, (unsigned long long)key);
+ if (prev == 0 || prev == key)
+ break;
+ idx.next();
+ }
+ int* q = (int*)&p.evHash[idx.get()];
+ int a = atomicCAS(q+2, 0, v);
+ if (a != 0 && a != v)
+ atomicCAS(q+3, 0, v);
+}
+
+static __device__ __forceinline__ int2 hash_find(const AntialiasKernelParams& p, uint64_t key)
+{
+ HashIndex idx(p, key);
+ while(1)
+ {
+ uint4 entry = p.evHash[idx.get()];
+ uint64_t k = ((uint64_t)entry.x) | (((uint64_t)entry.y) << 32);
+ if (k == key || k == 0)
+ return make_int2((int)entry.z, (int)entry.w);
+ idx.next();
+ }
+}
+
+static __device__ __forceinline__ void evhash_insert_vertex(const AntialiasKernelParams& p, int va, int vb, int vn)
+{
+ if (va == vb)
+ return;
+
+ uint64_t v0 = (uint32_t)min(va, vb) + 1; // canonical vertex order
+ uint64_t v1 = (uint32_t)max(va, vb) + 1;
+ uint64_t vk = v0 | (v1 << 32); // hash key
+ hash_insert(p, vk, vn + 1);
+}
+
+static __forceinline__ __device__ int evhash_find_vertex(const AntialiasKernelParams& p, int va, int vb, int vr)
+{
+ if (va == vb)
+ return -1;
+
+ uint64_t v0 = (uint32_t)min(va, vb) + 1; // canonical vertex order
+ uint64_t v1 = (uint32_t)max(va, vb) + 1;
+ uint64_t vk = v0 | (v1 << 32); // hash key
+ int2 vn = hash_find(p, vk) - 1;
+ if (vn.x == vr) return vn.y;
+ if (vn.y == vr) return vn.x;
+ return -1;
+}
+
+//------------------------------------------------------------------------
+// Mesh analysis kernel.
+
+__global__ void AntialiasFwdMeshKernel(const AntialiasKernelParams p)
+{
+ int idx = threadIdx.x + blockIdx.x * blockDim.x;
+ if (idx >= p.numTriangles)
+ return;
+
+ int v0 = p.tri[idx * 3 + 0];
+ int v1 = p.tri[idx * 3 + 1];
+ int v2 = p.tri[idx * 3 + 2];
+
+ if (v0 < 0 || v0 >= p.numVertices ||
+ v1 < 0 || v1 >= p.numVertices ||
+ v2 < 0 || v2 >= p.numVertices)
+ return;
+
+ if (v0 == v1 || v1 == v2 || v2 == v0)
+ return;
+
+ evhash_insert_vertex(p, v1, v2, v0);
+ evhash_insert_vertex(p, v2, v0, v1);
+ evhash_insert_vertex(p, v0, v1, v2);
+}
+
+//------------------------------------------------------------------------
+// Discontinuity finder kernel.
+
+__global__ void AntialiasFwdDiscontinuityKernel(const AntialiasKernelParams p)
+{
+ // Calculate pixel position.
+ int px = blockIdx.x * AA_DISCONTINUITY_KERNEL_BLOCK_WIDTH + threadIdx.x;
+ int py = blockIdx.y * AA_DISCONTINUITY_KERNEL_BLOCK_HEIGHT + threadIdx.y;
+ int pz = blockIdx.z;
+ if (px >= p.width || py >= p.height || pz >= p.n)
+ return;
+
+ // Pointer to our TriIdx and fetch.
+ int pidx0 = ((px + p.width * (py + p.height * pz)) << 2) + 3;
+ float tri0 = p.rasterOut[pidx0]; // These can stay as float, as we only compare them against each other.
+
+ // Look right, clamp at edge.
+ int pidx1 = pidx0;
+ if (px < p.width - 1)
+ pidx1 += 4;
+ float tri1 = p.rasterOut[pidx1];
+
+ // Look down, clamp at edge.
+ int pidx2 = pidx0;
+ if (py < p.height - 1)
+ pidx2 += p.width << 2;
+ float tri2 = p.rasterOut[pidx2];
+
+ // Determine amount of work.
+ int count = 0;
+ if (tri1 != tri0) count = 1;
+ if (tri2 != tri0) count += 1;
+ if (!count)
+ return; // Exit warp.
+
+ // Coalesce work counter update to once per CTA.
+ __shared__ int s_temp;
+ s_temp = 0;
+ __syncthreads();
+ int idx = atomicAdd(&s_temp, count);
+ __syncthreads();
+ if (idx == 0)
+ {
+ int base = atomicAdd(&p.workBuffer[0].x, s_temp);
+ s_temp = base + 1; // don't clobber the counters in first slot.
+ }
+ __syncthreads();
+ idx += s_temp;
+
+ // Write to memory.
+ if (tri1 != tri0) p.workBuffer[idx++] = make_int4(px, py, (pz << 16), 0);
+ if (tri2 != tri0) p.workBuffer[idx] = make_int4(px, py, (pz << 16) + (1 << AAWorkItem::FLAG_DOWN_BIT), 0);
+}
+
+//------------------------------------------------------------------------
+// Forward analysis kernel.
+
+__global__ void AntialiasFwdAnalysisKernel(const AntialiasKernelParams p)
+{
+ __shared__ int s_base;
+ int workCount = p.workBuffer[0].x;
+ for(;;)
+ {
+ // Persistent threads work fetcher.
+ __syncthreads();
+ if (threadIdx.x == 0)
+ s_base = atomicAdd(&p.workBuffer[0].y, AA_ANALYSIS_KERNEL_THREADS_PER_BLOCK);
+ __syncthreads();
+ int thread_idx = s_base + threadIdx.x;
+ if (thread_idx >= workCount)
+ return;
+
+ int4* pItem = p.workBuffer + thread_idx + 1;
+ int4 item = *pItem;
+ int px = item.x;
+ int py = item.y;
+ int pz = (int)(((unsigned int)item.z) >> 16);
+ int d = (item.z >> AAWorkItem::FLAG_DOWN_BIT) & 1;
+
+ int pixel0 = px + p.width * (py + p.height * pz);
+ int pixel1 = pixel0 + (d ? p.width : 1);
+ float2 zt0 = ((float2*)p.rasterOut)[(pixel0 << 1) + 1];
+ float2 zt1 = ((float2*)p.rasterOut)[(pixel1 << 1) + 1];
+ int tri0 = float_to_triidx(zt0.y) - 1;
+ int tri1 = float_to_triidx(zt1.y) - 1;
+
+ // Select triangle based on background / depth.
+ int tri = (tri0 >= 0) ? tri0 : tri1;
+ if (tri0 >= 0 && tri1 >= 0)
+ tri = (zt0.x < zt1.x) ? tri0 : tri1;
+ if (tri == tri1)
+ {
+ // Calculate with respect to neighbor pixel if chose that triangle.
+ px += 1 - d;
+ py += d;
+ }
+
+ // Bail out if triangle index is corrupt.
+ if (tri < 0 || tri >= p.numTriangles)
+ continue;
+
+ // Fetch vertex indices.
+ int vi0 = p.tri[tri * 3 + 0];
+ int vi1 = p.tri[tri * 3 + 1];
+ int vi2 = p.tri[tri * 3 + 2];
+
+ // Bail out if vertex indices are corrupt.
+ if (vi0 < 0 || vi0 >= p.numVertices ||
+ vi1 < 0 || vi1 >= p.numVertices ||
+ vi2 < 0 || vi2 >= p.numVertices)
+ continue;
+
+ // Fetch opposite vertex indices. Use vertex itself (always silhouette) if no opposite vertex exists.
+ int op0 = evhash_find_vertex(p, vi2, vi1, vi0);
+ int op1 = evhash_find_vertex(p, vi0, vi2, vi1);
+ int op2 = evhash_find_vertex(p, vi1, vi0, vi2);
+
+ // Instance mode: Adjust vertex indices based on minibatch index.
+ if (p.instance_mode)
+ {
+ int vbase = pz * p.numVertices;
+ vi0 += vbase;
+ vi1 += vbase;
+ vi2 += vbase;
+ if (op0 >= 0) op0 += vbase;
+ if (op1 >= 0) op1 += vbase;
+ if (op2 >= 0) op2 += vbase;
+ }
+
+ // Fetch vertex positions.
+ float4 p0 = ((float4*)p.pos)[vi0];
+ float4 p1 = ((float4*)p.pos)[vi1];
+ float4 p2 = ((float4*)p.pos)[vi2];
+ float4 o0 = (op0 < 0) ? p0 : ((float4*)p.pos)[op0];
+ float4 o1 = (op1 < 0) ? p1 : ((float4*)p.pos)[op1];
+ float4 o2 = (op2 < 0) ? p2 : ((float4*)p.pos)[op2];
+
+ // Project vertices to pixel space.
+ float w0 = 1.f / p0.w;
+ float w1 = 1.f / p1.w;
+ float w2 = 1.f / p2.w;
+ float ow0 = 1.f / o0.w;
+ float ow1 = 1.f / o1.w;
+ float ow2 = 1.f / o2.w;
+ float fx = (float)px + .5f - p.xh;
+ float fy = (float)py + .5f - p.yh;
+ float x0 = p0.x * w0 * p.xh - fx;
+ float y0 = p0.y * w0 * p.yh - fy;
+ float x1 = p1.x * w1 * p.xh - fx;
+ float y1 = p1.y * w1 * p.yh - fy;
+ float x2 = p2.x * w2 * p.xh - fx;
+ float y2 = p2.y * w2 * p.yh - fy;
+ float ox0 = o0.x * ow0 * p.xh - fx;
+ float oy0 = o0.y * ow0 * p.yh - fy;
+ float ox1 = o1.x * ow1 * p.xh - fx;
+ float oy1 = o1.y * ow1 * p.yh - fy;
+ float ox2 = o2.x * ow2 * p.xh - fx;
+ float oy2 = o2.y * ow2 * p.yh - fy;
+
+ // Signs to kill non-silhouette edges.
+ float bb = (x1-x0)*(y2-y0) - (x2-x0)*(y1-y0); // Triangle itself.
+ float a0 = (x1-ox0)*(y2-oy0) - (x2-ox0)*(y1-oy0); // Wings.
+ float a1 = (x2-ox1)*(y0-oy1) - (x0-ox1)*(y2-oy1);
+ float a2 = (x0-ox2)*(y1-oy2) - (x1-ox2)*(y0-oy2);
+
+ // If no matching signs anywhere, skip the rest.
+ if (same_sign(a0, bb) || same_sign(a1, bb) || same_sign(a2, bb))
+ {
+ // XY flip for horizontal edges.
+ if (d)
+ {
+ swap(x0, y0);
+ swap(x1, y1);
+ swap(x2, y2);
+ }
+
+ float dx0 = x2 - x1;
+ float dx1 = x0 - x2;
+ float dx2 = x1 - x0;
+ float dy0 = y2 - y1;
+ float dy1 = y0 - y2;
+ float dy2 = y1 - y0;
+
+ // Check if an edge crosses between us and the neighbor pixel.
+ float dc = -F32_MAX;
+ float ds = (tri == tri0) ? 1.f : -1.f;
+ float d0 = ds * (x1*dy0 - y1*dx0);
+ float d1 = ds * (x2*dy1 - y2*dx1);
+ float d2 = ds * (x0*dy2 - y0*dx2);
+
+ if (same_sign(y1, y2)) d0 = -F32_MAX, dy0 = 1.f;
+ if (same_sign(y2, y0)) d1 = -F32_MAX, dy1 = 1.f;
+ if (same_sign(y0, y1)) d2 = -F32_MAX, dy2 = 1.f;
+
+ int di = max_idx3(d0, d1, d2, dy0, dy1, dy2);
+ if (di == 0 && same_sign(a0, bb) && fabsf(dy0) >= fabsf(dx0)) dc = d0 / dy0;
+ if (di == 1 && same_sign(a1, bb) && fabsf(dy1) >= fabsf(dx1)) dc = d1 / dy1;
+ if (di == 2 && same_sign(a2, bb) && fabsf(dy2) >= fabsf(dx2)) dc = d2 / dy2;
+ float eps = .0625f; // Expect no more than 1/16 pixel inaccuracy.
+
+ // Adjust output image if a suitable edge was found.
+ if (dc > -eps && dc < 1.f + eps)
+ {
+ dc = fminf(fmaxf(dc, 0.f), 1.f);
+ float alpha = ds * (.5f - dc);
+ const float* pColor0 = p.color + pixel0 * p.channels;
+ const float* pColor1 = p.color + pixel1 * p.channels;
+ float* pOutput = p.output + (alpha > 0.f ? pixel0 : pixel1) * p.channels;
+ for (int i=0; i < p.channels; i++)
+ atomicAdd(&pOutput[i], alpha * (pColor1[i] - pColor0[i]));
+
+ // Rewrite the work item's flags and alpha. Keep original px, py.
+ unsigned int flags = pz << 16;
+ flags |= di;
+ flags |= d << AAWorkItem::FLAG_DOWN_BIT;
+ flags |= (__float_as_uint(ds) >> 31) << AAWorkItem::FLAG_TRI1_BIT;
+ ((int2*)pItem)[1] = make_int2(flags, __float_as_int(alpha));
+ }
+ }
+ }
+}
+
+//------------------------------------------------------------------------
+// Gradient kernel.
+
+__global__ void AntialiasGradKernel(const AntialiasKernelParams p)
+{
+ // Temporary space for coalesced atomics.
+ CA_DECLARE_TEMP(AA_GRAD_KERNEL_THREADS_PER_BLOCK);
+ __shared__ int s_base; // Work counter communication across entire CTA.
+
+ int workCount = p.workBuffer[0].x;
+
+ for(;;)
+ {
+ // Persistent threads work fetcher.
+ __syncthreads();
+ if (threadIdx.x == 0)
+ s_base = atomicAdd(&p.workBuffer[0].y, AA_GRAD_KERNEL_THREADS_PER_BLOCK);
+ __syncthreads();
+ int thread_idx = s_base + threadIdx.x;
+ if (thread_idx >= workCount)
+ return;
+
+ // Read work item filled out by forward kernel.
+ int4 item = p.workBuffer[thread_idx + 1];
+ unsigned int amask = __ballot_sync(0xffffffffu, item.w);
+ if (item.w == 0)
+ continue; // No effect.
+
+ // Unpack work item and replicate setup from forward analysis kernel.
+ int px = item.x;
+ int py = item.y;
+ int pz = (int)(((unsigned int)item.z) >> 16);
+ int d = (item.z >> AAWorkItem::FLAG_DOWN_BIT) & 1;
+ float alpha = __int_as_float(item.w);
+ int tri1 = (item.z >> AAWorkItem::FLAG_TRI1_BIT) & 1;
+ int di = item.z & AAWorkItem::EDGE_MASK;
+ float ds = __int_as_float(__float_as_int(1.0) | (tri1 << 31));
+ int pixel0 = px + p.width * (py + p.height * pz);
+ int pixel1 = pixel0 + (d ? p.width : 1);
+ int tri = float_to_triidx(p.rasterOut[((tri1 ? pixel1 : pixel0) << 2) + 3]) - 1;
+ if (tri1)
+ {
+ px += 1 - d;
+ py += d;
+ }
+
+ // Bail out if triangle index is corrupt.
+ bool triFail = (tri < 0 || tri >= p.numTriangles);
+ amask = __ballot_sync(amask, !triFail);
+ if (triFail)
+ continue;
+
+ // Outgoing color gradients.
+ float* pGrad0 = p.gradColor + pixel0 * p.channels;
+ float* pGrad1 = p.gradColor + pixel1 * p.channels;
+
+ // Incoming color gradients.
+ const float* pDy = p.dy + (alpha > 0.f ? pixel0 : pixel1) * p.channels;
+
+ // Position gradient weight based on colors and incoming gradients.
+ float dd = 0.f;
+ const float* pColor0 = p.color + pixel0 * p.channels;
+ const float* pColor1 = p.color + pixel1 * p.channels;
+
+ // Loop over channels and accumulate.
+ for (int i=0; i < p.channels; i++)
+ {
+ float dy = pDy[i];
+ if (dy != 0.f)
+ {
+ // Update position gradient weight.
+ dd += dy * (pColor1[i] - pColor0[i]);
+
+ // Update color gradients. No coalescing because all have different targets.
+ float v = alpha * dy;
+ atomicAdd(&pGrad0[i], -v);
+ atomicAdd(&pGrad1[i], v);
+ }
+ }
+
+ // If position weight is zero, skip the rest.
+ bool noGrad = (dd == 0.f);
+ amask = __ballot_sync(amask, !noGrad);
+ if (noGrad)
+ continue;
+
+ // Fetch vertex indices of the active edge and their positions.
+ int i1 = (di < 2) ? (di + 1) : 0;
+ int i2 = (i1 < 2) ? (i1 + 1) : 0;
+ int vi1 = p.tri[3 * tri + i1];
+ int vi2 = p.tri[3 * tri + i2];
+
+ // Bail out if vertex indices are corrupt.
+ bool vtxFail = (vi1 < 0 || vi1 >= p.numVertices || vi2 < 0 || vi2 >= p.numVertices);
+ amask = __ballot_sync(amask, !vtxFail);
+ if (vtxFail)
+ continue;
+
+ // Instance mode: Adjust vertex indices based on minibatch index.
+ if (p.instance_mode)
+ {
+ vi1 += pz * p.numVertices;
+ vi2 += pz * p.numVertices;
+ }
+
+ // Fetch vertex positions.
+ float4 p1 = ((float4*)p.pos)[vi1];
+ float4 p2 = ((float4*)p.pos)[vi2];
+
+ // Project vertices to pixel space.
+ float pxh = p.xh;
+ float pyh = p.yh;
+ float fx = (float)px + .5f - pxh;
+ float fy = (float)py + .5f - pyh;
+
+ // XY flip for horizontal edges.
+ if (d)
+ {
+ swap(p1.x, p1.y);
+ swap(p2.x, p2.y);
+ swap(pxh, pyh);
+ swap(fx, fy);
+ }
+
+ // Gradient calculation setup.
+ float w1 = 1.f / p1.w;
+ float w2 = 1.f / p2.w;
+ float x1 = p1.x * w1 * pxh - fx;
+ float y1 = p1.y * w1 * pyh - fy;
+ float x2 = p2.x * w2 * pxh - fx;
+ float y2 = p2.y * w2 * pyh - fy;
+ float dx = x2 - x1;
+ float dy = y2 - y1;
+ float db = x1*dy - y1*dx;
+
+ // Compute inverse delta-y with epsilon.
+ float ep = copysignf(1e-3f, dy); // ~1/1000 pixel.
+ float iy = 1.f / (dy + ep);
+
+ // Compute position gradients.
+ float dby = db * iy;
+ float iw1 = -w1 * iy * dd;
+ float iw2 = w2 * iy * dd;
+ float gp1x = iw1 * pxh * y2;
+ float gp2x = iw2 * pxh * y1;
+ float gp1y = iw1 * pyh * (dby - x2);
+ float gp2y = iw2 * pyh * (dby - x1);
+ float gp1w = -(p1.x * gp1x + p1.y * gp1y) * w1;
+ float gp2w = -(p2.x * gp2x + p2.y * gp2y) * w2;
+
+ // XY flip the gradients.
+ if (d)
+ {
+ swap(gp1x, gp1y);
+ swap(gp2x, gp2y);
+ }
+
+ // Kill position gradients if alpha was saturated.
+ if (fabsf(alpha) >= 0.5f)
+ {
+ gp1x = gp1y = gp1w = 0.f;
+ gp2x = gp2y = gp2w = 0.f;
+ }
+
+ // Initialize coalesced atomics. Match both triangle ID and edge index.
+ // Also note that some threads may be inactive.
+ CA_SET_GROUP_MASK(tri ^ (di << 30), amask);
+
+ // Accumulate gradients.
+ caAtomicAdd3_xyw(p.gradPos + 4 * vi1, gp1x, gp1y, gp1w);
+ caAtomicAdd3_xyw(p.gradPos + 4 * vi2, gp2x, gp2y, gp2w);
+ }
+}
+
+//------------------------------------------------------------------------
diff --git a/extensions/nvdiffrast/nvdiffrast/common/antialias.h b/extensions/nvdiffrast/nvdiffrast/common/antialias.h
new file mode 100644
index 0000000000000000000000000000000000000000..bc2fd480e63ca6ad12fc5f4e15f1857880d145c3
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/common/antialias.h
@@ -0,0 +1,50 @@
+// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#pragma once
+#include "common.h"
+
+//------------------------------------------------------------------------
+// Constants and helpers.
+
+#define AA_DISCONTINUITY_KERNEL_BLOCK_WIDTH 32
+#define AA_DISCONTINUITY_KERNEL_BLOCK_HEIGHT 8
+#define AA_ANALYSIS_KERNEL_THREADS_PER_BLOCK 256
+#define AA_MESH_KERNEL_THREADS_PER_BLOCK 256
+#define AA_HASH_ELEMENTS_PER_TRIANGLE(alloc) ((alloc) >= (2 << 25) ? 4 : 8) // With more than 16777216 triangles (alloc >= 33554432) use smallest possible value of 4 to conserve memory, otherwise use 8 for fewer collisions.
+#define AA_LOG_HASH_ELEMENTS_PER_TRIANGLE(alloc) ((alloc) >= (2 << 25) ? 2 : 3)
+#define AA_GRAD_KERNEL_THREADS_PER_BLOCK 256
+
+//------------------------------------------------------------------------
+// CUDA kernel params.
+
+struct AntialiasKernelParams
+{
+ const float* color; // Incoming color buffer.
+ const float* rasterOut; // Incoming rasterizer output buffer.
+ const int* tri; // Incoming triangle buffer.
+ const float* pos; // Incoming position buffer.
+ float* output; // Output buffer of forward kernel.
+ const float* dy; // Incoming gradients.
+ float* gradColor; // Output buffer, color gradient.
+ float* gradPos; // Output buffer, position gradient.
+ int4* workBuffer; // Buffer for storing intermediate work items. First item reserved for counters.
+ uint4* evHash; // Edge-vertex hash.
+ int allocTriangles; // Number of triangles accommodated by evHash. Always power of two.
+ int numTriangles; // Number of triangles.
+ int numVertices; // Number of vertices.
+ int width; // Input width.
+ int height; // Input height.
+ int n; // Minibatch size.
+ int channels; // Channel count in color input.
+ float xh, yh; // Transfer to pixel space.
+ int instance_mode; // 0=normal, 1=instance mode.
+ int tri_const; // 1 if triangle array is known to be constant.
+};
+
+//------------------------------------------------------------------------
diff --git a/extensions/nvdiffrast/nvdiffrast/common/common.cpp b/extensions/nvdiffrast/nvdiffrast/common/common.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..24e59ba6242ea362eac349e5127833908a4f251c
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/common/common.cpp
@@ -0,0 +1,60 @@
+// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#include
+
+//------------------------------------------------------------------------
+// Block and grid size calculators for kernel launches.
+
+dim3 getLaunchBlockSize(int maxWidth, int maxHeight, int width, int height)
+{
+ int maxThreads = maxWidth * maxHeight;
+ if (maxThreads <= 1 || (width * height) <= 1)
+ return dim3(1, 1, 1); // Degenerate.
+
+ // Start from max size.
+ int bw = maxWidth;
+ int bh = maxHeight;
+
+ // Optimizations for weirdly sized buffers.
+ if (width < bw)
+ {
+ // Decrease block width to smallest power of two that covers the buffer width.
+ while ((bw >> 1) >= width)
+ bw >>= 1;
+
+ // Maximize height.
+ bh = maxThreads / bw;
+ if (bh > height)
+ bh = height;
+ }
+ else if (height < bh)
+ {
+ // Halve height and double width until fits completely inside buffer vertically.
+ while (bh > height)
+ {
+ bh >>= 1;
+ if (bw < width)
+ bw <<= 1;
+ }
+ }
+
+ // Done.
+ return dim3(bw, bh, 1);
+}
+
+dim3 getLaunchGridSize(dim3 blockSize, int width, int height, int depth)
+{
+ dim3 gridSize;
+ gridSize.x = (width - 1) / blockSize.x + 1;
+ gridSize.y = (height - 1) / blockSize.y + 1;
+ gridSize.z = (depth - 1) / blockSize.z + 1;
+ return gridSize;
+}
+
+//------------------------------------------------------------------------
diff --git a/extensions/nvdiffrast/nvdiffrast/common/common.h b/extensions/nvdiffrast/nvdiffrast/common/common.h
new file mode 100644
index 0000000000000000000000000000000000000000..df1e30d40ceb32c247516b68882c678b6dba215a
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/common/common.h
@@ -0,0 +1,263 @@
+// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#pragma once
+#include
+#include
+
+//------------------------------------------------------------------------
+// C++ helper function prototypes.
+
+dim3 getLaunchBlockSize(int maxWidth, int maxHeight, int width, int height);
+dim3 getLaunchGridSize(dim3 blockSize, int width, int height, int depth);
+
+//------------------------------------------------------------------------
+// The rest is CUDA device code specific stuff.
+
+#ifdef __CUDACC__
+
+//------------------------------------------------------------------------
+// Helpers for CUDA vector types.
+
+static __device__ __forceinline__ float2& operator*= (float2& a, const float2& b) { a.x *= b.x; a.y *= b.y; return a; }
+static __device__ __forceinline__ float2& operator+= (float2& a, const float2& b) { a.x += b.x; a.y += b.y; return a; }
+static __device__ __forceinline__ float2& operator-= (float2& a, const float2& b) { a.x -= b.x; a.y -= b.y; return a; }
+static __device__ __forceinline__ float2& operator*= (float2& a, float b) { a.x *= b; a.y *= b; return a; }
+static __device__ __forceinline__ float2& operator+= (float2& a, float b) { a.x += b; a.y += b; return a; }
+static __device__ __forceinline__ float2& operator-= (float2& a, float b) { a.x -= b; a.y -= b; return a; }
+static __device__ __forceinline__ float2 operator* (const float2& a, const float2& b) { return make_float2(a.x * b.x, a.y * b.y); }
+static __device__ __forceinline__ float2 operator+ (const float2& a, const float2& b) { return make_float2(a.x + b.x, a.y + b.y); }
+static __device__ __forceinline__ float2 operator- (const float2& a, const float2& b) { return make_float2(a.x - b.x, a.y - b.y); }
+static __device__ __forceinline__ float2 operator* (const float2& a, float b) { return make_float2(a.x * b, a.y * b); }
+static __device__ __forceinline__ float2 operator+ (const float2& a, float b) { return make_float2(a.x + b, a.y + b); }
+static __device__ __forceinline__ float2 operator- (const float2& a, float b) { return make_float2(a.x - b, a.y - b); }
+static __device__ __forceinline__ float2 operator* (float a, const float2& b) { return make_float2(a * b.x, a * b.y); }
+static __device__ __forceinline__ float2 operator+ (float a, const float2& b) { return make_float2(a + b.x, a + b.y); }
+static __device__ __forceinline__ float2 operator- (float a, const float2& b) { return make_float2(a - b.x, a - b.y); }
+static __device__ __forceinline__ float2 operator- (const float2& a) { return make_float2(-a.x, -a.y); }
+static __device__ __forceinline__ float3& operator*= (float3& a, const float3& b) { a.x *= b.x; a.y *= b.y; a.z *= b.z; return a; }
+static __device__ __forceinline__ float3& operator+= (float3& a, const float3& b) { a.x += b.x; a.y += b.y; a.z += b.z; return a; }
+static __device__ __forceinline__ float3& operator-= (float3& a, const float3& b) { a.x -= b.x; a.y -= b.y; a.z -= b.z; return a; }
+static __device__ __forceinline__ float3& operator*= (float3& a, float b) { a.x *= b; a.y *= b; a.z *= b; return a; }
+static __device__ __forceinline__ float3& operator+= (float3& a, float b) { a.x += b; a.y += b; a.z += b; return a; }
+static __device__ __forceinline__ float3& operator-= (float3& a, float b) { a.x -= b; a.y -= b; a.z -= b; return a; }
+static __device__ __forceinline__ float3 operator* (const float3& a, const float3& b) { return make_float3(a.x * b.x, a.y * b.y, a.z * b.z); }
+static __device__ __forceinline__ float3 operator+ (const float3& a, const float3& b) { return make_float3(a.x + b.x, a.y + b.y, a.z + b.z); }
+static __device__ __forceinline__ float3 operator- (const float3& a, const float3& b) { return make_float3(a.x - b.x, a.y - b.y, a.z - b.z); }
+static __device__ __forceinline__ float3 operator* (const float3& a, float b) { return make_float3(a.x * b, a.y * b, a.z * b); }
+static __device__ __forceinline__ float3 operator+ (const float3& a, float b) { return make_float3(a.x + b, a.y + b, a.z + b); }
+static __device__ __forceinline__ float3 operator- (const float3& a, float b) { return make_float3(a.x - b, a.y - b, a.z - b); }
+static __device__ __forceinline__ float3 operator* (float a, const float3& b) { return make_float3(a * b.x, a * b.y, a * b.z); }
+static __device__ __forceinline__ float3 operator+ (float a, const float3& b) { return make_float3(a + b.x, a + b.y, a + b.z); }
+static __device__ __forceinline__ float3 operator- (float a, const float3& b) { return make_float3(a - b.x, a - b.y, a - b.z); }
+static __device__ __forceinline__ float3 operator- (const float3& a) { return make_float3(-a.x, -a.y, -a.z); }
+static __device__ __forceinline__ float4& operator*= (float4& a, const float4& b) { a.x *= b.x; a.y *= b.y; a.z *= b.z; a.w *= b.w; return a; }
+static __device__ __forceinline__ float4& operator+= (float4& a, const float4& b) { a.x += b.x; a.y += b.y; a.z += b.z; a.w += b.w; return a; }
+static __device__ __forceinline__ float4& operator-= (float4& a, const float4& b) { a.x -= b.x; a.y -= b.y; a.z -= b.z; a.w -= b.w; return a; }
+static __device__ __forceinline__ float4& operator*= (float4& a, float b) { a.x *= b; a.y *= b; a.z *= b; a.w *= b; return a; }
+static __device__ __forceinline__ float4& operator+= (float4& a, float b) { a.x += b; a.y += b; a.z += b; a.w += b; return a; }
+static __device__ __forceinline__ float4& operator-= (float4& a, float b) { a.x -= b; a.y -= b; a.z -= b; a.w -= b; return a; }
+static __device__ __forceinline__ float4 operator* (const float4& a, const float4& b) { return make_float4(a.x * b.x, a.y * b.y, a.z * b.z, a.w * b.w); }
+static __device__ __forceinline__ float4 operator+ (const float4& a, const float4& b) { return make_float4(a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w); }
+static __device__ __forceinline__ float4 operator- (const float4& a, const float4& b) { return make_float4(a.x - b.x, a.y - b.y, a.z - b.z, a.w - b.w); }
+static __device__ __forceinline__ float4 operator* (const float4& a, float b) { return make_float4(a.x * b, a.y * b, a.z * b, a.w * b); }
+static __device__ __forceinline__ float4 operator+ (const float4& a, float b) { return make_float4(a.x + b, a.y + b, a.z + b, a.w + b); }
+static __device__ __forceinline__ float4 operator- (const float4& a, float b) { return make_float4(a.x - b, a.y - b, a.z - b, a.w - b); }
+static __device__ __forceinline__ float4 operator* (float a, const float4& b) { return make_float4(a * b.x, a * b.y, a * b.z, a * b.w); }
+static __device__ __forceinline__ float4 operator+ (float a, const float4& b) { return make_float4(a + b.x, a + b.y, a + b.z, a + b.w); }
+static __device__ __forceinline__ float4 operator- (float a, const float4& b) { return make_float4(a - b.x, a - b.y, a - b.z, a - b.w); }
+static __device__ __forceinline__ float4 operator- (const float4& a) { return make_float4(-a.x, -a.y, -a.z, -a.w); }
+static __device__ __forceinline__ int2& operator*= (int2& a, const int2& b) { a.x *= b.x; a.y *= b.y; return a; }
+static __device__ __forceinline__ int2& operator+= (int2& a, const int2& b) { a.x += b.x; a.y += b.y; return a; }
+static __device__ __forceinline__ int2& operator-= (int2& a, const int2& b) { a.x -= b.x; a.y -= b.y; return a; }
+static __device__ __forceinline__ int2& operator*= (int2& a, int b) { a.x *= b; a.y *= b; return a; }
+static __device__ __forceinline__ int2& operator+= (int2& a, int b) { a.x += b; a.y += b; return a; }
+static __device__ __forceinline__ int2& operator-= (int2& a, int b) { a.x -= b; a.y -= b; return a; }
+static __device__ __forceinline__ int2 operator* (const int2& a, const int2& b) { return make_int2(a.x * b.x, a.y * b.y); }
+static __device__ __forceinline__ int2 operator+ (const int2& a, const int2& b) { return make_int2(a.x + b.x, a.y + b.y); }
+static __device__ __forceinline__ int2 operator- (const int2& a, const int2& b) { return make_int2(a.x - b.x, a.y - b.y); }
+static __device__ __forceinline__ int2 operator* (const int2& a, int b) { return make_int2(a.x * b, a.y * b); }
+static __device__ __forceinline__ int2 operator+ (const int2& a, int b) { return make_int2(a.x + b, a.y + b); }
+static __device__ __forceinline__ int2 operator- (const int2& a, int b) { return make_int2(a.x - b, a.y - b); }
+static __device__ __forceinline__ int2 operator* (int a, const int2& b) { return make_int2(a * b.x, a * b.y); }
+static __device__ __forceinline__ int2 operator+ (int a, const int2& b) { return make_int2(a + b.x, a + b.y); }
+static __device__ __forceinline__ int2 operator- (int a, const int2& b) { return make_int2(a - b.x, a - b.y); }
+static __device__ __forceinline__ int2 operator- (const int2& a) { return make_int2(-a.x, -a.y); }
+static __device__ __forceinline__ int3& operator*= (int3& a, const int3& b) { a.x *= b.x; a.y *= b.y; a.z *= b.z; return a; }
+static __device__ __forceinline__ int3& operator+= (int3& a, const int3& b) { a.x += b.x; a.y += b.y; a.z += b.z; return a; }
+static __device__ __forceinline__ int3& operator-= (int3& a, const int3& b) { a.x -= b.x; a.y -= b.y; a.z -= b.z; return a; }
+static __device__ __forceinline__ int3& operator*= (int3& a, int b) { a.x *= b; a.y *= b; a.z *= b; return a; }
+static __device__ __forceinline__ int3& operator+= (int3& a, int b) { a.x += b; a.y += b; a.z += b; return a; }
+static __device__ __forceinline__ int3& operator-= (int3& a, int b) { a.x -= b; a.y -= b; a.z -= b; return a; }
+static __device__ __forceinline__ int3 operator* (const int3& a, const int3& b) { return make_int3(a.x * b.x, a.y * b.y, a.z * b.z); }
+static __device__ __forceinline__ int3 operator+ (const int3& a, const int3& b) { return make_int3(a.x + b.x, a.y + b.y, a.z + b.z); }
+static __device__ __forceinline__ int3 operator- (const int3& a, const int3& b) { return make_int3(a.x - b.x, a.y - b.y, a.z - b.z); }
+static __device__ __forceinline__ int3 operator* (const int3& a, int b) { return make_int3(a.x * b, a.y * b, a.z * b); }
+static __device__ __forceinline__ int3 operator+ (const int3& a, int b) { return make_int3(a.x + b, a.y + b, a.z + b); }
+static __device__ __forceinline__ int3 operator- (const int3& a, int b) { return make_int3(a.x - b, a.y - b, a.z - b); }
+static __device__ __forceinline__ int3 operator* (int a, const int3& b) { return make_int3(a * b.x, a * b.y, a * b.z); }
+static __device__ __forceinline__ int3 operator+ (int a, const int3& b) { return make_int3(a + b.x, a + b.y, a + b.z); }
+static __device__ __forceinline__ int3 operator- (int a, const int3& b) { return make_int3(a - b.x, a - b.y, a - b.z); }
+static __device__ __forceinline__ int3 operator- (const int3& a) { return make_int3(-a.x, -a.y, -a.z); }
+static __device__ __forceinline__ int4& operator*= (int4& a, const int4& b) { a.x *= b.x; a.y *= b.y; a.z *= b.z; a.w *= b.w; return a; }
+static __device__ __forceinline__ int4& operator+= (int4& a, const int4& b) { a.x += b.x; a.y += b.y; a.z += b.z; a.w += b.w; return a; }
+static __device__ __forceinline__ int4& operator-= (int4& a, const int4& b) { a.x -= b.x; a.y -= b.y; a.z -= b.z; a.w -= b.w; return a; }
+static __device__ __forceinline__ int4& operator*= (int4& a, int b) { a.x *= b; a.y *= b; a.z *= b; a.w *= b; return a; }
+static __device__ __forceinline__ int4& operator+= (int4& a, int b) { a.x += b; a.y += b; a.z += b; a.w += b; return a; }
+static __device__ __forceinline__ int4& operator-= (int4& a, int b) { a.x -= b; a.y -= b; a.z -= b; a.w -= b; return a; }
+static __device__ __forceinline__ int4 operator* (const int4& a, const int4& b) { return make_int4(a.x * b.x, a.y * b.y, a.z * b.z, a.w * b.w); }
+static __device__ __forceinline__ int4 operator+ (const int4& a, const int4& b) { return make_int4(a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w); }
+static __device__ __forceinline__ int4 operator- (const int4& a, const int4& b) { return make_int4(a.x - b.x, a.y - b.y, a.z - b.z, a.w - b.w); }
+static __device__ __forceinline__ int4 operator* (const int4& a, int b) { return make_int4(a.x * b, a.y * b, a.z * b, a.w * b); }
+static __device__ __forceinline__ int4 operator+ (const int4& a, int b) { return make_int4(a.x + b, a.y + b, a.z + b, a.w + b); }
+static __device__ __forceinline__ int4 operator- (const int4& a, int b) { return make_int4(a.x - b, a.y - b, a.z - b, a.w - b); }
+static __device__ __forceinline__ int4 operator* (int a, const int4& b) { return make_int4(a * b.x, a * b.y, a * b.z, a * b.w); }
+static __device__ __forceinline__ int4 operator+ (int a, const int4& b) { return make_int4(a + b.x, a + b.y, a + b.z, a + b.w); }
+static __device__ __forceinline__ int4 operator- (int a, const int4& b) { return make_int4(a - b.x, a - b.y, a - b.z, a - b.w); }
+static __device__ __forceinline__ int4 operator- (const int4& a) { return make_int4(-a.x, -a.y, -a.z, -a.w); }
+static __device__ __forceinline__ uint2& operator*= (uint2& a, const uint2& b) { a.x *= b.x; a.y *= b.y; return a; }
+static __device__ __forceinline__ uint2& operator+= (uint2& a, const uint2& b) { a.x += b.x; a.y += b.y; return a; }
+static __device__ __forceinline__ uint2& operator-= (uint2& a, const uint2& b) { a.x -= b.x; a.y -= b.y; return a; }
+static __device__ __forceinline__ uint2& operator*= (uint2& a, unsigned int b) { a.x *= b; a.y *= b; return a; }
+static __device__ __forceinline__ uint2& operator+= (uint2& a, unsigned int b) { a.x += b; a.y += b; return a; }
+static __device__ __forceinline__ uint2& operator-= (uint2& a, unsigned int b) { a.x -= b; a.y -= b; return a; }
+static __device__ __forceinline__ uint2 operator* (const uint2& a, const uint2& b) { return make_uint2(a.x * b.x, a.y * b.y); }
+static __device__ __forceinline__ uint2 operator+ (const uint2& a, const uint2& b) { return make_uint2(a.x + b.x, a.y + b.y); }
+static __device__ __forceinline__ uint2 operator- (const uint2& a, const uint2& b) { return make_uint2(a.x - b.x, a.y - b.y); }
+static __device__ __forceinline__ uint2 operator* (const uint2& a, unsigned int b) { return make_uint2(a.x * b, a.y * b); }
+static __device__ __forceinline__ uint2 operator+ (const uint2& a, unsigned int b) { return make_uint2(a.x + b, a.y + b); }
+static __device__ __forceinline__ uint2 operator- (const uint2& a, unsigned int b) { return make_uint2(a.x - b, a.y - b); }
+static __device__ __forceinline__ uint2 operator* (unsigned int a, const uint2& b) { return make_uint2(a * b.x, a * b.y); }
+static __device__ __forceinline__ uint2 operator+ (unsigned int a, const uint2& b) { return make_uint2(a + b.x, a + b.y); }
+static __device__ __forceinline__ uint2 operator- (unsigned int a, const uint2& b) { return make_uint2(a - b.x, a - b.y); }
+static __device__ __forceinline__ uint3& operator*= (uint3& a, const uint3& b) { a.x *= b.x; a.y *= b.y; a.z *= b.z; return a; }
+static __device__ __forceinline__ uint3& operator+= (uint3& a, const uint3& b) { a.x += b.x; a.y += b.y; a.z += b.z; return a; }
+static __device__ __forceinline__ uint3& operator-= (uint3& a, const uint3& b) { a.x -= b.x; a.y -= b.y; a.z -= b.z; return a; }
+static __device__ __forceinline__ uint3& operator*= (uint3& a, unsigned int b) { a.x *= b; a.y *= b; a.z *= b; return a; }
+static __device__ __forceinline__ uint3& operator+= (uint3& a, unsigned int b) { a.x += b; a.y += b; a.z += b; return a; }
+static __device__ __forceinline__ uint3& operator-= (uint3& a, unsigned int b) { a.x -= b; a.y -= b; a.z -= b; return a; }
+static __device__ __forceinline__ uint3 operator* (const uint3& a, const uint3& b) { return make_uint3(a.x * b.x, a.y * b.y, a.z * b.z); }
+static __device__ __forceinline__ uint3 operator+ (const uint3& a, const uint3& b) { return make_uint3(a.x + b.x, a.y + b.y, a.z + b.z); }
+static __device__ __forceinline__ uint3 operator- (const uint3& a, const uint3& b) { return make_uint3(a.x - b.x, a.y - b.y, a.z - b.z); }
+static __device__ __forceinline__ uint3 operator* (const uint3& a, unsigned int b) { return make_uint3(a.x * b, a.y * b, a.z * b); }
+static __device__ __forceinline__ uint3 operator+ (const uint3& a, unsigned int b) { return make_uint3(a.x + b, a.y + b, a.z + b); }
+static __device__ __forceinline__ uint3 operator- (const uint3& a, unsigned int b) { return make_uint3(a.x - b, a.y - b, a.z - b); }
+static __device__ __forceinline__ uint3 operator* (unsigned int a, const uint3& b) { return make_uint3(a * b.x, a * b.y, a * b.z); }
+static __device__ __forceinline__ uint3 operator+ (unsigned int a, const uint3& b) { return make_uint3(a + b.x, a + b.y, a + b.z); }
+static __device__ __forceinline__ uint3 operator- (unsigned int a, const uint3& b) { return make_uint3(a - b.x, a - b.y, a - b.z); }
+static __device__ __forceinline__ uint4& operator*= (uint4& a, const uint4& b) { a.x *= b.x; a.y *= b.y; a.z *= b.z; a.w *= b.w; return a; }
+static __device__ __forceinline__ uint4& operator+= (uint4& a, const uint4& b) { a.x += b.x; a.y += b.y; a.z += b.z; a.w += b.w; return a; }
+static __device__ __forceinline__ uint4& operator-= (uint4& a, const uint4& b) { a.x -= b.x; a.y -= b.y; a.z -= b.z; a.w -= b.w; return a; }
+static __device__ __forceinline__ uint4& operator*= (uint4& a, unsigned int b) { a.x *= b; a.y *= b; a.z *= b; a.w *= b; return a; }
+static __device__ __forceinline__ uint4& operator+= (uint4& a, unsigned int b) { a.x += b; a.y += b; a.z += b; a.w += b; return a; }
+static __device__ __forceinline__ uint4& operator-= (uint4& a, unsigned int b) { a.x -= b; a.y -= b; a.z -= b; a.w -= b; return a; }
+static __device__ __forceinline__ uint4 operator* (const uint4& a, const uint4& b) { return make_uint4(a.x * b.x, a.y * b.y, a.z * b.z, a.w * b.w); }
+static __device__ __forceinline__ uint4 operator+ (const uint4& a, const uint4& b) { return make_uint4(a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w); }
+static __device__ __forceinline__ uint4 operator- (const uint4& a, const uint4& b) { return make_uint4(a.x - b.x, a.y - b.y, a.z - b.z, a.w - b.w); }
+static __device__ __forceinline__ uint4 operator* (const uint4& a, unsigned int b) { return make_uint4(a.x * b, a.y * b, a.z * b, a.w * b); }
+static __device__ __forceinline__ uint4 operator+ (const uint4& a, unsigned int b) { return make_uint4(a.x + b, a.y + b, a.z + b, a.w + b); }
+static __device__ __forceinline__ uint4 operator- (const uint4& a, unsigned int b) { return make_uint4(a.x - b, a.y - b, a.z - b, a.w - b); }
+static __device__ __forceinline__ uint4 operator* (unsigned int a, const uint4& b) { return make_uint4(a * b.x, a * b.y, a * b.z, a * b.w); }
+static __device__ __forceinline__ uint4 operator+ (unsigned int a, const uint4& b) { return make_uint4(a + b.x, a + b.y, a + b.z, a + b.w); }
+static __device__ __forceinline__ uint4 operator- (unsigned int a, const uint4& b) { return make_uint4(a - b.x, a - b.y, a - b.z, a - b.w); }
+
+template static __device__ __forceinline__ T zero_value(void);
+template<> __device__ __forceinline__ float zero_value (void) { return 0.f; }
+template<> __device__ __forceinline__ float2 zero_value(void) { return make_float2(0.f, 0.f); }
+template<> __device__ __forceinline__ float4 zero_value(void) { return make_float4(0.f, 0.f, 0.f, 0.f); }
+static __device__ __forceinline__ float3 make_float3(const float2& a, float b) { return make_float3(a.x, a.y, b); }
+static __device__ __forceinline__ float4 make_float4(const float3& a, float b) { return make_float4(a.x, a.y, a.z, b); }
+static __device__ __forceinline__ float4 make_float4(const float2& a, const float2& b) { return make_float4(a.x, a.y, b.x, b.y); }
+static __device__ __forceinline__ int3 make_int3(const int2& a, int b) { return make_int3(a.x, a.y, b); }
+static __device__ __forceinline__ int4 make_int4(const int3& a, int b) { return make_int4(a.x, a.y, a.z, b); }
+static __device__ __forceinline__ int4 make_int4(const int2& a, const int2& b) { return make_int4(a.x, a.y, b.x, b.y); }
+static __device__ __forceinline__ uint3 make_uint3(const uint2& a, unsigned int b) { return make_uint3(a.x, a.y, b); }
+static __device__ __forceinline__ uint4 make_uint4(const uint3& a, unsigned int b) { return make_uint4(a.x, a.y, a.z, b); }
+static __device__ __forceinline__ uint4 make_uint4(const uint2& a, const uint2& b) { return make_uint4(a.x, a.y, b.x, b.y); }
+
+template static __device__ __forceinline__ void swap(T& a, T& b) { T temp = a; a = b; b = temp; }
+
+//------------------------------------------------------------------------
+// Triangle ID <-> float32 conversion functions to support very large triangle IDs.
+//
+// Values up to and including 16777216 (also, negative values) are converted trivially and retain
+// compatibility with previous versions. Larger values are mapped to unique float32 that are not equal to
+// the ID. The largest value that converts to float32 and back without generating inf or nan is 889192447.
+
+static __device__ __forceinline__ int float_to_triidx(float x) { if (x <= 16777216.f) return (int)x; return __float_as_int(x) - 0x4a800000; }
+static __device__ __forceinline__ float triidx_to_float(int x) { if (x <= 0x01000000) return (float)x; return __int_as_float(0x4a800000 + x); }
+
+//------------------------------------------------------------------------
+// Coalesced atomics. These are all done via macros.
+
+#if __CUDA_ARCH__ >= 700 // Warp match instruction __match_any_sync() is only available on compute capability 7.x and higher
+
+#define CA_TEMP _ca_temp
+#define CA_TEMP_PARAM float* CA_TEMP
+#define CA_DECLARE_TEMP(threads_per_block) \
+ __shared__ float CA_TEMP[(threads_per_block)]
+
+#define CA_SET_GROUP_MASK(group, thread_mask) \
+ bool _ca_leader; \
+ float* _ca_ptr; \
+ do { \
+ int tidx = threadIdx.x + blockDim.x * threadIdx.y; \
+ int lane = tidx & 31; \
+ int warp = tidx >> 5; \
+ int tmask = __match_any_sync((thread_mask), (group)); \
+ int leader = __ffs(tmask) - 1; \
+ _ca_leader = (leader == lane); \
+ _ca_ptr = &_ca_temp[((warp << 5) + leader)]; \
+ } while(0)
+
+#define CA_SET_GROUP(group) \
+ CA_SET_GROUP_MASK((group), 0xffffffffu)
+
+#define caAtomicAdd(ptr, value) \
+ do { \
+ if (_ca_leader) \
+ *_ca_ptr = 0.f; \
+ atomicAdd(_ca_ptr, (value)); \
+ if (_ca_leader) \
+ atomicAdd((ptr), *_ca_ptr); \
+ } while(0)
+
+#define caAtomicAdd3_xyw(ptr, x, y, w) \
+ do { \
+ caAtomicAdd((ptr), (x)); \
+ caAtomicAdd((ptr)+1, (y)); \
+ caAtomicAdd((ptr)+3, (w)); \
+ } while(0)
+
+#define caAtomicAddTexture(ptr, level, idx, value) \
+ do { \
+ CA_SET_GROUP((idx) ^ ((level) << 27)); \
+ caAtomicAdd((ptr)+(idx), (value)); \
+ } while(0)
+
+//------------------------------------------------------------------------
+// Disable atomic coalescing for compute capability lower than 7.x
+
+#else // __CUDA_ARCH__ >= 700
+#define CA_TEMP _ca_temp
+#define CA_TEMP_PARAM float CA_TEMP
+#define CA_DECLARE_TEMP(threads_per_block) CA_TEMP_PARAM
+#define CA_SET_GROUP_MASK(group, thread_mask)
+#define CA_SET_GROUP(group)
+#define caAtomicAdd(ptr, value) atomicAdd((ptr), (value))
+#define caAtomicAdd3_xyw(ptr, x, y, w) \
+ do { \
+ atomicAdd((ptr), (x)); \
+ atomicAdd((ptr)+1, (y)); \
+ atomicAdd((ptr)+3, (w)); \
+ } while(0)
+#define caAtomicAddTexture(ptr, level, idx, value) atomicAdd((ptr)+(idx), (value))
+#endif // __CUDA_ARCH__ >= 700
+
+//------------------------------------------------------------------------
+#endif // __CUDACC__
diff --git a/extensions/nvdiffrast/nvdiffrast/common/cudaraster/CudaRaster.hpp b/extensions/nvdiffrast/nvdiffrast/common/cudaraster/CudaRaster.hpp
new file mode 100644
index 0000000000000000000000000000000000000000..9261f995af645f50d25f9de5267e692576093cf1
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/common/cudaraster/CudaRaster.hpp
@@ -0,0 +1,63 @@
+// Copyright (c) 2009-2022, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#pragma once
+
+//------------------------------------------------------------------------
+// This is a slimmed-down and modernized version of the original
+// CudaRaster codebase that accompanied the HPG 2011 paper
+// "High-Performance Software Rasterization on GPUs" by Laine and Karras.
+// Modifications have been made to accommodate post-Volta execution model
+// with warp divergence. Support for shading, blending, quad rendering,
+// and supersampling have been removed as unnecessary for nvdiffrast.
+//------------------------------------------------------------------------
+
+namespace CR
+{
+
+class RasterImpl;
+
+//------------------------------------------------------------------------
+// Interface class to isolate user from implementation details.
+//------------------------------------------------------------------------
+
+class CudaRaster
+{
+public:
+ enum
+ {
+ RenderModeFlag_EnableBackfaceCulling = 1 << 0, // Enable backface culling.
+ RenderModeFlag_EnableDepthPeeling = 1 << 1, // Enable depth peeling. Must have a peel buffer set.
+ };
+
+public:
+ CudaRaster (void);
+ ~CudaRaster (void);
+
+ void setBufferSize (int width, int height, int numImages); // Width and height are internally rounded up to multiples of tile size (8x8) for buffer sizes.
+ void setViewport (int width, int height, int offsetX, int offsetY); // Tiled rendering viewport setup.
+ void setRenderModeFlags (unsigned int renderModeFlags); // Affects all subsequent calls to drawTriangles(). Defaults to zero.
+ void deferredClear (unsigned int clearColor); // Clears color and depth buffers during next call to drawTriangles().
+ void setVertexBuffer (void* vertices, int numVertices); // GPU pointer managed by caller. Vertex positions in clip space as float4 (x, y, z, w).
+ void setIndexBuffer (void* indices, int numTriangles); // GPU pointer managed by caller. Triangle index+color quadruplets as uint4 (idx0, idx1, idx2, color).
+ bool drawTriangles (const int* ranges, bool peel, cudaStream_t stream); // Ranges (offsets and counts) as #triangles entries, not as bytes. If NULL, draw all triangles. Returns false in case of internal overflow.
+ void* getColorBuffer (void); // GPU pointer managed by CudaRaster.
+ void* getDepthBuffer (void); // GPU pointer managed by CudaRaster.
+ void swapDepthAndPeel (void); // Swap depth and peeling buffers.
+
+private:
+ CudaRaster (const CudaRaster&); // forbidden
+ CudaRaster& operator= (const CudaRaster&); // forbidden
+
+private:
+ RasterImpl* m_impl; // Opaque pointer to implementation.
+};
+
+//------------------------------------------------------------------------
+} // namespace CR
+
diff --git a/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/BinRaster.inl b/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/BinRaster.inl
new file mode 100644
index 0000000000000000000000000000000000000000..0cfb2c356727a6ee9d3b1063c28fd4b6817e093c
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/BinRaster.inl
@@ -0,0 +1,423 @@
+// Copyright (c) 2009-2022, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+//------------------------------------------------------------------------
+
+__device__ __inline__ void binRasterImpl(const CRParams p)
+{
+ __shared__ volatile U32 s_broadcast [CR_BIN_WARPS + 16];
+ __shared__ volatile S32 s_outOfs [CR_MAXBINS_SQR];
+ __shared__ volatile S32 s_outTotal [CR_MAXBINS_SQR];
+ __shared__ volatile S32 s_overIndex [CR_MAXBINS_SQR];
+ __shared__ volatile S32 s_outMask [CR_BIN_WARPS][CR_MAXBINS_SQR + 1]; // +1 to avoid bank collisions
+ __shared__ volatile S32 s_outCount [CR_BIN_WARPS][CR_MAXBINS_SQR + 1]; // +1 to avoid bank collisions
+ __shared__ volatile S32 s_triBuf [CR_BIN_WARPS*32*4]; // triangle ring buffer
+ __shared__ volatile U32 s_batchPos;
+ __shared__ volatile U32 s_bufCount;
+ __shared__ volatile U32 s_overTotal;
+ __shared__ volatile U32 s_allocBase;
+
+ const CRImageParams& ip = getImageParams(p, blockIdx.z);
+ CRAtomics& atomics = p.atomics[blockIdx.z];
+ const U8* triSubtris = (const U8*)p.triSubtris + p.maxSubtris * blockIdx.z;
+ const CRTriangleHeader* triHeader = (const CRTriangleHeader*)p.triHeader + p.maxSubtris * blockIdx.z;
+
+ S32* binFirstSeg = (S32*)p.binFirstSeg + CR_MAXBINS_SQR * CR_BIN_STREAMS_SIZE * blockIdx.z;
+ S32* binTotal = (S32*)p.binTotal + CR_MAXBINS_SQR * CR_BIN_STREAMS_SIZE * blockIdx.z;
+ S32* binSegData = (S32*)p.binSegData + p.maxBinSegs * CR_BIN_SEG_SIZE * blockIdx.z;
+ S32* binSegNext = (S32*)p.binSegNext + p.maxBinSegs * blockIdx.z;
+ S32* binSegCount = (S32*)p.binSegCount + p.maxBinSegs * blockIdx.z;
+
+ if (atomics.numSubtris > p.maxSubtris)
+ return;
+
+ // per-thread state
+ int thrInBlock = threadIdx.x + threadIdx.y * 32;
+ int batchPos = 0;
+
+ // first 16 elements of s_broadcast are always zero
+ if (thrInBlock < 16)
+ s_broadcast[thrInBlock] = 0;
+
+ // initialize output linked lists and offsets
+ if (thrInBlock < p.numBins)
+ {
+ binFirstSeg[(thrInBlock << CR_BIN_STREAMS_LOG2) + blockIdx.x] = -1;
+ s_outOfs[thrInBlock] = -CR_BIN_SEG_SIZE;
+ s_outTotal[thrInBlock] = 0;
+ }
+
+ // repeat until done
+ for(;;)
+ {
+ // get batch
+ if (thrInBlock == 0)
+ s_batchPos = atomicAdd(&atomics.binCounter, ip.binBatchSize);
+ __syncthreads();
+ batchPos = s_batchPos;
+
+ // all batches done?
+ if (batchPos >= ip.triCount)
+ break;
+
+ // per-thread state
+ int bufIndex = 0;
+ int bufCount = 0;
+ int batchEnd = min(batchPos + ip.binBatchSize, ip.triCount);
+
+ // loop over batch as long as we have triangles in it
+ do
+ {
+ // read more triangles
+ while (bufCount < CR_BIN_WARPS*32 && batchPos < batchEnd)
+ {
+ // get subtriangle count
+
+ int triIdx = batchPos + thrInBlock;
+ int num = 0;
+ if (triIdx < batchEnd)
+ num = triSubtris[triIdx];
+
+ // cumulative sum of subtriangles within each warp
+ U32 myIdx = __popc(__ballot_sync(~0u, num & 1) & getLaneMaskLt());
+ if (__any_sync(~0u, num > 1))
+ {
+ myIdx += __popc(__ballot_sync(~0u, num & 2) & getLaneMaskLt()) * 2;
+ myIdx += __popc(__ballot_sync(~0u, num & 4) & getLaneMaskLt()) * 4;
+ }
+ if (threadIdx.x == 31) // Do not assume that last thread in warp wins the write.
+ s_broadcast[threadIdx.y + 16] = myIdx + num;
+ __syncthreads();
+
+ // cumulative sum of per-warp subtriangle counts
+ // Note: cannot have more than 32 warps or this needs to sync between each step.
+ bool act = (thrInBlock < CR_BIN_WARPS);
+ U32 actMask = __ballot_sync(~0u, act);
+ if (threadIdx.y == 0 && act)
+ {
+ volatile U32* ptr = &s_broadcast[thrInBlock + 16];
+ U32 val = *ptr;
+ #if (CR_BIN_WARPS > 1)
+ val += ptr[-1]; __syncwarp(actMask);
+ *ptr = val; __syncwarp(actMask);
+ #endif
+ #if (CR_BIN_WARPS > 2)
+ val += ptr[-2]; __syncwarp(actMask);
+ *ptr = val; __syncwarp(actMask);
+ #endif
+ #if (CR_BIN_WARPS > 4)
+ val += ptr[-4]; __syncwarp(actMask);
+ *ptr = val; __syncwarp(actMask);
+ #endif
+ #if (CR_BIN_WARPS > 8)
+ val += ptr[-8]; __syncwarp(actMask);
+ *ptr = val; __syncwarp(actMask);
+ #endif
+ #if (CR_BIN_WARPS > 16)
+ val += ptr[-16]; __syncwarp(actMask);
+ *ptr = val; __syncwarp(actMask);
+ #endif
+
+ // initially assume that we consume everything
+ // only last active thread does the writes
+ if (threadIdx.x == CR_BIN_WARPS - 1)
+ {
+ s_batchPos = batchPos + CR_BIN_WARPS * 32;
+ s_bufCount = bufCount + val;
+ }
+ }
+ __syncthreads();
+
+ // skip if no subtriangles
+ if (num)
+ {
+ // calculate write position for first subtriangle
+ U32 pos = bufCount + myIdx + s_broadcast[threadIdx.y + 16 - 1];
+
+ // only write if entire triangle fits
+ if (pos + num <= CR_ARRAY_SIZE(s_triBuf))
+ {
+ pos += bufIndex; // adjust for current start position
+ pos &= CR_ARRAY_SIZE(s_triBuf)-1;
+ if (num == 1)
+ s_triBuf[pos] = triIdx * 8 + 7; // single triangle
+ else
+ {
+ for (int i=0; i < num; i++)
+ {
+ s_triBuf[pos] = triIdx * 8 + i;
+ pos++;
+ pos &= CR_ARRAY_SIZE(s_triBuf)-1;
+ }
+ }
+ } else if (pos <= CR_ARRAY_SIZE(s_triBuf))
+ {
+ // this triangle is the first that failed, overwrite total count and triangle count
+ s_batchPos = batchPos + thrInBlock;
+ s_bufCount = pos;
+ }
+ }
+
+ // update triangle counts
+ __syncthreads();
+ batchPos = s_batchPos;
+ bufCount = s_bufCount;
+ }
+
+ // make every warp clear its output buffers
+ for (int i=threadIdx.x; i < p.numBins; i += 32)
+ s_outMask[threadIdx.y][i] = 0;
+ __syncwarp();
+
+ // choose our triangle
+ uint4 triData = make_uint4(0, 0, 0, 0);
+ if (thrInBlock < bufCount)
+ {
+ U32 triPos = bufIndex + thrInBlock;
+ triPos &= CR_ARRAY_SIZE(s_triBuf)-1;
+
+ // find triangle
+ int triIdx = s_triBuf[triPos];
+ int dataIdx = triIdx >> 3;
+ int subtriIdx = triIdx & 7;
+ if (subtriIdx != 7)
+ dataIdx = triHeader[dataIdx].misc + subtriIdx;
+
+ // read triangle
+
+ triData = *(((const uint4*)triHeader) + dataIdx);
+ }
+
+ // setup bounding box and edge functions, and rasterize
+ S32 lox, loy, hix, hiy;
+ bool hasTri = (thrInBlock < bufCount);
+ U32 hasTriMask = __ballot_sync(~0u, hasTri);
+ if (hasTri)
+ {
+ S32 v0x = add_s16lo_s16lo(triData.x, p.widthPixelsVp * (CR_SUBPIXEL_SIZE >> 1));
+ S32 v0y = add_s16hi_s16lo(triData.x, p.heightPixelsVp * (CR_SUBPIXEL_SIZE >> 1));
+ S32 d01x = sub_s16lo_s16lo(triData.y, triData.x);
+ S32 d01y = sub_s16hi_s16hi(triData.y, triData.x);
+ S32 d02x = sub_s16lo_s16lo(triData.z, triData.x);
+ S32 d02y = sub_s16hi_s16hi(triData.z, triData.x);
+ int binLog = CR_BIN_LOG2 + CR_TILE_LOG2 + CR_SUBPIXEL_LOG2;
+ lox = add_clamp_0_x((v0x + min_min(d01x, 0, d02x)) >> binLog, 0, p.widthBins - 1);
+ loy = add_clamp_0_x((v0y + min_min(d01y, 0, d02y)) >> binLog, 0, p.heightBins - 1);
+ hix = add_clamp_0_x((v0x + max_max(d01x, 0, d02x)) >> binLog, 0, p.widthBins - 1);
+ hiy = add_clamp_0_x((v0y + max_max(d01y, 0, d02y)) >> binLog, 0, p.heightBins - 1);
+
+ U32 bit = 1 << threadIdx.x;
+#if __CUDA_ARCH__ >= 700
+ bool multi = (hix != lox || hiy != loy);
+ if (!__any_sync(hasTriMask, multi))
+ {
+ int binIdx = lox + p.widthBins * loy;
+ U32 mask = __match_any_sync(hasTriMask, binIdx);
+ s_outMask[threadIdx.y][binIdx] = mask;
+ __syncwarp(hasTriMask);
+ } else
+#endif
+ {
+ bool complex = (hix > lox+1 || hiy > loy+1);
+ if (!__any_sync(hasTriMask, complex))
+ {
+ int binIdx = lox + p.widthBins * loy;
+ atomicOr((U32*)&s_outMask[threadIdx.y][binIdx], bit);
+ if (hix > lox) atomicOr((U32*)&s_outMask[threadIdx.y][binIdx + 1], bit);
+ if (hiy > loy) atomicOr((U32*)&s_outMask[threadIdx.y][binIdx + p.widthBins], bit);
+ if (hix > lox && hiy > loy) atomicOr((U32*)&s_outMask[threadIdx.y][binIdx + p.widthBins + 1], bit);
+ } else
+ {
+ S32 d12x = d02x - d01x, d12y = d02y - d01y;
+ v0x -= lox << binLog, v0y -= loy << binLog;
+
+ S32 t01 = v0x * d01y - v0y * d01x;
+ S32 t02 = v0y * d02x - v0x * d02y;
+ S32 t12 = d01x * d12y - d01y * d12x - t01 - t02;
+ S32 b01 = add_sub(t01 >> binLog, max(d01x, 0), min(d01y, 0));
+ S32 b02 = add_sub(t02 >> binLog, max(d02y, 0), min(d02x, 0));
+ S32 b12 = add_sub(t12 >> binLog, max(d12x, 0), min(d12y, 0));
+
+ int width = hix - lox + 1;
+ d01x += width * d01y;
+ d02x += width * d02y;
+ d12x += width * d12y;
+
+ U8* currPtr = (U8*)&s_outMask[threadIdx.y][lox + loy * p.widthBins];
+ U8* skipPtr = (U8*)&s_outMask[threadIdx.y][(hix + 1) + loy * p.widthBins];
+ U8* endPtr = (U8*)&s_outMask[threadIdx.y][lox + (hiy + 1) * p.widthBins];
+ int stride = p.widthBins * 4;
+ int ptrYInc = stride - width * 4;
+
+ do
+ {
+ if (b01 >= 0 && b02 >= 0 && b12 >= 0)
+ atomicOr((U32*)currPtr, bit);
+ currPtr += 4, b01 -= d01y, b02 += d02y, b12 -= d12y;
+ if (currPtr == skipPtr)
+ currPtr += ptrYInc, b01 += d01x, b02 -= d02x, b12 += d12x, skipPtr += stride;
+ }
+ while (currPtr != endPtr);
+ }
+ }
+ }
+
+ // count per-bin contributions
+ if (thrInBlock == 0)
+ s_overTotal = 0; // overflow counter
+
+ // ensure that out masks are done
+ __syncthreads();
+
+ int overIndex = -1;
+ bool act = (thrInBlock < p.numBins);
+ U32 actMask = __ballot_sync(~0u, act);
+ if (act)
+ {
+ U8* srcPtr = (U8*)&s_outMask[0][thrInBlock];
+ U8* dstPtr = (U8*)&s_outCount[0][thrInBlock];
+ int total = 0;
+ for (int i = 0; i < CR_BIN_WARPS; i++)
+ {
+ total += __popc(*(U32*)srcPtr);
+ *(U32*)dstPtr = total;
+ srcPtr += (CR_MAXBINS_SQR + 1) * 4;
+ dstPtr += (CR_MAXBINS_SQR + 1) * 4;
+ }
+
+ // overflow => request a new segment
+ int ofs = s_outOfs[thrInBlock];
+ bool ovr = (((ofs - 1) >> CR_BIN_SEG_LOG2) != (((ofs - 1) + total) >> CR_BIN_SEG_LOG2));
+ U32 ovrMask = __ballot_sync(actMask, ovr);
+ if (ovr)
+ {
+ overIndex = __popc(ovrMask & getLaneMaskLt());
+ if (overIndex == 0)
+ s_broadcast[threadIdx.y + 16] = atomicAdd((U32*)&s_overTotal, __popc(ovrMask));
+ __syncwarp(ovrMask);
+ overIndex += s_broadcast[threadIdx.y + 16];
+ s_overIndex[thrInBlock] = overIndex;
+ }
+ }
+
+ // sync after overTotal is ready
+ __syncthreads();
+
+ // at least one segment overflowed => allocate segments
+ U32 overTotal = s_overTotal;
+ U32 allocBase = 0;
+ if (overTotal > 0)
+ {
+ // allocate memory
+ if (thrInBlock == 0)
+ {
+ U32 allocBase = atomicAdd(&atomics.numBinSegs, overTotal);
+ s_allocBase = (allocBase + overTotal <= p.maxBinSegs) ? allocBase : 0;
+ }
+ __syncthreads();
+ allocBase = s_allocBase;
+
+ // did my bin overflow?
+ if (overIndex != -1)
+ {
+ // calculate new segment index
+ int segIdx = allocBase + overIndex;
+
+ // add to linked list
+ if (s_outOfs[thrInBlock] < 0)
+ binFirstSeg[(thrInBlock << CR_BIN_STREAMS_LOG2) + blockIdx.x] = segIdx;
+ else
+ binSegNext[(s_outOfs[thrInBlock] - 1) >> CR_BIN_SEG_LOG2] = segIdx;
+
+ // defaults
+ binSegNext [segIdx] = -1;
+ binSegCount[segIdx] = CR_BIN_SEG_SIZE;
+ }
+ }
+
+ // concurrent emission -- each warp handles its own triangle
+ if (thrInBlock < bufCount)
+ {
+ int triPos = (bufIndex + thrInBlock) & (CR_ARRAY_SIZE(s_triBuf) - 1);
+ int currBin = lox + loy * p.widthBins;
+ int skipBin = (hix + 1) + loy * p.widthBins;
+ int endBin = lox + (hiy + 1) * p.widthBins;
+ int binYInc = p.widthBins - (hix - lox + 1);
+
+ // loop over triangle's bins
+ do
+ {
+ U32 outMask = s_outMask[threadIdx.y][currBin];
+ if (outMask & (1< 0)
+ idx += s_outCount[threadIdx.y-1][currBin];
+
+ int base = s_outOfs[currBin];
+ int free = (-base) & (CR_BIN_SEG_SIZE - 1);
+ if (idx >= free)
+ idx += ((allocBase + s_overIndex[currBin]) << CR_BIN_SEG_LOG2) - free;
+ else
+ idx += base;
+
+ binSegData[idx] = s_triBuf[triPos];
+ }
+
+ currBin++;
+ if (currBin == skipBin)
+ currBin += binYInc, skipBin += p.widthBins;
+ }
+ while (currBin != endBin);
+ }
+
+ // wait all triangles to finish, then replace overflown segment offsets
+ __syncthreads();
+ if (thrInBlock < p.numBins)
+ {
+ U32 total = s_outCount[CR_BIN_WARPS - 1][thrInBlock];
+ U32 oldOfs = s_outOfs[thrInBlock];
+ if (overIndex == -1)
+ s_outOfs[thrInBlock] = oldOfs + total;
+ else
+ {
+ int addr = oldOfs + total;
+ addr = ((addr - 1) & (CR_BIN_SEG_SIZE - 1)) + 1;
+ addr += (allocBase + overIndex) << CR_BIN_SEG_LOG2;
+ s_outOfs[thrInBlock] = addr;
+ }
+ s_outTotal[thrInBlock] += total;
+ }
+
+ // these triangles are now done
+ int count = ::min(bufCount, CR_BIN_WARPS * 32);
+ bufCount -= count;
+ bufIndex += count;
+ bufIndex &= CR_ARRAY_SIZE(s_triBuf)-1;
+ }
+ while (bufCount > 0 || batchPos < batchEnd);
+
+ // flush all bins
+ if (thrInBlock < p.numBins)
+ {
+ int ofs = s_outOfs[thrInBlock];
+ if (ofs & (CR_BIN_SEG_SIZE-1))
+ {
+ int seg = ofs >> CR_BIN_SEG_LOG2;
+ binSegCount[seg] = ofs & (CR_BIN_SEG_SIZE-1);
+ s_outOfs[thrInBlock] = (ofs + CR_BIN_SEG_SIZE - 1) & -CR_BIN_SEG_SIZE;
+ }
+ }
+ }
+
+ // output totals
+ if (thrInBlock < p.numBins)
+ binTotal[(thrInBlock << CR_BIN_STREAMS_LOG2) + blockIdx.x] = s_outTotal[thrInBlock];
+}
+
+//------------------------------------------------------------------------
diff --git a/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/Buffer.cpp b/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/Buffer.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..acd42262ec68e324657bb7cbd7449150c136c6fc
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/Buffer.cpp
@@ -0,0 +1,94 @@
+// Copyright (c) 2009-2022, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#include "../../framework.h"
+#include "Buffer.hpp"
+
+using namespace CR;
+
+//------------------------------------------------------------------------
+// GPU buffer.
+//------------------------------------------------------------------------
+
+Buffer::Buffer(void)
+: m_gpuPtr(NULL),
+ m_bytes (0)
+{
+ // empty
+}
+
+Buffer::~Buffer(void)
+{
+ if (m_gpuPtr)
+ cudaFree(m_gpuPtr); // Don't throw an exception.
+}
+
+void Buffer::reset(size_t bytes)
+{
+ if (bytes == m_bytes)
+ return;
+
+ if (m_gpuPtr)
+ {
+ NVDR_CHECK_CUDA_ERROR(cudaFree(m_gpuPtr));
+ m_gpuPtr = NULL;
+ }
+
+ if (bytes > 0)
+ NVDR_CHECK_CUDA_ERROR(cudaMalloc(&m_gpuPtr, bytes));
+
+ m_bytes = bytes;
+}
+
+void Buffer::grow(size_t bytes)
+{
+ if (bytes > m_bytes)
+ reset(bytes);
+}
+
+//------------------------------------------------------------------------
+// Host buffer with page-locked memory.
+//------------------------------------------------------------------------
+
+HostBuffer::HostBuffer(void)
+: m_hostPtr(NULL),
+ m_bytes (0)
+{
+ // empty
+}
+
+HostBuffer::~HostBuffer(void)
+{
+ if (m_hostPtr)
+ cudaFreeHost(m_hostPtr); // Don't throw an exception.
+}
+
+void HostBuffer::reset(size_t bytes)
+{
+ if (bytes == m_bytes)
+ return;
+
+ if (m_hostPtr)
+ {
+ NVDR_CHECK_CUDA_ERROR(cudaFreeHost(m_hostPtr));
+ m_hostPtr = NULL;
+ }
+
+ if (bytes > 0)
+ NVDR_CHECK_CUDA_ERROR(cudaMallocHost(&m_hostPtr, bytes));
+
+ m_bytes = bytes;
+}
+
+void HostBuffer::grow(size_t bytes)
+{
+ if (bytes > m_bytes)
+ reset(bytes);
+}
+
+//------------------------------------------------------------------------
diff --git a/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/Buffer.hpp b/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/Buffer.hpp
new file mode 100644
index 0000000000000000000000000000000000000000..1063a68d0c024f8580a99efefeeb0ed56ec3f239
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/Buffer.hpp
@@ -0,0 +1,55 @@
+// Copyright (c) 2009-2022, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#pragma once
+#include "Defs.hpp"
+
+namespace CR
+{
+//------------------------------------------------------------------------
+
+class Buffer
+{
+public:
+ Buffer (void);
+ ~Buffer (void);
+
+ void reset (size_t bytes);
+ void grow (size_t bytes);
+ void* getPtr (size_t offset = 0) { return (void*)(((uintptr_t)m_gpuPtr) + offset); }
+ size_t getSize (void) const { return m_bytes; }
+
+ void setPtr (void* ptr) { m_gpuPtr = ptr; }
+
+private:
+ void* m_gpuPtr;
+ size_t m_bytes;
+};
+
+//------------------------------------------------------------------------
+
+class HostBuffer
+{
+public:
+ HostBuffer (void);
+ ~HostBuffer (void);
+
+ void reset (size_t bytes);
+ void grow (size_t bytes);
+ void* getPtr (void) { return m_hostPtr; }
+ size_t getSize (void) const { return m_bytes; }
+
+ void setPtr (void* ptr) { m_hostPtr = ptr; }
+
+private:
+ void* m_hostPtr;
+ size_t m_bytes;
+};
+
+//------------------------------------------------------------------------
+}
diff --git a/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/CoarseRaster.inl b/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/CoarseRaster.inl
new file mode 100644
index 0000000000000000000000000000000000000000..dc39da88d341da0d9d704f9cc3cdff1c793cca54
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/CoarseRaster.inl
@@ -0,0 +1,730 @@
+// Copyright (c) 2009-2022, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+//------------------------------------------------------------------------
+
+__device__ __inline__ int globalTileIdx(int tileInBin, int widthTiles)
+{
+ int tileX = tileInBin & (CR_BIN_SIZE - 1);
+ int tileY = tileInBin >> CR_BIN_LOG2;
+ return tileX + tileY * widthTiles;
+}
+
+//------------------------------------------------------------------------
+
+__device__ __inline__ void coarseRasterImpl(const CRParams p)
+{
+ // Common.
+
+ __shared__ volatile U32 s_workCounter;
+ __shared__ volatile U32 s_scanTemp [CR_COARSE_WARPS][48]; // 3KB
+
+ // Input.
+
+ __shared__ volatile U32 s_binOrder [CR_MAXBINS_SQR]; // 1KB
+ __shared__ volatile S32 s_binStreamCurrSeg [CR_BIN_STREAMS_SIZE]; // 0KB
+ __shared__ volatile S32 s_binStreamFirstTri [CR_BIN_STREAMS_SIZE]; // 0KB
+ __shared__ volatile S32 s_triQueue [CR_COARSE_QUEUE_SIZE]; // 4KB
+ __shared__ volatile S32 s_triQueueWritePos;
+ __shared__ volatile U32 s_binStreamSelectedOfs;
+ __shared__ volatile U32 s_binStreamSelectedSize;
+
+ // Output.
+
+ __shared__ volatile U32 s_warpEmitMask [CR_COARSE_WARPS][CR_BIN_SQR + 1]; // 16KB, +1 to avoid bank collisions
+ __shared__ volatile U32 s_warpEmitPrefixSum [CR_COARSE_WARPS][CR_BIN_SQR + 1]; // 16KB, +1 to avoid bank collisions
+ __shared__ volatile U32 s_tileEmitPrefixSum [CR_BIN_SQR + 1]; // 1KB, zero at the beginning
+ __shared__ volatile U32 s_tileAllocPrefixSum[CR_BIN_SQR + 1]; // 1KB, zero at the beginning
+ __shared__ volatile S32 s_tileStreamCurrOfs [CR_BIN_SQR]; // 1KB
+ __shared__ volatile U32 s_firstAllocSeg;
+ __shared__ volatile U32 s_firstActiveIdx;
+
+ // Pointers and constants.
+
+ CRAtomics& atomics = p.atomics[blockIdx.z];
+ const CRTriangleHeader* triHeader = (const CRTriangleHeader*)p.triHeader + p.maxSubtris * blockIdx.z;
+ const S32* binFirstSeg = (const S32*)p.binFirstSeg + CR_MAXBINS_SQR * CR_BIN_STREAMS_SIZE * blockIdx.z;
+ const S32* binTotal = (const S32*)p.binTotal + CR_MAXBINS_SQR * CR_BIN_STREAMS_SIZE * blockIdx.z;
+ const S32* binSegData = (const S32*)p.binSegData + p.maxBinSegs * CR_BIN_SEG_SIZE * blockIdx.z;
+ const S32* binSegNext = (const S32*)p.binSegNext + p.maxBinSegs * blockIdx.z;
+ const S32* binSegCount = (const S32*)p.binSegCount + p.maxBinSegs * blockIdx.z;
+ S32* activeTiles = (S32*)p.activeTiles + CR_MAXTILES_SQR * blockIdx.z;
+ S32* tileFirstSeg = (S32*)p.tileFirstSeg + CR_MAXTILES_SQR * blockIdx.z;
+ S32* tileSegData = (S32*)p.tileSegData + p.maxTileSegs * CR_TILE_SEG_SIZE * blockIdx.z;
+ S32* tileSegNext = (S32*)p.tileSegNext + p.maxTileSegs * blockIdx.z;
+ S32* tileSegCount = (S32*)p.tileSegCount + p.maxTileSegs * blockIdx.z;
+
+ int tileLog = CR_TILE_LOG2 + CR_SUBPIXEL_LOG2;
+ int thrInBlock = threadIdx.x + threadIdx.y * 32;
+ int emitShift = CR_BIN_LOG2 * 2 + 5; // We scan ((numEmits << emitShift) | numAllocs) over tiles.
+
+ if (atomics.numSubtris > p.maxSubtris || atomics.numBinSegs > p.maxBinSegs)
+ return;
+
+ // Initialize sharedmem arrays.
+
+ if (thrInBlock == 0)
+ {
+ s_tileEmitPrefixSum[0] = 0;
+ s_tileAllocPrefixSum[0] = 0;
+ }
+ s_scanTemp[threadIdx.y][threadIdx.x] = 0;
+
+ // Sort bins in descending order of triangle count.
+
+ for (int binIdx = thrInBlock; binIdx < p.numBins; binIdx += CR_COARSE_WARPS * 32)
+ {
+ int count = 0;
+ for (int i = 0; i < CR_BIN_STREAMS_SIZE; i++)
+ count += binTotal[(binIdx << CR_BIN_STREAMS_LOG2) + i];
+ s_binOrder[binIdx] = (~count << (CR_MAXBINS_LOG2 * 2)) | binIdx;
+ }
+
+ __syncthreads();
+ sortShared(s_binOrder, p.numBins);
+
+ // Process each bin by one block.
+
+ for (;;)
+ {
+ // Pick a bin for the block.
+
+ if (thrInBlock == 0)
+ s_workCounter = atomicAdd(&atomics.coarseCounter, 1);
+ __syncthreads();
+
+ int workCounter = s_workCounter;
+ if (workCounter >= p.numBins)
+ break;
+
+ U32 binOrder = s_binOrder[workCounter];
+ bool binEmpty = ((~binOrder >> (CR_MAXBINS_LOG2 * 2)) == 0);
+ if (binEmpty && !p.deferredClear)
+ break;
+
+ int binIdx = binOrder & (CR_MAXBINS_SQR - 1);
+
+ // Initialize input/output streams.
+
+ int triQueueWritePos = 0;
+ int triQueueReadPos = 0;
+
+ if (thrInBlock < CR_BIN_STREAMS_SIZE)
+ {
+ int segIdx = binFirstSeg[(binIdx << CR_BIN_STREAMS_LOG2) + thrInBlock];
+ s_binStreamCurrSeg[thrInBlock] = segIdx;
+ s_binStreamFirstTri[thrInBlock] = (segIdx == -1) ? ~0u : binSegData[segIdx << CR_BIN_SEG_LOG2];
+ }
+
+ for (int tileInBin = CR_COARSE_WARPS * 32 - 1 - thrInBlock; tileInBin < CR_BIN_SQR; tileInBin += CR_COARSE_WARPS * 32)
+ s_tileStreamCurrOfs[tileInBin] = -CR_TILE_SEG_SIZE;
+
+ // Initialize per-bin state.
+
+ int binY = idiv_fast(binIdx, p.widthBins);
+ int binX = binIdx - binY * p.widthBins;
+ int originX = (binX << (CR_BIN_LOG2 + tileLog)) - (p.widthPixelsVp << (CR_SUBPIXEL_LOG2 - 1));
+ int originY = (binY << (CR_BIN_LOG2 + tileLog)) - (p.heightPixelsVp << (CR_SUBPIXEL_LOG2 - 1));
+ int maxTileXInBin = ::min(p.widthTiles - (binX << CR_BIN_LOG2), CR_BIN_SIZE) - 1;
+ int maxTileYInBin = ::min(p.heightTiles - (binY << CR_BIN_LOG2), CR_BIN_SIZE) - 1;
+ int binTileIdx = (binX + binY * p.widthTiles) << CR_BIN_LOG2;
+
+ // Entire block: Merge input streams and process triangles.
+
+ if (!binEmpty)
+ do
+ {
+ //------------------------------------------------------------------------
+ // Merge.
+ //------------------------------------------------------------------------
+
+ // Entire block: Not enough triangles => merge and queue segments.
+ // NOTE: The bin exit criterion assumes that we queue more triangles than we actually need.
+
+ while (triQueueWritePos - triQueueReadPos <= CR_COARSE_WARPS * 32)
+ {
+ // First warp: Choose the segment with the lowest initial triangle index.
+
+ bool hasStream = (thrInBlock < CR_BIN_STREAMS_SIZE);
+ U32 hasStreamMask = __ballot_sync(~0u, hasStream);
+ if (hasStream)
+ {
+ // Find the stream with the lowest triangle index.
+
+ U32 firstTri = s_binStreamFirstTri[thrInBlock];
+ U32 t = firstTri;
+ volatile U32* v = &s_scanTemp[0][thrInBlock + 16];
+
+ #if (CR_BIN_STREAMS_SIZE > 1)
+ v[0] = t; __syncwarp(hasStreamMask); t = ::min(t, v[-1]); __syncwarp(hasStreamMask);
+ #endif
+ #if (CR_BIN_STREAMS_SIZE > 2)
+ v[0] = t; __syncwarp(hasStreamMask); t = ::min(t, v[-2]); __syncwarp(hasStreamMask);
+ #endif
+ #if (CR_BIN_STREAMS_SIZE > 4)
+ v[0] = t; __syncwarp(hasStreamMask); t = ::min(t, v[-4]); __syncwarp(hasStreamMask);
+ #endif
+ #if (CR_BIN_STREAMS_SIZE > 8)
+ v[0] = t; __syncwarp(hasStreamMask); t = ::min(t, v[-8]); __syncwarp(hasStreamMask);
+ #endif
+ #if (CR_BIN_STREAMS_SIZE > 16)
+ v[0] = t; __syncwarp(hasStreamMask); t = ::min(t, v[-16]); __syncwarp(hasStreamMask);
+ #endif
+ v[0] = t; __syncwarp(hasStreamMask);
+
+ // Consume and broadcast.
+
+ bool first = (s_scanTemp[0][CR_BIN_STREAMS_SIZE - 1 + 16] == firstTri);
+ U32 firstMask = __ballot_sync(hasStreamMask, first);
+ if (first && (firstMask >> threadIdx.x) == 1u)
+ {
+ int segIdx = s_binStreamCurrSeg[thrInBlock];
+ s_binStreamSelectedOfs = segIdx << CR_BIN_SEG_LOG2;
+ if (segIdx != -1)
+ {
+ int segSize = binSegCount[segIdx];
+ int segNext = binSegNext[segIdx];
+ s_binStreamSelectedSize = segSize;
+ s_triQueueWritePos = triQueueWritePos + segSize;
+ s_binStreamCurrSeg[thrInBlock] = segNext;
+ s_binStreamFirstTri[thrInBlock] = (segNext == -1) ? ~0u : binSegData[segNext << CR_BIN_SEG_LOG2];
+ }
+ }
+ }
+
+ // No more segments => break.
+
+ __syncthreads();
+ triQueueWritePos = s_triQueueWritePos;
+ int segOfs = s_binStreamSelectedOfs;
+ if (segOfs < 0)
+ break;
+
+ int segSize = s_binStreamSelectedSize;
+ __syncthreads();
+
+ // Fetch triangles into the queue.
+
+ for (int idxInSeg = CR_COARSE_WARPS * 32 - 1 - thrInBlock; idxInSeg < segSize; idxInSeg += CR_COARSE_WARPS * 32)
+ {
+ S32 triIdx = binSegData[segOfs + idxInSeg];
+ s_triQueue[(triQueueWritePos - segSize + idxInSeg) & (CR_COARSE_QUEUE_SIZE - 1)] = triIdx;
+ }
+ }
+
+ // All threads: Clear emit masks.
+
+ for (int maskIdx = thrInBlock; maskIdx < CR_COARSE_WARPS * CR_BIN_SQR; maskIdx += CR_COARSE_WARPS * 32)
+ s_warpEmitMask[maskIdx >> (CR_BIN_LOG2 * 2)][maskIdx & (CR_BIN_SQR - 1)] = 0;
+
+ __syncthreads();
+
+ //------------------------------------------------------------------------
+ // Raster.
+ //------------------------------------------------------------------------
+
+ // Triangle per thread: Read from the queue.
+
+ int triIdx = -1;
+ if (triQueueReadPos + thrInBlock < triQueueWritePos)
+ triIdx = s_triQueue[(triQueueReadPos + thrInBlock) & (CR_COARSE_QUEUE_SIZE - 1)];
+
+ uint4 triData = make_uint4(0, 0, 0, 0);
+ if (triIdx != -1)
+ {
+ int dataIdx = triIdx >> 3;
+ int subtriIdx = triIdx & 7;
+ if (subtriIdx != 7)
+ dataIdx = triHeader[dataIdx].misc + subtriIdx;
+ triData = *((uint4*)triHeader + dataIdx);
+ }
+
+ // 32 triangles per warp: Record emits (= tile intersections).
+
+ if (__any_sync(~0u, triIdx != -1))
+ {
+ S32 v0x = sub_s16lo_s16lo(triData.x, originX);
+ S32 v0y = sub_s16hi_s16lo(triData.x, originY);
+ S32 d01x = sub_s16lo_s16lo(triData.y, triData.x);
+ S32 d01y = sub_s16hi_s16hi(triData.y, triData.x);
+ S32 d02x = sub_s16lo_s16lo(triData.z, triData.x);
+ S32 d02y = sub_s16hi_s16hi(triData.z, triData.x);
+
+ // Compute tile-based AABB.
+
+ int lox = add_clamp_0_x((v0x + min_min(d01x, 0, d02x)) >> tileLog, 0, maxTileXInBin);
+ int loy = add_clamp_0_x((v0y + min_min(d01y, 0, d02y)) >> tileLog, 0, maxTileYInBin);
+ int hix = add_clamp_0_x((v0x + max_max(d01x, 0, d02x)) >> tileLog, 0, maxTileXInBin);
+ int hiy = add_clamp_0_x((v0y + max_max(d01y, 0, d02y)) >> tileLog, 0, maxTileYInBin);
+ int sizex = add_sub(hix, 1, lox);
+ int sizey = add_sub(hiy, 1, loy);
+ int area = sizex * sizey;
+
+ // Miscellaneous init.
+
+ U8* currPtr = (U8*)&s_warpEmitMask[threadIdx.y][lox + (loy << CR_BIN_LOG2)];
+ int ptrYInc = CR_BIN_SIZE * 4 - (sizex << 2);
+ U32 maskBit = 1 << threadIdx.x;
+
+ // Case A: All AABBs are small => record the full AABB using atomics.
+
+ if (__all_sync(~0u, sizex <= 2 && sizey <= 2))
+ {
+ if (triIdx != -1)
+ {
+ atomicOr((U32*)currPtr, maskBit);
+ if (sizex == 2) atomicOr((U32*)(currPtr + 4), maskBit);
+ if (sizey == 2) atomicOr((U32*)(currPtr + CR_BIN_SIZE * 4), maskBit);
+ if (sizex == 2 && sizey == 2) atomicOr((U32*)(currPtr + 4 + CR_BIN_SIZE * 4), maskBit);
+ }
+ }
+ else
+ {
+ // Compute warp-AABB (scan-32).
+
+ U32 aabbMask = add_sub(2 << hix, 0x20000 << hiy, 1 << lox) - (0x10000 << loy);
+ if (triIdx == -1)
+ aabbMask = 0;
+
+ volatile U32* v = &s_scanTemp[threadIdx.y][threadIdx.x + 16];
+ v[0] = aabbMask; __syncwarp(); aabbMask |= v[-1]; __syncwarp();
+ v[0] = aabbMask; __syncwarp(); aabbMask |= v[-2]; __syncwarp();
+ v[0] = aabbMask; __syncwarp(); aabbMask |= v[-4]; __syncwarp();
+ v[0] = aabbMask; __syncwarp(); aabbMask |= v[-8]; __syncwarp();
+ v[0] = aabbMask; __syncwarp(); aabbMask |= v[-16]; __syncwarp();
+ v[0] = aabbMask; __syncwarp(); aabbMask = s_scanTemp[threadIdx.y][47];
+
+ U32 maskX = aabbMask & 0xFFFF;
+ U32 maskY = aabbMask >> 16;
+ int wlox = findLeadingOne(maskX ^ (maskX - 1));
+ int wloy = findLeadingOne(maskY ^ (maskY - 1));
+ int whix = findLeadingOne(maskX);
+ int whiy = findLeadingOne(maskY);
+ int warea = (add_sub(whix, 1, wlox)) * (add_sub(whiy, 1, wloy));
+
+ // Initialize edge functions.
+
+ S32 d12x = d02x - d01x;
+ S32 d12y = d02y - d01y;
+ v0x -= lox << tileLog;
+ v0y -= loy << tileLog;
+
+ S32 t01 = v0x * d01y - v0y * d01x;
+ S32 t02 = v0y * d02x - v0x * d02y;
+ S32 t12 = d01x * d12y - d01y * d12x - t01 - t02;
+ S32 b01 = add_sub(t01 >> tileLog, ::max(d01x, 0), ::min(d01y, 0));
+ S32 b02 = add_sub(t02 >> tileLog, ::max(d02y, 0), ::min(d02x, 0));
+ S32 b12 = add_sub(t12 >> tileLog, ::max(d12x, 0), ::min(d12y, 0));
+
+ d01x += sizex * d01y;
+ d02x += sizex * d02y;
+ d12x += sizex * d12y;
+
+ // Case B: Warp-AABB is not much larger than largest AABB => Check tiles in warp-AABB, record using ballots.
+ if (__any_sync(~0u, warea * 4 <= area * 8))
+ {
+ // Not sure if this is any faster than Case C after all the post-Volta ballot mask tracking.
+ bool act = (triIdx != -1);
+ U32 actMask = __ballot_sync(~0u, act);
+ if (act)
+ {
+ for (int y = wloy; y <= whiy; y++)
+ {
+ bool yIn = (y >= loy && y <= hiy);
+ U32 yMask = __ballot_sync(actMask, yIn);
+ if (yIn)
+ {
+ for (int x = wlox; x <= whix; x++)
+ {
+ bool xyIn = (x >= lox && x <= hix);
+ U32 xyMask = __ballot_sync(yMask, xyIn);
+ if (xyIn)
+ {
+ U32 res = __ballot_sync(xyMask, b01 >= 0 && b02 >= 0 && b12 >= 0);
+ if (threadIdx.x == 31 - __clz(xyMask))
+ *(U32*)currPtr = res;
+ currPtr += 4, b01 -= d01y, b02 += d02y, b12 -= d12y;
+ }
+ }
+ currPtr += ptrYInc, b01 += d01x, b02 -= d02x, b12 += d12x;
+ }
+ }
+ }
+ }
+
+ // Case C: General case => Check tiles in AABB, record using atomics.
+
+ else
+ {
+ if (triIdx != -1)
+ {
+ U8* skipPtr = currPtr + (sizex << 2);
+ U8* endPtr = currPtr + (sizey << (CR_BIN_LOG2 + 2));
+ do
+ {
+ if (b01 >= 0 && b02 >= 0 && b12 >= 0)
+ atomicOr((U32*)currPtr, maskBit);
+ currPtr += 4, b01 -= d01y, b02 += d02y, b12 -= d12y;
+ if (currPtr == skipPtr)
+ currPtr += ptrYInc, b01 += d01x, b02 -= d02x, b12 += d12x, skipPtr += CR_BIN_SIZE * 4;
+ }
+ while (currPtr != endPtr);
+ }
+ }
+ }
+ }
+
+ __syncthreads();
+
+ //------------------------------------------------------------------------
+ // Count.
+ //------------------------------------------------------------------------
+
+ // Tile per thread: Initialize prefix sums.
+
+ for (int tileInBin_base = 0; tileInBin_base < CR_BIN_SQR; tileInBin_base += CR_COARSE_WARPS * 32)
+ {
+ int tileInBin = tileInBin_base + thrInBlock;
+ bool act = (tileInBin < CR_BIN_SQR);
+ U32 actMask = __ballot_sync(~0u, act);
+ if (act)
+ {
+ // Compute prefix sum of emits over warps.
+
+ U8* srcPtr = (U8*)&s_warpEmitMask[0][tileInBin];
+ U8* dstPtr = (U8*)&s_warpEmitPrefixSum[0][tileInBin];
+ int tileEmits = 0;
+ for (int i = 0; i < CR_COARSE_WARPS; i++)
+ {
+ tileEmits += __popc(*(U32*)srcPtr);
+ *(U32*)dstPtr = tileEmits;
+ srcPtr += (CR_BIN_SQR + 1) * 4;
+ dstPtr += (CR_BIN_SQR + 1) * 4;
+ }
+
+ // Determine the number of segments to allocate.
+
+ int spaceLeft = -s_tileStreamCurrOfs[tileInBin] & (CR_TILE_SEG_SIZE - 1);
+ int tileAllocs = (tileEmits - spaceLeft + CR_TILE_SEG_SIZE - 1) >> CR_TILE_SEG_LOG2;
+ volatile U32* v = &s_tileEmitPrefixSum[tileInBin + 1];
+
+ // All counters within the warp are small => compute prefix sum using ballot.
+
+ if (!__any_sync(actMask, tileEmits >= 2))
+ {
+ U32 m = getLaneMaskLe();
+ *v = (__popc(__ballot_sync(actMask, tileEmits & 1) & m) << emitShift) | __popc(__ballot_sync(actMask, tileAllocs & 1) & m);
+ }
+
+ // Otherwise => scan-32 within the warp.
+
+ else
+ {
+ U32 sum = (tileEmits << emitShift) | tileAllocs;
+ *v = sum; __syncwarp(actMask); if (threadIdx.x >= 1) sum += v[-1]; __syncwarp(actMask);
+ *v = sum; __syncwarp(actMask); if (threadIdx.x >= 2) sum += v[-2]; __syncwarp(actMask);
+ *v = sum; __syncwarp(actMask); if (threadIdx.x >= 4) sum += v[-4]; __syncwarp(actMask);
+ *v = sum; __syncwarp(actMask); if (threadIdx.x >= 8) sum += v[-8]; __syncwarp(actMask);
+ *v = sum; __syncwarp(actMask); if (threadIdx.x >= 16) sum += v[-16]; __syncwarp(actMask);
+ *v = sum; __syncwarp(actMask);
+ }
+ }
+ }
+
+ // First warp: Scan-8.
+
+ __syncthreads();
+
+ bool scan8 = (thrInBlock < CR_BIN_SQR / 32);
+ U32 scan8Mask = __ballot_sync(~0u, scan8);
+ if (scan8)
+ {
+ int sum = s_tileEmitPrefixSum[(thrInBlock << 5) + 32];
+ volatile U32* v = &s_scanTemp[0][thrInBlock + 16];
+ v[0] = sum; __syncwarp(scan8Mask);
+ #if (CR_BIN_SQR > 1 * 32)
+ sum += v[-1]; __syncwarp(scan8Mask); v[0] = sum; __syncwarp(scan8Mask);
+ #endif
+ #if (CR_BIN_SQR > 2 * 32)
+ sum += v[-2]; __syncwarp(scan8Mask); v[0] = sum; __syncwarp(scan8Mask);
+ #endif
+ #if (CR_BIN_SQR > 4 * 32)
+ sum += v[-4]; __syncwarp(scan8Mask); v[0] = sum; __syncwarp(scan8Mask);
+ #endif
+ }
+
+ __syncthreads();
+
+ // Tile per thread: Finalize prefix sums.
+ // Single thread: Allocate segments.
+
+ for (int tileInBin = thrInBlock; tileInBin < CR_BIN_SQR; tileInBin += CR_COARSE_WARPS * 32)
+ {
+ int sum = s_tileEmitPrefixSum[tileInBin + 1] + s_scanTemp[0][(tileInBin >> 5) + 15];
+ int numEmits = sum >> emitShift;
+ int numAllocs = sum & ((1 << emitShift) - 1);
+ s_tileEmitPrefixSum[tileInBin + 1] = numEmits;
+ s_tileAllocPrefixSum[tileInBin + 1] = numAllocs;
+
+ if (tileInBin == CR_BIN_SQR - 1 && numAllocs != 0)
+ {
+ int t = atomicAdd(&atomics.numTileSegs, numAllocs);
+ s_firstAllocSeg = (t + numAllocs <= p.maxTileSegs) ? t : 0;
+ }
+ }
+
+ __syncthreads();
+ int firstAllocSeg = s_firstAllocSeg;
+ int totalEmits = s_tileEmitPrefixSum[CR_BIN_SQR];
+ int totalAllocs = s_tileAllocPrefixSum[CR_BIN_SQR];
+
+ //------------------------------------------------------------------------
+ // Emit.
+ //------------------------------------------------------------------------
+
+ // Emit per thread: Write triangle index to globalmem.
+
+ for (int emitInBin = thrInBlock; emitInBin < totalEmits; emitInBin += CR_COARSE_WARPS * 32)
+ {
+ // Find tile in bin.
+
+ U8* tileBase = (U8*)&s_tileEmitPrefixSum[0];
+ U8* tilePtr = tileBase;
+ U8* ptr;
+
+ #if (CR_BIN_SQR > 128)
+ ptr = tilePtr + 0x80 * 4; if (emitInBin >= *(U32*)ptr) tilePtr = ptr;
+ #endif
+ #if (CR_BIN_SQR > 64)
+ ptr = tilePtr + 0x40 * 4; if (emitInBin >= *(U32*)ptr) tilePtr = ptr;
+ #endif
+ #if (CR_BIN_SQR > 32)
+ ptr = tilePtr + 0x20 * 4; if (emitInBin >= *(U32*)ptr) tilePtr = ptr;
+ #endif
+ #if (CR_BIN_SQR > 16)
+ ptr = tilePtr + 0x10 * 4; if (emitInBin >= *(U32*)ptr) tilePtr = ptr;
+ #endif
+ #if (CR_BIN_SQR > 8)
+ ptr = tilePtr + 0x08 * 4; if (emitInBin >= *(U32*)ptr) tilePtr = ptr;
+ #endif
+ #if (CR_BIN_SQR > 4)
+ ptr = tilePtr + 0x04 * 4; if (emitInBin >= *(U32*)ptr) tilePtr = ptr;
+ #endif
+ #if (CR_BIN_SQR > 2)
+ ptr = tilePtr + 0x02 * 4; if (emitInBin >= *(U32*)ptr) tilePtr = ptr;
+ #endif
+ #if (CR_BIN_SQR > 1)
+ ptr = tilePtr + 0x01 * 4; if (emitInBin >= *(U32*)ptr) tilePtr = ptr;
+ #endif
+
+ int tileInBin = (tilePtr - tileBase) >> 2;
+ int emitInTile = emitInBin - *(U32*)tilePtr;
+
+ // Find warp in tile.
+
+ int warpStep = (CR_BIN_SQR + 1) * 4;
+ U8* warpBase = (U8*)&s_warpEmitPrefixSum[0][tileInBin] - warpStep;
+ U8* warpPtr = warpBase;
+
+ #if (CR_COARSE_WARPS > 8)
+ ptr = warpPtr + 0x08 * warpStep; if (emitInTile >= *(U32*)ptr) warpPtr = ptr;
+ #endif
+ #if (CR_COARSE_WARPS > 4)
+ ptr = warpPtr + 0x04 * warpStep; if (emitInTile >= *(U32*)ptr) warpPtr = ptr;
+ #endif
+ #if (CR_COARSE_WARPS > 2)
+ ptr = warpPtr + 0x02 * warpStep; if (emitInTile >= *(U32*)ptr) warpPtr = ptr;
+ #endif
+ #if (CR_COARSE_WARPS > 1)
+ ptr = warpPtr + 0x01 * warpStep; if (emitInTile >= *(U32*)ptr) warpPtr = ptr;
+ #endif
+
+ int warpInTile = (warpPtr - warpBase) >> (CR_BIN_LOG2 * 2 + 2);
+ U32 emitMask = *(U32*)(warpPtr + warpStep + ((U8*)s_warpEmitMask - (U8*)s_warpEmitPrefixSum));
+ int emitInWarp = emitInTile - *(U32*)(warpPtr + warpStep) + __popc(emitMask);
+
+ // Find thread in warp.
+
+ int threadInWarp = 0;
+ int pop = __popc(emitMask & 0xFFFF);
+ bool pred = (emitInWarp >= pop);
+ if (pred) emitInWarp -= pop;
+ if (pred) emitMask >>= 0x10;
+ if (pred) threadInWarp += 0x10;
+
+ pop = __popc(emitMask & 0xFF);
+ pred = (emitInWarp >= pop);
+ if (pred) emitInWarp -= pop;
+ if (pred) emitMask >>= 0x08;
+ if (pred) threadInWarp += 0x08;
+
+ pop = __popc(emitMask & 0xF);
+ pred = (emitInWarp >= pop);
+ if (pred) emitInWarp -= pop;
+ if (pred) emitMask >>= 0x04;
+ if (pred) threadInWarp += 0x04;
+
+ pop = __popc(emitMask & 0x3);
+ pred = (emitInWarp >= pop);
+ if (pred) emitInWarp -= pop;
+ if (pred) emitMask >>= 0x02;
+ if (pred) threadInWarp += 0x02;
+
+ if (emitInWarp >= (emitMask & 1))
+ threadInWarp++;
+
+ // Figure out where to write.
+
+ int currOfs = s_tileStreamCurrOfs[tileInBin];
+ int spaceLeft = -currOfs & (CR_TILE_SEG_SIZE - 1);
+ int outOfs = emitInTile;
+
+ if (outOfs < spaceLeft)
+ outOfs += currOfs;
+ else
+ {
+ int allocLo = firstAllocSeg + s_tileAllocPrefixSum[tileInBin];
+ outOfs += (allocLo << CR_TILE_SEG_LOG2) - spaceLeft;
+ }
+
+ // Write.
+
+ int queueIdx = warpInTile * 32 + threadInWarp;
+ int triIdx = s_triQueue[(triQueueReadPos + queueIdx) & (CR_COARSE_QUEUE_SIZE - 1)];
+
+ tileSegData[outOfs] = triIdx;
+ }
+
+ //------------------------------------------------------------------------
+ // Patch.
+ //------------------------------------------------------------------------
+
+ // Allocated segment per thread: Initialize next-pointer and count.
+
+ for (int i = CR_COARSE_WARPS * 32 - 1 - thrInBlock; i < totalAllocs; i += CR_COARSE_WARPS * 32)
+ {
+ int segIdx = firstAllocSeg + i;
+ tileSegNext[segIdx] = segIdx + 1;
+ tileSegCount[segIdx] = CR_TILE_SEG_SIZE;
+ }
+
+ // Tile per thread: Fix previous segment's next-pointer and update s_tileStreamCurrOfs.
+
+ __syncthreads();
+ for (int tileInBin = CR_COARSE_WARPS * 32 - 1 - thrInBlock; tileInBin < CR_BIN_SQR; tileInBin += CR_COARSE_WARPS * 32)
+ {
+ int oldOfs = s_tileStreamCurrOfs[tileInBin];
+ int newOfs = oldOfs + s_warpEmitPrefixSum[CR_COARSE_WARPS - 1][tileInBin];
+ int allocLo = s_tileAllocPrefixSum[tileInBin];
+ int allocHi = s_tileAllocPrefixSum[tileInBin + 1];
+
+ if (allocLo != allocHi)
+ {
+ S32* nextPtr = &tileSegNext[(oldOfs - 1) >> CR_TILE_SEG_LOG2];
+ if (oldOfs < 0)
+ nextPtr = &tileFirstSeg[binTileIdx + globalTileIdx(tileInBin, p.widthTiles)];
+ *nextPtr = firstAllocSeg + allocLo;
+
+ newOfs--;
+ newOfs &= CR_TILE_SEG_SIZE - 1;
+ newOfs |= (firstAllocSeg + allocHi - 1) << CR_TILE_SEG_LOG2;
+ newOfs++;
+ }
+ s_tileStreamCurrOfs[tileInBin] = newOfs;
+ }
+
+ // Advance queue read pointer.
+ // Queue became empty => bin done.
+
+ triQueueReadPos += CR_COARSE_WARPS * 32;
+ }
+ while (triQueueReadPos < triQueueWritePos);
+
+ // Tile per thread: Fix next-pointer and count of the last segment.
+ // 32 tiles per warp: Count active tiles.
+
+ __syncthreads();
+
+ for (int tileInBin_base = 0; tileInBin_base < CR_BIN_SQR; tileInBin_base += CR_COARSE_WARPS * 32)
+ {
+ int tileInBin = tileInBin_base + thrInBlock;
+ bool act = (tileInBin < CR_BIN_SQR);
+ U32 actMask = __ballot_sync(~0u, act);
+ if (act)
+ {
+ int tileX = tileInBin & (CR_BIN_SIZE - 1);
+ int tileY = tileInBin >> CR_BIN_LOG2;
+ bool force = (p.deferredClear & tileX <= maxTileXInBin & tileY <= maxTileYInBin);
+
+ int ofs = s_tileStreamCurrOfs[tileInBin];
+ int segIdx = (ofs - 1) >> CR_TILE_SEG_LOG2;
+ int segCount = ofs & (CR_TILE_SEG_SIZE - 1);
+
+ if (ofs >= 0)
+ tileSegNext[segIdx] = -1;
+ else if (force)
+ {
+ s_tileStreamCurrOfs[tileInBin] = 0;
+ tileFirstSeg[binTileIdx + tileX + tileY * p.widthTiles] = -1;
+ }
+
+ if (segCount != 0)
+ tileSegCount[segIdx] = segCount;
+
+ U32 res = __ballot_sync(actMask, ofs >= 0 | force);
+ if (threadIdx.x == 0)
+ s_scanTemp[0][(tileInBin >> 5) + 16] = __popc(res);
+ }
+ }
+
+ // First warp: Scan-8.
+ // One thread: Allocate space for active tiles.
+
+ __syncthreads();
+
+ bool scan8 = (thrInBlock < CR_BIN_SQR / 32);
+ U32 scan8Mask = __ballot_sync(~0u, scan8);
+ if (scan8)
+ {
+ volatile U32* v = &s_scanTemp[0][thrInBlock + 16];
+ U32 sum = v[0];
+ #if (CR_BIN_SQR > 1 * 32)
+ sum += v[-1]; __syncwarp(scan8Mask); v[0] = sum; __syncwarp(scan8Mask);
+ #endif
+ #if (CR_BIN_SQR > 2 * 32)
+ sum += v[-2]; __syncwarp(scan8Mask); v[0] = sum; __syncwarp(scan8Mask);
+ #endif
+ #if (CR_BIN_SQR > 4 * 32)
+ sum += v[-4]; __syncwarp(scan8Mask); v[0] = sum; __syncwarp(scan8Mask);
+ #endif
+
+ if (thrInBlock == CR_BIN_SQR / 32 - 1)
+ s_firstActiveIdx = atomicAdd(&atomics.numActiveTiles, sum);
+ }
+
+ // Tile per thread: Output active tiles.
+
+ __syncthreads();
+
+ for (int tileInBin_base = 0; tileInBin_base < CR_BIN_SQR; tileInBin_base += CR_COARSE_WARPS * 32)
+ {
+ int tileInBin = tileInBin_base + thrInBlock;
+ bool act = (tileInBin < CR_BIN_SQR) && (s_tileStreamCurrOfs[tileInBin] >= 0);
+ U32 actMask = __ballot_sync(~0u, act);
+ if (act)
+ {
+ int activeIdx = s_firstActiveIdx;
+ activeIdx += s_scanTemp[0][(tileInBin >> 5) + 15];
+ activeIdx += __popc(actMask & getLaneMaskLt());
+ activeTiles[activeIdx] = binTileIdx + globalTileIdx(tileInBin, p.widthTiles);
+ }
+ }
+ }
+}
+
+//------------------------------------------------------------------------
diff --git a/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/Constants.hpp b/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/Constants.hpp
new file mode 100644
index 0000000000000000000000000000000000000000..42d757fbba82e75c1358caee7419a4be009d7464
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/Constants.hpp
@@ -0,0 +1,73 @@
+// Copyright (c) 2009-2022, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#pragma once
+
+//------------------------------------------------------------------------
+
+#define CR_MAXVIEWPORT_LOG2 11 // ViewportSize / PixelSize.
+#define CR_SUBPIXEL_LOG2 4 // PixelSize / SubpixelSize.
+
+#define CR_MAXBINS_LOG2 4 // ViewportSize / BinSize.
+#define CR_BIN_LOG2 4 // BinSize / TileSize.
+#define CR_TILE_LOG2 3 // TileSize / PixelSize.
+
+#define CR_COVER8X8_LUT_SIZE 768 // 64-bit entries.
+#define CR_FLIPBIT_FLIP_Y 2
+#define CR_FLIPBIT_FLIP_X 3
+#define CR_FLIPBIT_SWAP_XY 4
+#define CR_FLIPBIT_COMPL 5
+
+#define CR_BIN_STREAMS_LOG2 4
+#define CR_BIN_SEG_LOG2 9 // 32-bit entries.
+#define CR_TILE_SEG_LOG2 5 // 32-bit entries.
+
+#define CR_MAXSUBTRIS_LOG2 24 // Triangle structs. Dictated by CoarseRaster.
+#define CR_COARSE_QUEUE_LOG2 10 // Triangles.
+
+#define CR_SETUP_WARPS 2
+#define CR_SETUP_OPT_BLOCKS 8
+#define CR_BIN_WARPS 16
+#define CR_COARSE_WARPS 16 // Must be a power of two.
+#define CR_FINE_MAX_WARPS 20
+
+#define CR_EMBED_IMAGE_PARAMS 32 // Number of per-image parameter structs embedded in kernel launch parameter block.
+
+//------------------------------------------------------------------------
+
+#define CR_MAXVIEWPORT_SIZE (1 << CR_MAXVIEWPORT_LOG2)
+#define CR_SUBPIXEL_SIZE (1 << CR_SUBPIXEL_LOG2)
+#define CR_SUBPIXEL_SQR (1 << (CR_SUBPIXEL_LOG2 * 2))
+
+#define CR_MAXBINS_SIZE (1 << CR_MAXBINS_LOG2)
+#define CR_MAXBINS_SQR (1 << (CR_MAXBINS_LOG2 * 2))
+#define CR_BIN_SIZE (1 << CR_BIN_LOG2)
+#define CR_BIN_SQR (1 << (CR_BIN_LOG2 * 2))
+
+#define CR_MAXTILES_LOG2 (CR_MAXBINS_LOG2 + CR_BIN_LOG2)
+#define CR_MAXTILES_SIZE (1 << CR_MAXTILES_LOG2)
+#define CR_MAXTILES_SQR (1 << (CR_MAXTILES_LOG2 * 2))
+#define CR_TILE_SIZE (1 << CR_TILE_LOG2)
+#define CR_TILE_SQR (1 << (CR_TILE_LOG2 * 2))
+
+#define CR_BIN_STREAMS_SIZE (1 << CR_BIN_STREAMS_LOG2)
+#define CR_BIN_SEG_SIZE (1 << CR_BIN_SEG_LOG2)
+#define CR_TILE_SEG_SIZE (1 << CR_TILE_SEG_LOG2)
+
+#define CR_MAXSUBTRIS_SIZE (1 << CR_MAXSUBTRIS_LOG2)
+#define CR_COARSE_QUEUE_SIZE (1 << CR_COARSE_QUEUE_LOG2)
+
+//------------------------------------------------------------------------
+// When evaluating interpolated Z pixel centers, we may introduce an error
+// of (+-CR_LERP_ERROR) ULPs.
+
+#define CR_LERP_ERROR(SAMPLES_LOG2) (2200u << (SAMPLES_LOG2))
+#define CR_DEPTH_MIN CR_LERP_ERROR(3)
+#define CR_DEPTH_MAX (CR_U32_MAX - CR_LERP_ERROR(3))
+
+//------------------------------------------------------------------------
diff --git a/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/CudaRaster.cpp b/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/CudaRaster.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..21f9a484324c7e5409b8e10796e7b6d12ffdbe2f
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/CudaRaster.cpp
@@ -0,0 +1,79 @@
+// Copyright (c) 2009-2022, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#include "Defs.hpp"
+#include "../CudaRaster.hpp"
+#include "RasterImpl.hpp"
+
+using namespace CR;
+
+//------------------------------------------------------------------------
+// Stub interface implementation.
+//------------------------------------------------------------------------
+
+CudaRaster::CudaRaster()
+{
+ m_impl = new RasterImpl();
+}
+
+CudaRaster::~CudaRaster()
+{
+ delete m_impl;
+}
+
+void CudaRaster::setBufferSize(int width, int height, int numImages)
+{
+ m_impl->setBufferSize(Vec3i(width, height, numImages));
+}
+
+void CudaRaster::setViewport(int width, int height, int offsetX, int offsetY)
+{
+ m_impl->setViewport(Vec2i(width, height), Vec2i(offsetX, offsetY));
+}
+
+void CudaRaster::setRenderModeFlags(U32 flags)
+{
+ m_impl->setRenderModeFlags(flags);
+}
+
+void CudaRaster::deferredClear(U32 clearColor)
+{
+ m_impl->deferredClear(clearColor);
+}
+
+void CudaRaster::setVertexBuffer(void* vertices, int numVertices)
+{
+ m_impl->setVertexBuffer(vertices, numVertices);
+}
+
+void CudaRaster::setIndexBuffer(void* indices, int numTriangles)
+{
+ m_impl->setIndexBuffer(indices, numTriangles);
+}
+
+bool CudaRaster::drawTriangles(const int* ranges, bool peel, cudaStream_t stream)
+{
+ return m_impl->drawTriangles((const Vec2i*)ranges, peel, stream);
+}
+
+void* CudaRaster::getColorBuffer(void)
+{
+ return m_impl->getColorBuffer();
+}
+
+void* CudaRaster::getDepthBuffer(void)
+{
+ return m_impl->getDepthBuffer();
+}
+
+void CudaRaster::swapDepthAndPeel(void)
+{
+ m_impl->swapDepthAndPeel();
+}
+
+//------------------------------------------------------------------------
diff --git a/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/Defs.hpp b/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/Defs.hpp
new file mode 100644
index 0000000000000000000000000000000000000000..5831664434b613c8443f2e1ece0a0ede0505ca80
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/Defs.hpp
@@ -0,0 +1,90 @@
+// Copyright (c) 2009-2022, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#pragma once
+#include
+#include
+
+namespace CR
+{
+//------------------------------------------------------------------------
+
+#ifndef NULL
+# define NULL 0
+#endif
+
+#ifdef __CUDACC__
+# define CR_CUDA 1
+#else
+# define CR_CUDA 0
+#endif
+
+#if CR_CUDA
+# define CR_CUDA_FUNC __device__ __inline__
+# define CR_CUDA_CONST __constant__
+#else
+# define CR_CUDA_FUNC inline
+# define CR_CUDA_CONST static const
+#endif
+
+#define CR_UNREF(X) ((void)(X))
+#define CR_ARRAY_SIZE(X) ((int)(sizeof(X) / sizeof((X)[0])))
+
+//------------------------------------------------------------------------
+
+typedef uint8_t U8;
+typedef uint16_t U16;
+typedef uint32_t U32;
+typedef uint64_t U64;
+typedef int8_t S8;
+typedef int16_t S16;
+typedef int32_t S32;
+typedef int64_t S64;
+typedef float F32;
+typedef double F64;
+typedef void (*FuncPtr)(void);
+
+//------------------------------------------------------------------------
+
+#define CR_U32_MAX (0xFFFFFFFFu)
+#define CR_S32_MIN (~0x7FFFFFFF)
+#define CR_S32_MAX (0x7FFFFFFF)
+#define CR_U64_MAX ((U64)(S64)-1)
+#define CR_S64_MIN ((S64)-1 << 63)
+#define CR_S64_MAX (~((S64)-1 << 63))
+#define CR_F32_MIN (1.175494351e-38f)
+#define CR_F32_MAX (3.402823466e+38f)
+#define CR_F64_MIN (2.2250738585072014e-308)
+#define CR_F64_MAX (1.7976931348623158e+308)
+
+//------------------------------------------------------------------------
+// Misc types.
+
+class Vec2i
+{
+public:
+ Vec2i(int x_, int y_) : x(x_), y(y_) {}
+ int x, y;
+};
+
+class Vec3i
+{
+public:
+ Vec3i(int x_, int y_, int z_) : x(x_), y(y_), z(z_) {}
+ int x, y, z;
+};
+
+//------------------------------------------------------------------------
+// CUDA utilities.
+
+#if CR_CUDA
+# define globalThreadIdx (threadIdx.x + blockDim.x * (threadIdx.y + blockDim.y * (blockIdx.x + gridDim.x * blockIdx.y)))
+#endif
+
+//------------------------------------------------------------------------
+} // namespace CR
diff --git a/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/FineRaster.inl b/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/FineRaster.inl
new file mode 100644
index 0000000000000000000000000000000000000000..8704cc8fd5473c67cb9f97bfb42d76ff0539beb8
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/FineRaster.inl
@@ -0,0 +1,385 @@
+// Copyright (c) 2009-2022, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+//------------------------------------------------------------------------
+// Utility funcs.
+//------------------------------------------------------------------------
+
+__device__ __inline__ void initTileZMax(U32& tileZMax, bool& tileZUpd, volatile U32* tileDepth)
+{
+ tileZMax = CR_DEPTH_MAX;
+ tileZUpd = (::min(tileDepth[threadIdx.x], tileDepth[threadIdx.x + 32]) < tileZMax);
+}
+
+__device__ __inline__ void updateTileZMax(U32& tileZMax, bool& tileZUpd, volatile U32* tileDepth, volatile U32* temp)
+{
+ // Entry is warp-coherent.
+ if (__any_sync(~0u, tileZUpd))
+ {
+ U32 z = ::max(tileDepth[threadIdx.x], tileDepth[threadIdx.x + 32]); __syncwarp();
+ temp[threadIdx.x + 16] = z; __syncwarp();
+ z = ::max(z, temp[threadIdx.x + 16 - 1]); __syncwarp(); temp[threadIdx.x + 16] = z; __syncwarp();
+ z = ::max(z, temp[threadIdx.x + 16 - 2]); __syncwarp(); temp[threadIdx.x + 16] = z; __syncwarp();
+ z = ::max(z, temp[threadIdx.x + 16 - 4]); __syncwarp(); temp[threadIdx.x + 16] = z; __syncwarp();
+ z = ::max(z, temp[threadIdx.x + 16 - 8]); __syncwarp(); temp[threadIdx.x + 16] = z; __syncwarp();
+ z = ::max(z, temp[threadIdx.x + 16 - 16]); __syncwarp(); temp[threadIdx.x + 16] = z; __syncwarp();
+ tileZMax = temp[47];
+ tileZUpd = false;
+ }
+}
+
+//------------------------------------------------------------------------
+
+__device__ __inline__ void getTriangle(const CRParams& p, S32& triIdx, S32& dataIdx, uint4& triHeader, S32& segment)
+{
+ const CRTriangleHeader* triHeaderPtr = (const CRTriangleHeader*)p.triHeader + blockIdx.z * p.maxSubtris;;
+ const S32* tileSegData = (const S32*)p.tileSegData + p.maxTileSegs * CR_TILE_SEG_SIZE * blockIdx.z;
+ const S32* tileSegNext = (const S32*)p.tileSegNext + p.maxTileSegs * blockIdx.z;
+ const S32* tileSegCount = (const S32*)p.tileSegCount + p.maxTileSegs * blockIdx.z;
+
+ if (threadIdx.x >= tileSegCount[segment])
+ {
+ triIdx = -1;
+ dataIdx = -1;
+ }
+ else
+ {
+ int subtriIdx = tileSegData[segment * CR_TILE_SEG_SIZE + threadIdx.x];
+ triIdx = subtriIdx >> 3;
+ dataIdx = triIdx;
+ subtriIdx &= 7;
+ if (subtriIdx != 7)
+ dataIdx = triHeaderPtr[triIdx].misc + subtriIdx;
+ triHeader = *((uint4*)triHeaderPtr + dataIdx);
+ }
+
+ // advance to next segment
+ segment = tileSegNext[segment];
+}
+
+//------------------------------------------------------------------------
+
+__device__ __inline__ bool earlyZCull(uint4 triHeader, U32 tileZMax)
+{
+ U32 zmin = triHeader.w & 0xFFFFF000;
+ return (zmin > tileZMax);
+}
+
+//------------------------------------------------------------------------
+
+__device__ __inline__ U64 trianglePixelCoverage(const CRParams& p, const uint4& triHeader, int tileX, int tileY, volatile U64* s_cover8x8_lut)
+{
+ int baseX = (tileX << (CR_TILE_LOG2 + CR_SUBPIXEL_LOG2)) - ((p.widthPixelsVp - 1) << (CR_SUBPIXEL_LOG2 - 1));
+ int baseY = (tileY << (CR_TILE_LOG2 + CR_SUBPIXEL_LOG2)) - ((p.heightPixelsVp - 1) << (CR_SUBPIXEL_LOG2 - 1));
+
+ // extract S16 vertex positions while subtracting tile coordinates
+ S32 v0x = sub_s16lo_s16lo(triHeader.x, baseX);
+ S32 v0y = sub_s16hi_s16lo(triHeader.x, baseY);
+ S32 v01x = sub_s16lo_s16lo(triHeader.y, triHeader.x);
+ S32 v01y = sub_s16hi_s16hi(triHeader.y, triHeader.x);
+ S32 v20x = sub_s16lo_s16lo(triHeader.x, triHeader.z);
+ S32 v20y = sub_s16hi_s16hi(triHeader.x, triHeader.z);
+
+ // extract flipbits
+ U32 f01 = (triHeader.w >> 6) & 0x3C;
+ U32 f12 = (triHeader.w >> 2) & 0x3C;
+ U32 f20 = (triHeader.w << 2) & 0x3C;
+
+ // compute per-edge coverage masks
+ U64 c01, c12, c20;
+ c01 = cover8x8_exact_fast(v0x, v0y, v01x, v01y, f01, s_cover8x8_lut);
+ c12 = cover8x8_exact_fast(v0x + v01x, v0y + v01y, -v01x - v20x, -v01y - v20y, f12, s_cover8x8_lut);
+ c20 = cover8x8_exact_fast(v0x, v0y, v20x, v20y, f20, s_cover8x8_lut);
+
+ // combine masks
+ return c01 & c12 & c20;
+}
+
+//------------------------------------------------------------------------
+
+__device__ __inline__ U32 scan32_value(U32 value, volatile U32* temp)
+{
+ __syncwarp();
+ temp[threadIdx.x + 16] = value; __syncwarp();
+ value += temp[threadIdx.x + 16 - 1]; __syncwarp(); temp[threadIdx.x + 16] = value; __syncwarp();
+ value += temp[threadIdx.x + 16 - 2]; __syncwarp(); temp[threadIdx.x + 16] = value; __syncwarp();
+ value += temp[threadIdx.x + 16 - 4]; __syncwarp(); temp[threadIdx.x + 16] = value; __syncwarp();
+ value += temp[threadIdx.x + 16 - 8]; __syncwarp(); temp[threadIdx.x + 16] = value; __syncwarp();
+ value += temp[threadIdx.x + 16 - 16]; __syncwarp(); temp[threadIdx.x + 16] = value; __syncwarp();
+ return value;
+}
+
+__device__ __inline__ volatile const U32& scan32_total(volatile U32* temp)
+{
+ return temp[47];
+}
+
+//------------------------------------------------------------------------
+
+__device__ __inline__ S32 findBit(U64 mask, int idx)
+{
+ U32 x = getLo(mask);
+ int pop = __popc(x);
+ bool p = (pop <= idx);
+ if (p) x = getHi(mask);
+ if (p) idx -= pop;
+ int bit = p ? 32 : 0;
+
+ pop = __popc(x & 0x0000ffffu);
+ p = (pop <= idx);
+ if (p) x >>= 16;
+ if (p) bit += 16;
+ if (p) idx -= pop;
+
+ U32 tmp = x & 0x000000ffu;
+ pop = __popc(tmp);
+ p = (pop <= idx);
+ if (p) tmp = x & 0x0000ff00u;
+ if (p) idx -= pop;
+
+ return findLeadingOne(tmp) + bit - idx;
+}
+
+//------------------------------------------------------------------------
+// Single-sample implementation.
+//------------------------------------------------------------------------
+
+__device__ __inline__ void executeROP(U32 color, U32 depth, volatile U32* pColor, volatile U32* pDepth, U32 ropMask)
+{
+ atomicMin((U32*)pDepth, depth);
+ __syncwarp(ropMask);
+ bool act = (depth == *pDepth);
+ __syncwarp(ropMask);
+ U32 actMask = __ballot_sync(ropMask, act);
+ if (act)
+ {
+ *pDepth = 0;
+ __syncwarp(actMask);
+ atomicMax((U32*)pDepth, threadIdx.x);
+ __syncwarp(actMask);
+ if (*pDepth == threadIdx.x)
+ {
+ *pDepth = depth;
+ *pColor = color;
+ }
+ __syncwarp(actMask);
+ }
+}
+
+//------------------------------------------------------------------------
+
+__device__ __inline__ void fineRasterImpl(const CRParams p)
+{
+ // for 20 warps:
+ __shared__ volatile U64 s_cover8x8_lut[CR_COVER8X8_LUT_SIZE]; // 6KB
+ __shared__ volatile U32 s_tileColor [CR_FINE_MAX_WARPS][CR_TILE_SQR]; // 5KB
+ __shared__ volatile U32 s_tileDepth [CR_FINE_MAX_WARPS][CR_TILE_SQR]; // 5KB
+ __shared__ volatile U32 s_tilePeel [CR_FINE_MAX_WARPS][CR_TILE_SQR]; // 5KB
+ __shared__ volatile U32 s_triDataIdx [CR_FINE_MAX_WARPS][64]; // 5KB CRTriangleData index
+ __shared__ volatile U64 s_triangleCov [CR_FINE_MAX_WARPS][64]; // 10KB coverage mask
+ __shared__ volatile U32 s_triangleFrag[CR_FINE_MAX_WARPS][64]; // 5KB fragment index
+ __shared__ volatile U32 s_temp [CR_FINE_MAX_WARPS][80]; // 6.25KB
+ // = 47.25KB total
+
+ CRAtomics& atomics = p.atomics[blockIdx.z];
+ const CRTriangleData* triData = (const CRTriangleData*)p.triData + blockIdx.z * p.maxSubtris;
+
+ const S32* activeTiles = (const S32*)p.activeTiles + CR_MAXTILES_SQR * blockIdx.z;
+ const S32* tileFirstSeg = (const S32*)p.tileFirstSeg + CR_MAXTILES_SQR * blockIdx.z;
+
+ volatile U32* tileColor = s_tileColor[threadIdx.y];
+ volatile U32* tileDepth = s_tileDepth[threadIdx.y];
+ volatile U32* tilePeel = s_tilePeel[threadIdx.y];
+ volatile U32* triDataIdx = s_triDataIdx[threadIdx.y];
+ volatile U64* triangleCov = s_triangleCov[threadIdx.y];
+ volatile U32* triangleFrag = s_triangleFrag[threadIdx.y];
+ volatile U32* temp = s_temp[threadIdx.y];
+
+ if (atomics.numSubtris > p.maxSubtris || atomics.numBinSegs > p.maxBinSegs || atomics.numTileSegs > p.maxTileSegs)
+ return;
+
+ temp[threadIdx.x] = 0; // first 16 elements of temp are always zero
+ cover8x8_setupLUT(s_cover8x8_lut);
+ __syncthreads();
+
+ // loop over tiles
+ for (;;)
+ {
+ // pick a tile
+ if (threadIdx.x == 0)
+ temp[16] = atomicAdd(&atomics.fineCounter, 1);
+ __syncwarp();
+ int activeIdx = temp[16];
+ if (activeIdx >= atomics.numActiveTiles)
+ break;
+
+ int tileIdx = activeTiles[activeIdx];
+ S32 segment = tileFirstSeg[tileIdx];
+ int tileY = tileIdx / p.widthTiles;
+ int tileX = tileIdx - tileY * p.widthTiles;
+ int px = (tileX << CR_TILE_LOG2) + (threadIdx.x & (CR_TILE_SIZE - 1));
+ int py = (tileY << CR_TILE_LOG2) + (threadIdx.x >> CR_TILE_LOG2);
+
+ // initialize per-tile state
+ int triRead = 0, triWrite = 0;
+ int fragRead = 0, fragWrite = 0;
+ if (threadIdx.x == 0)
+ triangleFrag[63] = 0; // "previous triangle"
+
+ // deferred clear => clear tile
+ if (p.deferredClear)
+ {
+ tileColor[threadIdx.x] = p.clearColor;
+ tileDepth[threadIdx.x] = p.clearDepth;
+ tileColor[threadIdx.x + 32] = p.clearColor;
+ tileDepth[threadIdx.x + 32] = p.clearDepth;
+ }
+ else // otherwise => read tile from framebuffer
+ {
+ U32* pColor = (U32*)p.colorBuffer + p.strideX * p.strideY * blockIdx.z;
+ U32* pDepth = (U32*)p.depthBuffer + p.strideX * p.strideY * blockIdx.z;
+ tileColor[threadIdx.x] = pColor[px + p.strideX * py];
+ tileDepth[threadIdx.x] = pDepth[px + p.strideX * py];
+ tileColor[threadIdx.x + 32] = pColor[px + p.strideX * (py + 4)];
+ tileDepth[threadIdx.x + 32] = pDepth[px + p.strideX * (py + 4)];
+ }
+
+ // read peeling inputs if enabled
+ if (p.renderModeFlags & CudaRaster::RenderModeFlag_EnableDepthPeeling)
+ {
+ U32* pPeel = (U32*)p.peelBuffer + p.strideX * p.strideY * blockIdx.z;
+ tilePeel[threadIdx.x] = pPeel[px + p.strideX * py];
+ tilePeel[threadIdx.x + 32] = pPeel[px + p.strideX * (py + 4)];
+ }
+
+ U32 tileZMax;
+ bool tileZUpd;
+ initTileZMax(tileZMax, tileZUpd, tileDepth);
+
+ // process fragments
+ for(;;)
+ {
+ // need to queue more fragments?
+ if (fragWrite - fragRead < 32 && segment >= 0)
+ {
+ // update tile z - coherent over warp
+ updateTileZMax(tileZMax, tileZUpd, tileDepth, temp);
+
+ // read triangles
+ do
+ {
+ // read triangle index and data, advance to next segment
+ S32 triIdx, dataIdx;
+ uint4 triHeader;
+ getTriangle(p, triIdx, dataIdx, triHeader, segment);
+
+ // early z cull
+ if (triIdx >= 0 && earlyZCull(triHeader, tileZMax))
+ triIdx = -1;
+
+ // determine coverage
+ U64 coverage = trianglePixelCoverage(p, triHeader, tileX, tileY, s_cover8x8_lut);
+ S32 pop = (triIdx == -1) ? 0 : __popcll(coverage);
+
+ // fragment count scan
+ U32 frag = scan32_value(pop, temp);
+ frag += fragWrite; // frag now holds cumulative fragment count
+ fragWrite += scan32_total(temp);
+
+ // queue non-empty triangles
+ U32 goodMask = __ballot_sync(~0u, pop != 0);
+ if (pop != 0)
+ {
+ int idx = (triWrite + __popc(goodMask & getLaneMaskLt())) & 63;
+ triDataIdx [idx] = dataIdx;
+ triangleFrag[idx] = frag;
+ triangleCov [idx] = coverage;
+ }
+ triWrite += __popc(goodMask);
+ }
+ while (fragWrite - fragRead < 32 && segment >= 0);
+ }
+ __syncwarp();
+
+ // end of segment?
+ if (fragRead == fragWrite)
+ break;
+
+ // clear triangle boundaries
+ temp[threadIdx.x + 16] = 0;
+ __syncwarp();
+
+ // tag triangle boundaries
+ if (triRead + threadIdx.x < triWrite)
+ {
+ int idx = triangleFrag[(triRead + threadIdx.x) & 63] - fragRead;
+ if (idx <= 32)
+ temp[idx + 16 - 1] = 1;
+ }
+ __syncwarp();
+
+ int ropLaneIdx = threadIdx.x;
+ U32 boundaryMask = __ballot_sync(~0u, temp[ropLaneIdx + 16]);
+
+ // distribute fragments
+ bool hasFragment = (ropLaneIdx < fragWrite - fragRead);
+ U32 fragmentMask = __ballot_sync(~0u, hasFragment);
+ if (hasFragment)
+ {
+ int triBufIdx = (triRead + __popc(boundaryMask & getLaneMaskLt())) & 63;
+ int fragIdx = add_sub(fragRead, ropLaneIdx, triangleFrag[(triBufIdx - 1) & 63]);
+ U64 coverage = triangleCov[triBufIdx];
+ int pixelInTile = findBit(coverage, fragIdx);
+ int dataIdx = triDataIdx[triBufIdx];
+
+ // determine pixel position
+ U32 pixelX = (tileX << CR_TILE_LOG2) + (pixelInTile & 7);
+ U32 pixelY = (tileY << CR_TILE_LOG2) + (pixelInTile >> 3);
+
+ // depth test
+ U32 depth = 0;
+ uint4 td = *((uint4*)triData + dataIdx * (sizeof(CRTriangleData) >> 4));
+
+ depth = td.x * pixelX + td.y * pixelY + td.z;
+ bool zkill = (p.renderModeFlags & CudaRaster::RenderModeFlag_EnableDepthPeeling) && (depth <= tilePeel[pixelInTile]);
+ if (!zkill)
+ {
+ U32 oldDepth = tileDepth[pixelInTile];
+ if (depth > oldDepth)
+ zkill = true;
+ else if (oldDepth == tileZMax)
+ tileZUpd = true; // we are replacing previous zmax => need to update
+ }
+
+ U32 ropMask = __ballot_sync(fragmentMask, !zkill);
+ if (!zkill)
+ executeROP(td.w, depth, &tileColor[pixelInTile], &tileDepth[pixelInTile], ropMask);
+ }
+ // no need to sync, as next up is updateTileZMax that does internal warp sync
+
+ // update counters
+ fragRead = ::min(fragRead + 32, fragWrite);
+ triRead += __popc(boundaryMask);
+ }
+
+ // Write tile back to the framebuffer.
+ if (true)
+ {
+ int px = (tileX << CR_TILE_LOG2) + (threadIdx.x & (CR_TILE_SIZE - 1));
+ int py = (tileY << CR_TILE_LOG2) + (threadIdx.x >> CR_TILE_LOG2);
+ U32* pColor = (U32*)p.colorBuffer + p.strideX * p.strideY * blockIdx.z;
+ U32* pDepth = (U32*)p.depthBuffer + p.strideX * p.strideY * blockIdx.z;
+ pColor[px + p.strideX * py] = tileColor[threadIdx.x];
+ pDepth[px + p.strideX * py] = tileDepth[threadIdx.x];
+ pColor[px + p.strideX * (py + 4)] = tileColor[threadIdx.x + 32];
+ pDepth[px + p.strideX * (py + 4)] = tileDepth[threadIdx.x + 32];
+ }
+ }
+}
+
+//------------------------------------------------------------------------
diff --git a/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/PrivateDefs.hpp b/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/PrivateDefs.hpp
new file mode 100644
index 0000000000000000000000000000000000000000..fda59339b310f51253c29cac42d47086ef35c28a
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/PrivateDefs.hpp
@@ -0,0 +1,153 @@
+// Copyright (c) 2009-2022, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#pragma once
+#include "Defs.hpp"
+#include "Constants.hpp"
+
+namespace CR
+{
+//------------------------------------------------------------------------
+// Projected triangle.
+//------------------------------------------------------------------------
+
+struct CRTriangleHeader
+{
+ S16 v0x; // Subpixels relative to viewport center. Valid if triSubtris = 1.
+ S16 v0y;
+ S16 v1x;
+ S16 v1y;
+ S16 v2x;
+ S16 v2y;
+
+ U32 misc; // triSubtris=1: (zmin:20, f01:4, f12:4, f20:4), triSubtris>=2: (subtriBase)
+};
+
+//------------------------------------------------------------------------
+
+struct CRTriangleData
+{
+ U32 zx; // zx * sampleX + zy * sampleY + zb = lerp(CR_DEPTH_MIN, CR_DEPTH_MAX, (clipZ / clipW + 1) / 2)
+ U32 zy;
+ U32 zb;
+ U32 id; // Triangle id.
+};
+
+//------------------------------------------------------------------------
+// Device-side structures.
+//------------------------------------------------------------------------
+
+struct CRAtomics
+{
+ // Setup.
+ S32 numSubtris; // = numTris
+
+ // Bin.
+ S32 binCounter; // = 0
+ S32 numBinSegs; // = 0
+
+ // Coarse.
+ S32 coarseCounter; // = 0
+ S32 numTileSegs; // = 0
+ S32 numActiveTiles; // = 0
+
+ // Fine.
+ S32 fineCounter; // = 0
+};
+
+//------------------------------------------------------------------------
+
+struct CRImageParams
+{
+ S32 triOffset; // First triangle index to draw.
+ S32 triCount; // Number of triangles to draw.
+ S32 binBatchSize; // Number of triangles per batch.
+};
+
+//------------------------------------------------------------------------
+
+struct CRParams
+{
+ // Common.
+
+ CRAtomics* atomics; // Work counters. Per-image.
+ S32 numImages; // Batch size.
+ S32 totalCount; // In range mode, total number of triangles to render.
+ S32 instanceMode; // 0 = range mode, 1 = instance mode.
+
+ S32 numVertices; // Number of vertices in input buffer, not counting multiples in instance mode.
+ S32 numTriangles; // Number of triangles in input buffer.
+ void* vertexBuffer; // numVertices * float4(x, y, z, w)
+ void* indexBuffer; // numTriangles * int3(vi0, vi1, vi2)
+
+ S32 widthPixels; // Render buffer size in pixels. Must be multiple of tile size (8x8).
+ S32 heightPixels;
+ S32 widthPixelsVp; // Viewport size in pixels.
+ S32 heightPixelsVp;
+ S32 widthBins; // widthPixels / CR_BIN_SIZE
+ S32 heightBins; // heightPixels / CR_BIN_SIZE
+ S32 numBins; // widthBins * heightBins
+
+ F32 xs; // Vertex position adjustments for tiled rendering.
+ F32 ys;
+ F32 xo;
+ F32 yo;
+
+ S32 widthTiles; // widthPixels / CR_TILE_SIZE
+ S32 heightTiles; // heightPixels / CR_TILE_SIZE
+ S32 numTiles; // widthTiles * heightTiles
+
+ U32 renderModeFlags;
+ S32 deferredClear; // 1 = Clear framebuffer before rendering triangles.
+ U32 clearColor;
+ U32 clearDepth;
+
+ // These are uniform across batch.
+
+ S32 maxSubtris;
+ S32 maxBinSegs;
+ S32 maxTileSegs;
+
+ // Setup output / bin input.
+
+ void* triSubtris; // maxSubtris * U8
+ void* triHeader; // maxSubtris * CRTriangleHeader
+ void* triData; // maxSubtris * CRTriangleData
+
+ // Bin output / coarse input.
+
+ void* binSegData; // maxBinSegs * CR_BIN_SEG_SIZE * S32
+ void* binSegNext; // maxBinSegs * S32
+ void* binSegCount; // maxBinSegs * S32
+ void* binFirstSeg; // CR_MAXBINS_SQR * CR_BIN_STREAMS_SIZE * (S32 segIdx), -1 = none
+ void* binTotal; // CR_MAXBINS_SQR * CR_BIN_STREAMS_SIZE * (S32 numTris)
+
+ // Coarse output / fine input.
+
+ void* tileSegData; // maxTileSegs * CR_TILE_SEG_SIZE * S32
+ void* tileSegNext; // maxTileSegs * S32
+ void* tileSegCount; // maxTileSegs * S32
+ void* activeTiles; // CR_MAXTILES_SQR * (S32 tileIdx)
+ void* tileFirstSeg; // CR_MAXTILES_SQR * (S32 segIdx), -1 = none
+
+ // Surface buffers. Outer tile offset is baked into pointers.
+
+ void* colorBuffer; // sizePixels.x * sizePixels.y * numImages * U32
+ void* depthBuffer; // sizePixels.x * sizePixels.y * numImages * U32
+ void* peelBuffer; // sizePixels.x * sizePixels.y * numImages * U32, only if peeling enabled.
+ S32 strideX; // horizontal size in pixels
+ S32 strideY; // vertical stride in pixels
+
+ // Per-image parameters for first images are embedded here to avoid extra memcpy for small batches.
+
+ CRImageParams imageParamsFirst[CR_EMBED_IMAGE_PARAMS];
+ const CRImageParams* imageParamsExtra; // After CR_EMBED_IMAGE_PARAMS.
+};
+
+//------------------------------------------------------------------------
+}
diff --git a/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/RasterImpl.cpp b/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/RasterImpl.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..48643b1e59ff00b4b2c44b3e7aa280bc4f486925
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/RasterImpl.cpp
@@ -0,0 +1,370 @@
+// Copyright (c) 2009-2022, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#include "../../framework.h"
+#include "PrivateDefs.hpp"
+#include "Constants.hpp"
+#include "RasterImpl.hpp"
+#include
+
+using namespace CR;
+using std::min;
+using std::max;
+
+//------------------------------------------------------------------------
+// Kernel prototypes and variables.
+
+void triangleSetupKernel (const CRParams p);
+void binRasterKernel (const CRParams p);
+void coarseRasterKernel (const CRParams p);
+void fineRasterKernel (const CRParams p);
+
+//------------------------------------------------------------------------
+
+RasterImpl::RasterImpl(void)
+: m_renderModeFlags (0),
+ m_deferredClear (false),
+ m_clearColor (0),
+ m_vertexPtr (NULL),
+ m_indexPtr (NULL),
+ m_numVertices (0),
+ m_numTriangles (0),
+ m_bufferSizesReported (0),
+
+ m_numImages (0),
+ m_bufferSizePixels (0, 0),
+ m_bufferSizeVp (0, 0),
+ m_sizePixels (0, 0),
+ m_sizeVp (0, 0),
+ m_offsetPixels (0, 0),
+ m_sizeBins (0, 0),
+ m_numBins (0),
+ m_sizeTiles (0, 0),
+ m_numTiles (0),
+
+ m_numSMs (1),
+ m_numCoarseBlocksPerSM (1),
+ m_numFineBlocksPerSM (1),
+ m_numFineWarpsPerBlock (1),
+
+ m_maxSubtris (1),
+ m_maxBinSegs (1),
+ m_maxTileSegs (1)
+{
+ // Query relevant device attributes.
+
+ int currentDevice = 0;
+ NVDR_CHECK_CUDA_ERROR(cudaGetDevice(¤tDevice));
+ NVDR_CHECK_CUDA_ERROR(cudaDeviceGetAttribute(&m_numSMs, cudaDevAttrMultiProcessorCount, currentDevice));
+ cudaFuncAttributes attr;
+ NVDR_CHECK_CUDA_ERROR(cudaFuncGetAttributes(&attr, (void*)fineRasterKernel));
+ m_numFineWarpsPerBlock = min(attr.maxThreadsPerBlock / 32, CR_FINE_MAX_WARPS);
+ NVDR_CHECK_CUDA_ERROR(cudaOccupancyMaxActiveBlocksPerMultiprocessor(&m_numCoarseBlocksPerSM, (void*)coarseRasterKernel, 32 * CR_COARSE_WARPS, 0));
+ NVDR_CHECK_CUDA_ERROR(cudaOccupancyMaxActiveBlocksPerMultiprocessor(&m_numFineBlocksPerSM, (void*)fineRasterKernel, 32 * m_numFineWarpsPerBlock, 0));
+
+ // Setup functions.
+
+ NVDR_CHECK_CUDA_ERROR(cudaFuncSetCacheConfig((void*)triangleSetupKernel, cudaFuncCachePreferShared));
+ NVDR_CHECK_CUDA_ERROR(cudaFuncSetCacheConfig((void*)binRasterKernel, cudaFuncCachePreferShared));
+ NVDR_CHECK_CUDA_ERROR(cudaFuncSetCacheConfig((void*)coarseRasterKernel, cudaFuncCachePreferShared));
+ NVDR_CHECK_CUDA_ERROR(cudaFuncSetCacheConfig((void*)fineRasterKernel, cudaFuncCachePreferShared));
+}
+
+//------------------------------------------------------------------------
+
+RasterImpl::~RasterImpl(void)
+{
+ // Empty.
+}
+
+//------------------------------------------------------------------------
+
+void RasterImpl::setBufferSize(Vec3i size)
+{
+ // Internal buffer width and height must be divisible by tile size.
+ int w = (size.x + CR_TILE_SIZE - 1) & (-CR_TILE_SIZE);
+ int h = (size.y + CR_TILE_SIZE - 1) & (-CR_TILE_SIZE);
+
+ m_bufferSizePixels = Vec2i(w, h);
+ m_bufferSizeVp = Vec2i(size.x, size.y);
+ m_numImages = size.z;
+
+ m_colorBuffer.reset(w * h * size.z * sizeof(U32));
+ m_depthBuffer.reset(w * h * size.z * sizeof(U32));
+}
+
+//------------------------------------------------------------------------
+
+void RasterImpl::setViewport(Vec2i size, Vec2i offset)
+{
+ // Offset must be divisible by tile size.
+ NVDR_CHECK((offset.x & (CR_TILE_SIZE - 1)) == 0 && (offset.y & (CR_TILE_SIZE - 1)) == 0, "invalid viewport offset");
+
+ // Round internal viewport size to multiples of tile size.
+ int w = (size.x + CR_TILE_SIZE - 1) & (-CR_TILE_SIZE);
+ int h = (size.y + CR_TILE_SIZE - 1) & (-CR_TILE_SIZE);
+
+ m_sizePixels = Vec2i(w, h);
+ m_offsetPixels = offset;
+ m_sizeVp = Vec2i(size.x, size.y);
+ m_sizeTiles.x = m_sizePixels.x >> CR_TILE_LOG2;
+ m_sizeTiles.y = m_sizePixels.y >> CR_TILE_LOG2;
+ m_numTiles = m_sizeTiles.x * m_sizeTiles.y;
+ m_sizeBins.x = (m_sizeTiles.x + CR_BIN_SIZE - 1) >> CR_BIN_LOG2;
+ m_sizeBins.y = (m_sizeTiles.y + CR_BIN_SIZE - 1) >> CR_BIN_LOG2;
+ m_numBins = m_sizeBins.x * m_sizeBins.y;
+}
+
+void RasterImpl::swapDepthAndPeel(void)
+{
+ m_peelBuffer.reset(m_depthBuffer.getSize()); // Ensure equal size and valid pointer.
+
+ void* tmp = m_depthBuffer.getPtr();
+ m_depthBuffer.setPtr(m_peelBuffer.getPtr());
+ m_peelBuffer.setPtr(tmp);
+}
+
+//------------------------------------------------------------------------
+
+bool RasterImpl::drawTriangles(const Vec2i* ranges, bool peel, cudaStream_t stream)
+{
+ bool instanceMode = (!ranges);
+
+ int maxSubtrisSlack = 4096; // x 81B = 324KB
+ int maxBinSegsSlack = 256; // x 2137B = 534KB
+ int maxTileSegsSlack = 4096; // x 136B = 544KB
+
+ // Resize atomics as needed.
+ m_crAtomics .grow(m_numImages * sizeof(CRAtomics));
+ m_crAtomicsHost.grow(m_numImages * sizeof(CRAtomics));
+
+ // Size of these buffers doesn't depend on input.
+ m_binFirstSeg .grow(m_numImages * CR_MAXBINS_SQR * CR_BIN_STREAMS_SIZE * sizeof(S32));
+ m_binTotal .grow(m_numImages * CR_MAXBINS_SQR * CR_BIN_STREAMS_SIZE * sizeof(S32));
+ m_activeTiles .grow(m_numImages * CR_MAXTILES_SQR * sizeof(S32));
+ m_tileFirstSeg .grow(m_numImages * CR_MAXTILES_SQR * sizeof(S32));
+
+ // Construct per-image parameters and determine worst-case buffer sizes.
+ m_crImageParamsHost.grow(m_numImages * sizeof(CRImageParams));
+ CRImageParams* imageParams = (CRImageParams*)m_crImageParamsHost.getPtr();
+ for (int i=0; i < m_numImages; i++)
+ {
+ CRImageParams& ip = imageParams[i];
+
+ int roundSize = CR_BIN_WARPS * 32;
+ int minBatches = CR_BIN_STREAMS_SIZE * 2;
+ int maxRounds = 32;
+
+ ip.triOffset = instanceMode ? 0 : ranges[i].x;
+ ip.triCount = instanceMode ? m_numTriangles : ranges[i].y;
+ ip.binBatchSize = min(max(ip.triCount / (roundSize * minBatches), 1), maxRounds) * roundSize;
+
+ m_maxSubtris = max(m_maxSubtris, min(ip.triCount + maxSubtrisSlack, CR_MAXSUBTRIS_SIZE));
+ m_maxBinSegs = max(m_maxBinSegs, max(m_numBins * CR_BIN_STREAMS_SIZE, (ip.triCount - 1) / CR_BIN_SEG_SIZE + 1) + maxBinSegsSlack);
+ m_maxTileSegs = max(m_maxTileSegs, max(m_numTiles, (ip.triCount - 1) / CR_TILE_SEG_SIZE + 1) + maxTileSegsSlack);
+ }
+
+ // Retry until successful.
+
+ for (;;)
+ {
+ // Allocate buffers.
+ m_triSubtris.reset(m_numImages * m_maxSubtris * sizeof(U8));
+ m_triHeader .reset(m_numImages * m_maxSubtris * sizeof(CRTriangleHeader));
+ m_triData .reset(m_numImages * m_maxSubtris * sizeof(CRTriangleData));
+
+ m_binSegData .reset(m_numImages * m_maxBinSegs * CR_BIN_SEG_SIZE * sizeof(S32));
+ m_binSegNext .reset(m_numImages * m_maxBinSegs * sizeof(S32));
+ m_binSegCount.reset(m_numImages * m_maxBinSegs * sizeof(S32));
+
+ m_tileSegData .reset(m_numImages * m_maxTileSegs * CR_TILE_SEG_SIZE * sizeof(S32));
+ m_tileSegNext .reset(m_numImages * m_maxTileSegs * sizeof(S32));
+ m_tileSegCount.reset(m_numImages * m_maxTileSegs * sizeof(S32));
+
+ // Report if buffers grow from last time.
+ size_t sizesTotal = getTotalBufferSizes();
+ if (sizesTotal > m_bufferSizesReported)
+ {
+ size_t sizesMB = ((sizesTotal - 1) >> 20) + 1; // Round up.
+ sizesMB = ((sizesMB + 9) / 10) * 10; // 10MB granularity enough in this day and age.
+ LOG(INFO) << "Internal buffers grown to " << sizesMB << " MB";
+ m_bufferSizesReported = sizesMB << 20;
+ }
+
+ // Launch stages. Blocks until everything is done.
+ launchStages(instanceMode, peel, stream);
+
+ // Peeling iteration cannot fail, so no point checking things further.
+ if (peel)
+ break;
+
+ // Atomics after coarse stage are now available.
+ CRAtomics* atomics = (CRAtomics*)m_crAtomicsHost.getPtr();
+
+ // Success?
+ bool failed = false;
+ for (int i=0; i < m_numImages; i++)
+ {
+ const CRAtomics& a = atomics[i];
+ failed = failed || (a.numSubtris > m_maxSubtris) || (a.numBinSegs > m_maxBinSegs) || (a.numTileSegs > m_maxTileSegs);
+ }
+ if (!failed)
+ break; // Success!
+
+ // If we were already at maximum capacity, no can do.
+ if (m_maxSubtris == CR_MAXSUBTRIS_SIZE)
+ return false;
+
+ // Enlarge buffers and try again.
+ for (int i=0; i < m_numImages; i++)
+ {
+ const CRAtomics& a = atomics[i];
+ m_maxSubtris = max(m_maxSubtris, min(a.numSubtris + maxSubtrisSlack, CR_MAXSUBTRIS_SIZE));
+ m_maxBinSegs = max(m_maxBinSegs, a.numBinSegs + maxBinSegsSlack);
+ m_maxTileSegs = max(m_maxTileSegs, a.numTileSegs + maxTileSegsSlack);
+ }
+ }
+
+ m_deferredClear = false;
+ return true; // Success.
+}
+
+//------------------------------------------------------------------------
+
+size_t RasterImpl::getTotalBufferSizes(void) const
+{
+ return
+ m_colorBuffer.getSize() + m_depthBuffer.getSize() + // Don't include atomics and image params.
+ m_triSubtris.getSize() + m_triHeader.getSize() + m_triData.getSize() +
+ m_binFirstSeg.getSize() + m_binTotal.getSize() + m_binSegData.getSize() + m_binSegNext.getSize() + m_binSegCount.getSize() +
+ m_activeTiles.getSize() + m_tileFirstSeg.getSize() + m_tileSegData.getSize() + m_tileSegNext.getSize() + m_tileSegCount.getSize();
+}
+
+//------------------------------------------------------------------------
+
+void RasterImpl::launchStages(bool instanceMode, bool peel, cudaStream_t stream)
+{
+ CRImageParams* imageParams = (CRImageParams*)m_crImageParamsHost.getPtr();
+
+ // Unless peeling, initialize atomics to mostly zero.
+ CRAtomics* atomics = (CRAtomics*)m_crAtomicsHost.getPtr();
+ if (!peel)
+ {
+ memset(atomics, 0, m_numImages * sizeof(CRAtomics));
+ for (int i=0; i < m_numImages; i++)
+ atomics[i].numSubtris = imageParams[i].triCount;
+ }
+
+ // Copy to device. If peeling, this is the state after coarse raster launch on first iteration.
+ NVDR_CHECK_CUDA_ERROR(cudaMemcpyAsync(m_crAtomics.getPtr(), atomics, m_numImages * sizeof(CRAtomics), cudaMemcpyHostToDevice, stream));
+
+ // Copy per-image parameters if there are more than fits in launch parameter block and we haven't done it already.
+ if (!peel && m_numImages > CR_EMBED_IMAGE_PARAMS)
+ {
+ int numImageParamsExtra = m_numImages - CR_EMBED_IMAGE_PARAMS;
+ m_crImageParamsExtra.grow(numImageParamsExtra * sizeof(CRImageParams));
+ NVDR_CHECK_CUDA_ERROR(cudaMemcpyAsync(m_crImageParamsExtra.getPtr(), imageParams + CR_EMBED_IMAGE_PARAMS, numImageParamsExtra * sizeof(CRImageParams), cudaMemcpyHostToDevice, stream));
+ }
+
+ // Set global parameters.
+ CRParams p;
+ {
+ p.atomics = (CRAtomics*)m_crAtomics.getPtr();
+ p.numImages = m_numImages;
+ p.totalCount = 0; // Only relevant in range mode.
+ p.instanceMode = instanceMode ? 1 : 0;
+
+ p.numVertices = m_numVertices;
+ p.numTriangles = m_numTriangles;
+ p.vertexBuffer = m_vertexPtr;
+ p.indexBuffer = m_indexPtr;
+
+ p.widthPixels = m_sizePixels.x;
+ p.heightPixels = m_sizePixels.y;
+ p.widthPixelsVp = m_sizeVp.x;
+ p.heightPixelsVp = m_sizeVp.y;
+ p.widthBins = m_sizeBins.x;
+ p.heightBins = m_sizeBins.y;
+ p.numBins = m_numBins;
+
+ p.xs = (float)m_bufferSizeVp.x / (float)m_sizeVp.x;
+ p.ys = (float)m_bufferSizeVp.y / (float)m_sizeVp.y;
+ p.xo = (float)(m_bufferSizeVp.x - m_sizeVp.x - 2 * m_offsetPixels.x) / (float)m_sizeVp.x;
+ p.yo = (float)(m_bufferSizeVp.y - m_sizeVp.y - 2 * m_offsetPixels.y) / (float)m_sizeVp.y;
+
+ p.widthTiles = m_sizeTiles.x;
+ p.heightTiles = m_sizeTiles.y;
+ p.numTiles = m_numTiles;
+
+ p.renderModeFlags = m_renderModeFlags;
+ p.deferredClear = m_deferredClear ? 1 : 0;
+ p.clearColor = m_clearColor;
+ p.clearDepth = CR_DEPTH_MAX;
+
+ p.maxSubtris = m_maxSubtris;
+ p.maxBinSegs = m_maxBinSegs;
+ p.maxTileSegs = m_maxTileSegs;
+
+ p.triSubtris = m_triSubtris.getPtr();
+ p.triHeader = m_triHeader.getPtr();
+ p.triData = m_triData.getPtr();
+ p.binSegData = m_binSegData.getPtr();
+ p.binSegNext = m_binSegNext.getPtr();
+ p.binSegCount = m_binSegCount.getPtr();
+ p.binFirstSeg = m_binFirstSeg.getPtr();
+ p.binTotal = m_binTotal.getPtr();
+ p.tileSegData = m_tileSegData.getPtr();
+ p.tileSegNext = m_tileSegNext.getPtr();
+ p.tileSegCount = m_tileSegCount.getPtr();
+ p.activeTiles = m_activeTiles.getPtr();
+ p.tileFirstSeg = m_tileFirstSeg.getPtr();
+
+ size_t byteOffset = ((size_t)m_offsetPixels.x + (size_t)m_offsetPixels.y * (size_t)p.strideX) * sizeof(U32);
+ p.colorBuffer = m_colorBuffer.getPtr(byteOffset);
+ p.depthBuffer = m_depthBuffer.getPtr(byteOffset);
+ p.peelBuffer = (m_renderModeFlags & CudaRaster::RenderModeFlag_EnableDepthPeeling) ? m_peelBuffer.getPtr(byteOffset) : 0;
+ p.strideX = m_bufferSizePixels.x;
+ p.strideY = m_bufferSizePixels.y;
+
+ memcpy(&p.imageParamsFirst, imageParams, min(m_numImages, CR_EMBED_IMAGE_PARAMS) * sizeof(CRImageParams));
+ p.imageParamsExtra = (CRImageParams*)m_crImageParamsExtra.getPtr();
+ }
+
+ // Setup block sizes.
+
+ dim3 brBlock(32, CR_BIN_WARPS);
+ dim3 crBlock(32, CR_COARSE_WARPS);
+ dim3 frBlock(32, m_numFineWarpsPerBlock);
+ void* args[] = {&p};
+
+ // Launch stages from setup to coarse and copy atomics to host only if this is not a single-tile peeling iteration.
+ if (!peel)
+ {
+ if (instanceMode)
+ {
+ int setupBlocks = (m_numTriangles - 1) / (32 * CR_SETUP_WARPS) + 1;
+ NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((void*)triangleSetupKernel, dim3(setupBlocks, 1, m_numImages), dim3(32, CR_SETUP_WARPS), args, 0, stream));
+ }
+ else
+ {
+ for (int i=0; i < m_numImages; i++)
+ p.totalCount += imageParams[i].triCount;
+ int setupBlocks = (p.totalCount - 1) / (32 * CR_SETUP_WARPS) + 1;
+ NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((void*)triangleSetupKernel, dim3(setupBlocks, 1, 1), dim3(32, CR_SETUP_WARPS), args, 0, stream));
+ }
+ NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((void*)binRasterKernel, dim3(CR_BIN_STREAMS_SIZE, 1, m_numImages), brBlock, args, 0, stream));
+ NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((void*)coarseRasterKernel, dim3(m_numSMs * m_numCoarseBlocksPerSM, 1, m_numImages), crBlock, args, 0, stream));
+ NVDR_CHECK_CUDA_ERROR(cudaMemcpyAsync(m_crAtomicsHost.getPtr(), m_crAtomics.getPtr(), sizeof(CRAtomics) * m_numImages, cudaMemcpyDeviceToHost, stream));
+ }
+
+ // Fine rasterizer is launched always.
+ NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((void*)fineRasterKernel, dim3(m_numSMs * m_numFineBlocksPerSM, 1, m_numImages), frBlock, args, 0, stream));
+ NVDR_CHECK_CUDA_ERROR(cudaStreamSynchronize(stream));
+}
+
+//------------------------------------------------------------------------
diff --git a/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/RasterImpl.hpp b/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/RasterImpl.hpp
new file mode 100644
index 0000000000000000000000000000000000000000..321c7b30787ef50ac0d066f07ad5113c7079f499
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/RasterImpl.hpp
@@ -0,0 +1,102 @@
+// Copyright (c) 2009-2022, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#pragma once
+#include "PrivateDefs.hpp"
+#include "Buffer.hpp"
+#include "../CudaRaster.hpp"
+
+namespace CR
+{
+//------------------------------------------------------------------------
+
+class RasterImpl
+{
+public:
+ RasterImpl (void);
+ ~RasterImpl (void);
+
+ void setBufferSize (Vec3i size);
+ void setViewport (Vec2i size, Vec2i offset);
+ void setRenderModeFlags (U32 flags) { m_renderModeFlags = flags; }
+ void deferredClear (U32 color) { m_deferredClear = true; m_clearColor = color; }
+ void setVertexBuffer (void* ptr, int numVertices) { m_vertexPtr = ptr; m_numVertices = numVertices; } // GPU pointer.
+ void setIndexBuffer (void* ptr, int numTriangles) { m_indexPtr = ptr; m_numTriangles = numTriangles; } // GPU pointer.
+ bool drawTriangles (const Vec2i* ranges, bool peel, cudaStream_t stream);
+ void* getColorBuffer (void) { return m_colorBuffer.getPtr(); } // GPU pointer.
+ void* getDepthBuffer (void) { return m_depthBuffer.getPtr(); } // GPU pointer.
+ void swapDepthAndPeel (void);
+ size_t getTotalBufferSizes (void) const;
+
+private:
+ void launchStages (bool instanceMode, bool peel, cudaStream_t stream);
+
+ // State.
+
+ unsigned int m_renderModeFlags;
+ bool m_deferredClear;
+ unsigned int m_clearColor;
+ void* m_vertexPtr;
+ void* m_indexPtr;
+ int m_numVertices; // Input buffer size.
+ int m_numTriangles; // Input buffer size.
+ size_t m_bufferSizesReported; // Previously reported buffer sizes.
+
+ // Surfaces.
+
+ Buffer m_colorBuffer;
+ Buffer m_depthBuffer;
+ Buffer m_peelBuffer;
+ int m_numImages;
+ Vec2i m_bufferSizePixels; // Internal buffer size.
+ Vec2i m_bufferSizeVp; // Total viewport size.
+ Vec2i m_sizePixels; // Internal size at which all computation is done, buffers reserved, etc.
+ Vec2i m_sizeVp; // Size to which output will be cropped outside, determines viewport size.
+ Vec2i m_offsetPixels; // Viewport offset for tiled rendering.
+ Vec2i m_sizeBins;
+ S32 m_numBins;
+ Vec2i m_sizeTiles;
+ S32 m_numTiles;
+
+ // Launch sizes etc.
+
+ S32 m_numSMs;
+ S32 m_numCoarseBlocksPerSM;
+ S32 m_numFineBlocksPerSM;
+ S32 m_numFineWarpsPerBlock;
+
+ // Global intermediate buffers. Individual images have offsets to these.
+
+ Buffer m_crAtomics;
+ HostBuffer m_crAtomicsHost;
+ HostBuffer m_crImageParamsHost;
+ Buffer m_crImageParamsExtra;
+ Buffer m_triSubtris;
+ Buffer m_triHeader;
+ Buffer m_triData;
+ Buffer m_binFirstSeg;
+ Buffer m_binTotal;
+ Buffer m_binSegData;
+ Buffer m_binSegNext;
+ Buffer m_binSegCount;
+ Buffer m_activeTiles;
+ Buffer m_tileFirstSeg;
+ Buffer m_tileSegData;
+ Buffer m_tileSegNext;
+ Buffer m_tileSegCount;
+
+ // Actual buffer sizes.
+
+ S32 m_maxSubtris;
+ S32 m_maxBinSegs;
+ S32 m_maxTileSegs;
+};
+
+//------------------------------------------------------------------------
+} // namespace CR
+
diff --git a/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/RasterImpl_.cu b/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/RasterImpl_.cu
new file mode 100644
index 0000000000000000000000000000000000000000..69c137fdbfaf98f958ed3fe7afebc0d2debf05f1
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/RasterImpl_.cu
@@ -0,0 +1,37 @@
+// Copyright (c) 2009-2022, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#include "../CudaRaster.hpp"
+#include "PrivateDefs.hpp"
+#include "Constants.hpp"
+#include "Util.inl"
+
+namespace CR
+{
+
+//------------------------------------------------------------------------
+// Stage implementations.
+//------------------------------------------------------------------------
+
+#include "TriangleSetup.inl"
+#include "BinRaster.inl"
+#include "CoarseRaster.inl"
+#include "FineRaster.inl"
+
+}
+
+//------------------------------------------------------------------------
+// Stage entry points.
+//------------------------------------------------------------------------
+
+__global__ void __launch_bounds__(CR_SETUP_WARPS * 32, CR_SETUP_OPT_BLOCKS) triangleSetupKernel (const CR::CRParams p) { CR::triangleSetupImpl(p); }
+__global__ void __launch_bounds__(CR_BIN_WARPS * 32, 1) binRasterKernel (const CR::CRParams p) { CR::binRasterImpl(p); }
+__global__ void __launch_bounds__(CR_COARSE_WARPS * 32, 1) coarseRasterKernel (const CR::CRParams p) { CR::coarseRasterImpl(p); }
+__global__ void __launch_bounds__(CR_FINE_MAX_WARPS * 32, 1) fineRasterKernel (const CR::CRParams p) { CR::fineRasterImpl(p); }
+
+//------------------------------------------------------------------------
diff --git a/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/TriangleSetup.inl b/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/TriangleSetup.inl
new file mode 100644
index 0000000000000000000000000000000000000000..716cb0e7c3d9b4f3a8d639f8ad0e23d425fefd91
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/TriangleSetup.inl
@@ -0,0 +1,402 @@
+// Copyright (c) 2009-2022, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+//------------------------------------------------------------------------
+
+__device__ __inline__ void snapTriangle(
+ const CRParams& p,
+ float4 v0, float4 v1, float4 v2,
+ int2& p0, int2& p1, int2& p2, float3& rcpW, int2& lo, int2& hi)
+{
+ F32 viewScaleX = (F32)(p.widthPixelsVp << (CR_SUBPIXEL_LOG2 - 1));
+ F32 viewScaleY = (F32)(p.heightPixelsVp << (CR_SUBPIXEL_LOG2 - 1));
+ rcpW = make_float3(1.0f / v0.w, 1.0f / v1.w, 1.0f / v2.w);
+ p0 = make_int2(f32_to_s32_sat(v0.x * rcpW.x * viewScaleX), f32_to_s32_sat(v0.y * rcpW.x * viewScaleY));
+ p1 = make_int2(f32_to_s32_sat(v1.x * rcpW.y * viewScaleX), f32_to_s32_sat(v1.y * rcpW.y * viewScaleY));
+ p2 = make_int2(f32_to_s32_sat(v2.x * rcpW.z * viewScaleX), f32_to_s32_sat(v2.y * rcpW.z * viewScaleY));
+ lo = make_int2(min_min(p0.x, p1.x, p2.x), min_min(p0.y, p1.y, p2.y));
+ hi = make_int2(max_max(p0.x, p1.x, p2.x), max_max(p0.y, p1.y, p2.y));
+}
+
+//------------------------------------------------------------------------
+
+__device__ __inline__ U32 cover8x8_selectFlips(S32 dx, S32 dy) // 10 instr
+{
+ U32 flips = 0;
+ if (dy > 0 || (dy == 0 && dx <= 0))
+ flips ^= (1 << CR_FLIPBIT_FLIP_X) ^ (1 << CR_FLIPBIT_FLIP_Y) ^ (1 << CR_FLIPBIT_COMPL);
+ if (dx > 0)
+ flips ^= (1 << CR_FLIPBIT_FLIP_X) ^ (1 << CR_FLIPBIT_FLIP_Y);
+ if (::abs(dx) < ::abs(dy))
+ flips ^= (1 << CR_FLIPBIT_SWAP_XY) ^ (1 << CR_FLIPBIT_FLIP_Y);
+ return flips;
+}
+
+//------------------------------------------------------------------------
+
+__device__ __inline__ bool prepareTriangle(
+ const CRParams& p,
+ int2 p0, int2 p1, int2 p2, int2 lo, int2 hi,
+ int2& d1, int2& d2, S32& area)
+{
+ // Backfacing or degenerate => cull.
+
+ d1 = make_int2(p1.x - p0.x, p1.y - p0.y);
+ d2 = make_int2(p2.x - p0.x, p2.y - p0.y);
+ area = d1.x * d2.y - d1.y * d2.x;
+
+ if (area == 0)
+ return false; // Degenerate.
+
+ if (area < 0 && (p.renderModeFlags & CudaRaster::RenderModeFlag_EnableBackfaceCulling) != 0)
+ return false; // Backfacing.
+
+ // AABB falls between samples => cull.
+
+ int sampleSize = 1 << CR_SUBPIXEL_LOG2;
+ int biasX = (p.widthPixelsVp << (CR_SUBPIXEL_LOG2 - 1)) - (sampleSize >> 1);
+ int biasY = (p.heightPixelsVp << (CR_SUBPIXEL_LOG2 - 1)) - (sampleSize >> 1);
+ int lox = (int)add_add(lo.x, sampleSize - 1, biasX) & -sampleSize;
+ int loy = (int)add_add(lo.y, sampleSize - 1, biasY) & -sampleSize;
+ int hix = (hi.x + biasX) & -sampleSize;
+ int hiy = (hi.y + biasY) & -sampleSize;
+
+ if (lox > hix || loy > hiy)
+ return false; // Between pixels.
+
+ // AABB covers 1 or 2 samples => cull if they are not covered.
+
+ int diff = add_sub(hix, hiy, lox) - loy;
+ if (diff <= sampleSize)
+ {
+ int2 t0 = make_int2(add_sub(p0.x, biasX, lox), add_sub(p0.y, biasY, loy));
+ int2 t1 = make_int2(add_sub(p1.x, biasX, lox), add_sub(p1.y, biasY, loy));
+ int2 t2 = make_int2(add_sub(p2.x, biasX, lox), add_sub(p2.y, biasY, loy));
+ S32 e0 = t0.x * t1.y - t0.y * t1.x;
+ S32 e1 = t1.x * t2.y - t1.y * t2.x;
+ S32 e2 = t2.x * t0.y - t2.y * t0.x;
+ if (area < 0)
+ {
+ e0 = -e0;
+ e1 = -e1;
+ e2 = -e2;
+ }
+
+ if (e0 < 0 || e1 < 0 || e2 < 0)
+ {
+ if (diff == 0)
+ return false; // Between pixels.
+
+ t0 = make_int2(add_sub(p0.x, biasX, hix), add_sub(p0.y, biasY, hiy));
+ t1 = make_int2(add_sub(p1.x, biasX, hix), add_sub(p1.y, biasY, hiy));
+ t2 = make_int2(add_sub(p2.x, biasX, hix), add_sub(p2.y, biasY, hiy));
+ e0 = t0.x * t1.y - t0.y * t1.x;
+ e1 = t1.x * t2.y - t1.y * t2.x;
+ e2 = t2.x * t0.y - t2.y * t0.x;
+ if (area < 0)
+ {
+ e0 = -e0;
+ e1 = -e1;
+ e2 = -e2;
+ }
+
+ if (e0 < 0 || e1 < 0 || e2 < 0)
+ return false; // Between pixels.
+ }
+ }
+
+ // Otherwise => proceed to output the triangle.
+
+ return true; // Visible.
+}
+
+//------------------------------------------------------------------------
+
+__device__ __inline__ void setupTriangle(
+ const CRParams& p,
+ CRTriangleHeader* th, CRTriangleData* td, int triId,
+ float v0z, float v1z, float v2z,
+ int2 p0, int2 p1, int2 p2, float3 rcpW,
+ int2 d1, int2 d2, S32 area)
+{
+ // Swap vertices 1 and 2 if area is negative. Only executed if backface culling is
+ // disabled (if it is enabled, we never come here with area < 0).
+
+ if (area < 0)
+ {
+ swap(d1, d2);
+ swap(p1, p2);
+ swap(v1z, v2z);
+ swap(rcpW.y, rcpW.z);
+ area = -area;
+ }
+
+ int2 wv0;
+ wv0.x = p0.x + (p.widthPixelsVp << (CR_SUBPIXEL_LOG2 - 1));
+ wv0.y = p0.y + (p.heightPixelsVp << (CR_SUBPIXEL_LOG2 - 1));
+
+ // Setup depth plane equation.
+
+ F32 zcoef = (F32)(CR_DEPTH_MAX - CR_DEPTH_MIN) * 0.5f;
+ F32 zbias = (F32)(CR_DEPTH_MAX + CR_DEPTH_MIN) * 0.5f;
+ float3 zvert = make_float3(
+ (v0z * zcoef) * rcpW.x + zbias,
+ (v1z * zcoef) * rcpW.y + zbias,
+ (v2z * zcoef) * rcpW.z + zbias
+ );
+ int2 zv0 = make_int2(
+ wv0.x - (1 << (CR_SUBPIXEL_LOG2 - 1)),
+ wv0.y - (1 << (CR_SUBPIXEL_LOG2 - 1))
+ );
+ uint3 zpleq = setupPleq(zvert, zv0, d1, d2, 1.0f / (F32)area);
+
+ U32 zmin = f32_to_u32_sat(fminf(fminf(zvert.x, zvert.y), zvert.z) - (F32)CR_LERP_ERROR(0));
+
+ // Write CRTriangleData.
+
+ *(uint4*)td = make_uint4(zpleq.x, zpleq.y, zpleq.z, triId);
+
+ // Determine flipbits.
+
+ U32 f01 = cover8x8_selectFlips(d1.x, d1.y);
+ U32 f12 = cover8x8_selectFlips(d2.x - d1.x, d2.y - d1.y);
+ U32 f20 = cover8x8_selectFlips(-d2.x, -d2.y);
+
+ // Write CRTriangleHeader.
+
+ *(uint4*)th = make_uint4(
+ prmt(p0.x, p0.y, 0x5410),
+ prmt(p1.x, p1.y, 0x5410),
+ prmt(p2.x, p2.y, 0x5410),
+ (zmin & 0xfffff000u) | (f01 << 6) | (f12 << 2) | (f20 >> 2));
+}
+
+//------------------------------------------------------------------------
+
+__device__ __inline__ void triangleSetupImpl(const CRParams p)
+{
+ __shared__ F32 s_bary[CR_SETUP_WARPS * 32][18];
+ F32* bary = s_bary[threadIdx.x + threadIdx.y * 32];
+
+ // Compute task and image indices.
+
+ int taskIdx = threadIdx.x + 32 * (threadIdx.y + CR_SETUP_WARPS * blockIdx.x);
+ int imageIdx = 0;
+ if (p.instanceMode)
+ {
+ imageIdx = blockIdx.z;
+ if (taskIdx >= p.numTriangles)
+ return;
+ }
+ else
+ {
+ while (imageIdx < p.numImages)
+ {
+ int count = getImageParams(p, imageIdx).triCount;
+ if (taskIdx < count)
+ break;
+ taskIdx -= count;
+ imageIdx += 1;
+ }
+ if (imageIdx == p.numImages)
+ return;
+ }
+
+ // Per-image data structures.
+
+ const CRImageParams& ip = getImageParams(p, imageIdx);
+ CRAtomics& atomics = p.atomics[imageIdx];
+
+ const int* indexBuffer = (const int*)p.indexBuffer;
+ U8* triSubtris = (U8*)p.triSubtris + imageIdx * p.maxSubtris;
+ CRTriangleHeader* triHeader = (CRTriangleHeader*)p.triHeader + imageIdx * p.maxSubtris;
+ CRTriangleData* triData = (CRTriangleData*)p.triData + imageIdx * p.maxSubtris;
+
+ // Determine triangle index.
+
+ int triIdx = taskIdx;
+ if (!p.instanceMode)
+ triIdx += ip.triOffset;
+
+ // Read vertex indices.
+
+ if ((U32)triIdx >= (U32)p.numTriangles)
+ {
+ // Bad triangle index.
+ triSubtris[taskIdx] = 0;
+ return;
+ }
+
+ uint4 vidx;
+ vidx.x = indexBuffer[triIdx * 3 + 0];
+ vidx.y = indexBuffer[triIdx * 3 + 1];
+ vidx.z = indexBuffer[triIdx * 3 + 2];
+ vidx.w = triIdx + 1; // Triangle index.
+
+ if (vidx.x >= (U32)p.numVertices ||
+ vidx.y >= (U32)p.numVertices ||
+ vidx.z >= (U32)p.numVertices)
+ {
+ // Bad vertex index.
+ triSubtris[taskIdx] = 0;
+ return;
+ }
+
+ // Read vertex positions.
+
+ const float4* vertexBuffer = (const float4*)p.vertexBuffer;
+ if (p.instanceMode)
+ vertexBuffer += p.numVertices * imageIdx; // Instance offset.
+
+ float4 v0 = vertexBuffer[vidx.x];
+ float4 v1 = vertexBuffer[vidx.y];
+ float4 v2 = vertexBuffer[vidx.z];
+
+ // Adjust vertex positions according to current viewport size and offset.
+
+ v0.x = v0.x * p.xs + v0.w * p.xo;
+ v0.y = v0.y * p.ys + v0.w * p.yo;
+ v1.x = v1.x * p.xs + v1.w * p.xo;
+ v1.y = v1.y * p.ys + v1.w * p.yo;
+ v2.x = v2.x * p.xs + v2.w * p.xo;
+ v2.y = v2.y * p.ys + v2.w * p.yo;
+
+ // Outside view frustum => cull.
+
+ if (v0.w < fabsf(v0.x) | v0.w < fabsf(v0.y) | v0.w < fabsf(v0.z))
+ {
+ if ((v0.w < +v0.x & v1.w < +v1.x & v2.w < +v2.x) |
+ (v0.w < -v0.x & v1.w < -v1.x & v2.w < -v2.x) |
+ (v0.w < +v0.y & v1.w < +v1.y & v2.w < +v2.y) |
+ (v0.w < -v0.y & v1.w < -v1.y & v2.w < -v2.y) |
+ (v0.w < +v0.z & v1.w < +v1.z & v2.w < +v2.z) |
+ (v0.w < -v0.z & v1.w < -v1.z & v2.w < -v2.z))
+ {
+ triSubtris[taskIdx] = 0;
+ return;
+ }
+ }
+
+ // Inside depth range => try to snap vertices.
+
+ if (v0.w >= fabsf(v0.z) & v1.w >= fabsf(v1.z) & v2.w >= fabsf(v2.z))
+ {
+ // Inside S16 range and small enough => fast path.
+ // Note: aabbLimit comes from the fact that cover8x8
+ // does not support guardband with maximal viewport.
+
+ int2 p0, p1, p2, lo, hi;
+ float3 rcpW;
+
+ snapTriangle(p, v0, v1, v2, p0, p1, p2, rcpW, lo, hi);
+ S32 loxy = ::min(lo.x, lo.y);
+ S32 hixy = ::max(hi.x, hi.y);
+ S32 aabbLimit = (1 << (CR_MAXVIEWPORT_LOG2 + CR_SUBPIXEL_LOG2)) - 1;
+
+ if (loxy >= -32768 && hixy <= 32767 && hixy - loxy <= aabbLimit)
+ {
+ int2 d1, d2;
+ S32 area;
+ bool res = prepareTriangle(p, p0, p1, p2, lo, hi, d1, d2, area);
+ triSubtris[taskIdx] = res ? 1 : 0;
+
+ if (res)
+ setupTriangle(
+ p,
+ &triHeader[taskIdx], &triData[taskIdx], vidx.w,
+ v0.z, v1.z, v2.z,
+ p0, p1, p2, rcpW,
+ d1, d2, area);
+
+ return;
+ }
+ }
+
+ // Clip to view frustum.
+
+ float4 ov0 = v0;
+ float4 od1 = make_float4(v1.x - v0.x, v1.y - v0.y, v1.z - v0.z, v1.w - v0.w);
+ float4 od2 = make_float4(v2.x - v0.x, v2.y - v0.y, v2.z - v0.z, v2.w - v0.w);
+ int numVerts = clipTriangleWithFrustum(bary, &ov0.x, &v1.x, &v2.x, &od1.x, &od2.x);
+
+ // Count non-culled subtriangles.
+
+ v0.x = ov0.x + od1.x * bary[0] + od2.x * bary[1];
+ v0.y = ov0.y + od1.y * bary[0] + od2.y * bary[1];
+ v0.z = ov0.z + od1.z * bary[0] + od2.z * bary[1];
+ v0.w = ov0.w + od1.w * bary[0] + od2.w * bary[1];
+ v1.x = ov0.x + od1.x * bary[2] + od2.x * bary[3];
+ v1.y = ov0.y + od1.y * bary[2] + od2.y * bary[3];
+ v1.z = ov0.z + od1.z * bary[2] + od2.z * bary[3];
+ v1.w = ov0.w + od1.w * bary[2] + od2.w * bary[3];
+ float4 tv1 = v1;
+
+ int numSubtris = 0;
+ for (int i = 2; i < numVerts; i++)
+ {
+ v2.x = ov0.x + od1.x * bary[i * 2 + 0] + od2.x * bary[i * 2 + 1];
+ v2.y = ov0.y + od1.y * bary[i * 2 + 0] + od2.y * bary[i * 2 + 1];
+ v2.z = ov0.z + od1.z * bary[i * 2 + 0] + od2.z * bary[i * 2 + 1];
+ v2.w = ov0.w + od1.w * bary[i * 2 + 0] + od2.w * bary[i * 2 + 1];
+
+ int2 p0, p1, p2, lo, hi, d1, d2;
+ float3 rcpW;
+ S32 area;
+
+ snapTriangle(p, v0, v1, v2, p0, p1, p2, rcpW, lo, hi);
+ if (prepareTriangle(p, p0, p1, p2, lo, hi, d1, d2, area))
+ numSubtris++;
+
+ v1 = v2;
+ }
+
+ triSubtris[taskIdx] = numSubtris;
+
+ // Multiple subtriangles => allocate.
+
+ int subtriBase = taskIdx;
+ if (numSubtris > 1)
+ {
+ subtriBase = atomicAdd(&atomics.numSubtris, numSubtris);
+ triHeader[taskIdx].misc = subtriBase;
+ if (subtriBase + numSubtris > p.maxSubtris)
+ numVerts = 0;
+ }
+
+ // Setup subtriangles.
+
+ v1 = tv1;
+ for (int i = 2; i < numVerts; i++)
+ {
+ v2.x = ov0.x + od1.x * bary[i * 2 + 0] + od2.x * bary[i * 2 + 1];
+ v2.y = ov0.y + od1.y * bary[i * 2 + 0] + od2.y * bary[i * 2 + 1];
+ v2.z = ov0.z + od1.z * bary[i * 2 + 0] + od2.z * bary[i * 2 + 1];
+ v2.w = ov0.w + od1.w * bary[i * 2 + 0] + od2.w * bary[i * 2 + 1];
+
+ int2 p0, p1, p2, lo, hi, d1, d2;
+ float3 rcpW;
+ S32 area;
+
+ snapTriangle(p, v0, v1, v2, p0, p1, p2, rcpW, lo, hi);
+ if (prepareTriangle(p, p0, p1, p2, lo, hi, d1, d2, area))
+ {
+ setupTriangle(
+ p,
+ &triHeader[subtriBase], &triData[subtriBase], vidx.w,
+ v0.z, v1.z, v2.z,
+ p0, p1, p2, rcpW,
+ d1, d2, area);
+
+ subtriBase++;
+ }
+
+ v1 = v2;
+ }
+}
+
+//------------------------------------------------------------------------
diff --git a/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/Util.inl b/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/Util.inl
new file mode 100644
index 0000000000000000000000000000000000000000..cf5bb79f9606e3b81e904c2815910e3a0626598e
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/common/cudaraster/impl/Util.inl
@@ -0,0 +1,452 @@
+// Copyright (c) 2009-2022, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#include "PrivateDefs.hpp"
+
+namespace CR
+{
+//------------------------------------------------------------------------
+
+template __device__ __inline__ void swap(T& a, T& b) { T t = a; a = b; b = t; }
+
+__device__ __inline__ U32 getLo (U64 a) { return __double2loint(__longlong_as_double(a)); }
+__device__ __inline__ S32 getLo (S64 a) { return __double2loint(__longlong_as_double(a)); }
+__device__ __inline__ U32 getHi (U64 a) { return __double2hiint(__longlong_as_double(a)); }
+__device__ __inline__ S32 getHi (S64 a) { return __double2hiint(__longlong_as_double(a)); }
+__device__ __inline__ U64 combineLoHi (U32 lo, U32 hi) { return __double_as_longlong(__hiloint2double(hi, lo)); }
+__device__ __inline__ S64 combineLoHi (S32 lo, S32 hi) { return __double_as_longlong(__hiloint2double(hi, lo)); }
+__device__ __inline__ U32 getLaneMaskLt (void) { U32 r; asm("mov.u32 %0, %lanemask_lt;" : "=r"(r)); return r; }
+__device__ __inline__ U32 getLaneMaskLe (void) { U32 r; asm("mov.u32 %0, %lanemask_le;" : "=r"(r)); return r; }
+__device__ __inline__ U32 getLaneMaskGt (void) { U32 r; asm("mov.u32 %0, %lanemask_gt;" : "=r"(r)); return r; }
+__device__ __inline__ U32 getLaneMaskGe (void) { U32 r; asm("mov.u32 %0, %lanemask_ge;" : "=r"(r)); return r; }
+__device__ __inline__ int findLeadingOne (U32 v) { U32 r; asm("bfind.u32 %0, %1;" : "=r"(r) : "r"(v)); return r; }
+__device__ __inline__ bool singleLane (void) { return ((::__ballot_sync(~0u, true) & getLaneMaskLt()) == 0); }
+
+__device__ __inline__ void add_add_carry (U32& rlo, U32 alo, U32 blo, U32& rhi, U32 ahi, U32 bhi) { U64 r = combineLoHi(alo, ahi) + combineLoHi(blo, bhi); rlo = getLo(r); rhi = getHi(r); }
+__device__ __inline__ S32 f32_to_s32_sat (F32 a) { S32 v; asm("cvt.rni.sat.s32.f32 %0, %1;" : "=r"(v) : "f"(a)); return v; }
+__device__ __inline__ U32 f32_to_u32_sat (F32 a) { U32 v; asm("cvt.rni.sat.u32.f32 %0, %1;" : "=r"(v) : "f"(a)); return v; }
+__device__ __inline__ U32 f32_to_u32_sat_rmi (F32 a) { U32 v; asm("cvt.rmi.sat.u32.f32 %0, %1;" : "=r"(v) : "f"(a)); return v; }
+__device__ __inline__ U32 f32_to_u8_sat (F32 a) { U32 v; asm("cvt.rni.sat.u8.f32 %0, %1;" : "=r"(v) : "f"(a)); return v; }
+__device__ __inline__ S64 f32_to_s64 (F32 a) { S64 v; asm("cvt.rni.s64.f32 %0, %1;" : "=l"(v) : "f"(a)); return v; }
+__device__ __inline__ S32 add_s16lo_s16lo (S32 a, S32 b) { S32 v; asm("vadd.s32.s32.s32 %0, %1.h0, %2.h0;" : "=r"(v) : "r"(a), "r"(b)); return v; }
+__device__ __inline__ S32 add_s16hi_s16lo (S32 a, S32 b) { S32 v; asm("vadd.s32.s32.s32 %0, %1.h1, %2.h0;" : "=r"(v) : "r"(a), "r"(b)); return v; }
+__device__ __inline__ S32 add_s16lo_s16hi (S32 a, S32 b) { S32 v; asm("vadd.s32.s32.s32 %0, %1.h0, %2.h1;" : "=r"(v) : "r"(a), "r"(b)); return v; }
+__device__ __inline__ S32 add_s16hi_s16hi (S32 a, S32 b) { S32 v; asm("vadd.s32.s32.s32 %0, %1.h1, %2.h1;" : "=r"(v) : "r"(a), "r"(b)); return v; }
+__device__ __inline__ S32 sub_s16lo_s16lo (S32 a, S32 b) { S32 v; asm("vsub.s32.s32.s32 %0, %1.h0, %2.h0;" : "=r"(v) : "r"(a), "r"(b)); return v; }
+__device__ __inline__ S32 sub_s16hi_s16lo (S32 a, S32 b) { S32 v; asm("vsub.s32.s32.s32 %0, %1.h1, %2.h0;" : "=r"(v) : "r"(a), "r"(b)); return v; }
+__device__ __inline__ S32 sub_s16lo_s16hi (S32 a, S32 b) { S32 v; asm("vsub.s32.s32.s32 %0, %1.h0, %2.h1;" : "=r"(v) : "r"(a), "r"(b)); return v; }
+__device__ __inline__ S32 sub_s16hi_s16hi (S32 a, S32 b) { S32 v; asm("vsub.s32.s32.s32 %0, %1.h1, %2.h1;" : "=r"(v) : "r"(a), "r"(b)); return v; }
+__device__ __inline__ S32 sub_u16lo_u16lo (U32 a, U32 b) { S32 v; asm("vsub.s32.u32.u32 %0, %1.h0, %2.h0;" : "=r"(v) : "r"(a), "r"(b)); return v; }
+__device__ __inline__ S32 sub_u16hi_u16lo (U32 a, U32 b) { S32 v; asm("vsub.s32.u32.u32 %0, %1.h1, %2.h0;" : "=r"(v) : "r"(a), "r"(b)); return v; }
+__device__ __inline__ S32 sub_u16lo_u16hi (U32 a, U32 b) { S32 v; asm("vsub.s32.u32.u32 %0, %1.h0, %2.h1;" : "=r"(v) : "r"(a), "r"(b)); return v; }
+__device__ __inline__ S32 sub_u16hi_u16hi (U32 a, U32 b) { S32 v; asm("vsub.s32.u32.u32 %0, %1.h1, %2.h1;" : "=r"(v) : "r"(a), "r"(b)); return v; }
+__device__ __inline__ U32 add_b0 (U32 a, U32 b) { U32 v; asm("vadd.u32.u32.u32 %0, %1.b0, %2;" : "=r"(v) : "r"(a), "r"(b)); return v; }
+__device__ __inline__ U32 add_b1 (U32 a, U32 b) { U32 v; asm("vadd.u32.u32.u32 %0, %1.b1, %2;" : "=r"(v) : "r"(a), "r"(b)); return v; }
+__device__ __inline__ U32 add_b2 (U32 a, U32 b) { U32 v; asm("vadd.u32.u32.u32 %0, %1.b2, %2;" : "=r"(v) : "r"(a), "r"(b)); return v; }
+__device__ __inline__ U32 add_b3 (U32 a, U32 b) { U32 v; asm("vadd.u32.u32.u32 %0, %1.b3, %2;" : "=r"(v) : "r"(a), "r"(b)); return v; }
+__device__ __inline__ U32 vmad_b0 (U32 a, U32 b, U32 c) { U32 v; asm("vmad.u32.u32.u32 %0, %1.b0, %2, %3;" : "=r"(v) : "r"(a), "r"(b), "r"(c)); return v; }
+__device__ __inline__ U32 vmad_b1 (U32 a, U32 b, U32 c) { U32 v; asm("vmad.u32.u32.u32 %0, %1.b1, %2, %3;" : "=r"(v) : "r"(a), "r"(b), "r"(c)); return v; }
+__device__ __inline__ U32 vmad_b2 (U32 a, U32 b, U32 c) { U32 v; asm("vmad.u32.u32.u32 %0, %1.b2, %2, %3;" : "=r"(v) : "r"(a), "r"(b), "r"(c)); return v; }
+__device__ __inline__ U32 vmad_b3 (U32 a, U32 b, U32 c) { U32 v; asm("vmad.u32.u32.u32 %0, %1.b3, %2, %3;" : "=r"(v) : "r"(a), "r"(b), "r"(c)); return v; }
+__device__ __inline__ U32 vmad_b0_b3 (U32 a, U32 b, U32 c) { U32 v; asm("vmad.u32.u32.u32 %0, %1.b0, %2.b3, %3;" : "=r"(v) : "r"(a), "r"(b), "r"(c)); return v; }
+__device__ __inline__ U32 vmad_b1_b3 (U32 a, U32 b, U32 c) { U32 v; asm("vmad.u32.u32.u32 %0, %1.b1, %2.b3, %3;" : "=r"(v) : "r"(a), "r"(b), "r"(c)); return v; }
+__device__ __inline__ U32 vmad_b2_b3 (U32 a, U32 b, U32 c) { U32 v; asm("vmad.u32.u32.u32 %0, %1.b2, %2.b3, %3;" : "=r"(v) : "r"(a), "r"(b), "r"(c)); return v; }
+__device__ __inline__ U32 vmad_b3_b3 (U32 a, U32 b, U32 c) { U32 v; asm("vmad.u32.u32.u32 %0, %1.b3, %2.b3, %3;" : "=r"(v) : "r"(a), "r"(b), "r"(c)); return v; }
+__device__ __inline__ U32 add_mask8 (U32 a, U32 b) { U32 v; U32 z=0; asm("vadd.u32.u32.u32 %0.b0, %1, %2, %3;" : "=r"(v) : "r"(a), "r"(b), "r"(z)); return v; }
+__device__ __inline__ U32 sub_mask8 (U32 a, U32 b) { U32 v; U32 z=0; asm("vsub.u32.u32.u32 %0.b0, %1, %2, %3;" : "=r"(v) : "r"(a), "r"(b), "r"(z)); return v; }
+__device__ __inline__ S32 max_max (S32 a, S32 b, S32 c) { S32 v; asm("vmax.s32.s32.s32.max %0, %1, %2, %3;" : "=r"(v) : "r"(a), "r"(b), "r"(c)); return v; }
+__device__ __inline__ S32 min_min (S32 a, S32 b, S32 c) { S32 v; asm("vmin.s32.s32.s32.min %0, %1, %2, %3;" : "=r"(v) : "r"(a), "r"(b), "r"(c)); return v; }
+__device__ __inline__ S32 max_add (S32 a, S32 b, S32 c) { S32 v; asm("vmax.s32.s32.s32.add %0, %1, %2, %3;" : "=r"(v) : "r"(a), "r"(b), "r"(c)); return v; }
+__device__ __inline__ S32 min_add (S32 a, S32 b, S32 c) { S32 v; asm("vmin.s32.s32.s32.add %0, %1, %2, %3;" : "=r"(v) : "r"(a), "r"(b), "r"(c)); return v; }
+__device__ __inline__ U32 add_add (U32 a, U32 b, U32 c) { U32 v; asm("vadd.u32.u32.u32.add %0, %1, %2, %3;" : "=r"(v) : "r"(a), "r"(b), "r"(c)); return v; }
+__device__ __inline__ U32 sub_add (U32 a, U32 b, U32 c) { U32 v; asm("vsub.u32.u32.u32.add %0, %1, %2, %3;" : "=r"(v) : "r"(a), "r"(b), "r"(c)); return v; }
+__device__ __inline__ U32 add_sub (U32 a, U32 b, U32 c) { U32 v; asm("vsub.u32.u32.u32.add %0, %1, %2, %3;" : "=r"(v) : "r"(a), "r"(c), "r"(b)); return v; }
+__device__ __inline__ S32 add_clamp_0_x (S32 a, S32 b, S32 c) { S32 v; asm("vadd.u32.s32.s32.sat.min %0, %1, %2, %3;" : "=r"(v) : "r"(a), "r"(b), "r"(c)); return v; }
+__device__ __inline__ S32 add_clamp_b0 (S32 a, S32 b, S32 c) { S32 v; asm("vadd.u32.s32.s32.sat %0.b0, %1, %2, %3;" : "=r"(v) : "r"(a), "r"(b), "r"(c)); return v; }
+__device__ __inline__ S32 add_clamp_b2 (S32 a, S32 b, S32 c) { S32 v; asm("vadd.u32.s32.s32.sat %0.b2, %1, %2, %3;" : "=r"(v) : "r"(a), "r"(b), "r"(c)); return v; }
+__device__ __inline__ U32 prmt (U32 a, U32 b, U32 c) { U32 v; asm("prmt.b32 %0, %1, %2, %3;" : "=r"(v) : "r"(a), "r"(b), "r"(c)); return v; }
+__device__ __inline__ S32 u32lo_sext (U32 a) { U32 v; asm("cvt.s16.u32 %0, %1;" : "=r"(v) : "r"(a)); return v; }
+__device__ __inline__ U32 slct (U32 a, U32 b, S32 c) { U32 v; asm("slct.u32.s32 %0, %1, %2, %3;" : "=r"(v) : "r"(a), "r"(b), "r"(c)); return v; }
+__device__ __inline__ S32 slct (S32 a, S32 b, S32 c) { S32 v; asm("slct.s32.s32 %0, %1, %2, %3;" : "=r"(v) : "r"(a), "r"(b), "r"(c)); return v; }
+__device__ __inline__ F32 slct (F32 a, F32 b, S32 c) { F32 v; asm("slct.f32.s32 %0, %1, %2, %3;" : "=f"(v) : "f"(a), "f"(b), "r"(c)); return v; }
+__device__ __inline__ U32 isetge (S32 a, S32 b) { U32 v; asm("set.ge.u32.s32 %0, %1, %2;" : "=r"(v) : "r"(a), "r"(b)); return v; }
+__device__ __inline__ F64 rcp_approx (F64 a) { F64 v; asm("rcp.approx.ftz.f64 %0, %1;" : "=d"(v) : "d"(a)); return v; }
+__device__ __inline__ F32 fma_rm (F32 a, F32 b, F32 c) { F32 v; asm("fma.rm.f32 %0, %1, %2, %3;" : "=f"(v) : "f"(a), "f"(b), "f"(c)); return v; }
+__device__ __inline__ U32 idiv_fast (U32 a, U32 b);
+
+__device__ __inline__ uint3 setupPleq (float3 values, int2 v0, int2 d1, int2 d2, F32 areaRcp);
+
+__device__ __inline__ void cover8x8_setupLUT (volatile U64* lut);
+__device__ __inline__ U64 cover8x8_exact_fast (S32 ox, S32 oy, S32 dx, S32 dy, U32 flips, volatile const U64* lut); // Assumes viewport <= 2^11, subpixels <= 2^4, no guardband.
+__device__ __inline__ U64 cover8x8_lookupMask (S64 yinit, U32 yinc, U32 flips, volatile const U64* lut);
+
+__device__ __inline__ U64 cover8x8_exact_noLUT (S32 ox, S32 oy, S32 dx, S32 dy); // optimized reference implementation, does not require look-up table
+__device__ __inline__ U64 cover8x8_conservative_noLUT (S32 ox, S32 oy, S32 dx, S32 dy);
+__device__ __inline__ U64 cover8x8_generateMask_noLUT (S32 curr, S32 dx, S32 dy);
+
+template __device__ __inline__ void sortShared(T* ptr, int numItems); // Assumes that numItems <= threadsInBlock. Must sync before & after the call.
+
+__device__ __inline__ const CRImageParams& getImageParams(const CRParams& p, int idx)
+{
+ return (idx < CR_EMBED_IMAGE_PARAMS) ? p.imageParamsFirst[idx] : p.imageParamsExtra[idx - CR_EMBED_IMAGE_PARAMS];
+}
+
+//------------------------------------------------------------------------
+
+__device__ __inline__ int clipPolygonWithPlane(F32* baryOut, const F32* baryIn, int numIn, F32 v0, F32 v1, F32 v2)
+{
+ int numOut = 0;
+ if (numIn >= 3)
+ {
+ int ai = (numIn - 1) * 2;
+ F32 av = v0 + v1 * baryIn[ai + 0] + v2 * baryIn[ai + 1];
+ for (int bi = 0; bi < numIn * 2; bi += 2)
+ {
+ F32 bv = v0 + v1 * baryIn[bi + 0] + v2 * baryIn[bi + 1];
+ if (av * bv < 0.0f)
+ {
+ F32 bc = av / (av - bv);
+ F32 ac = 1.0f - bc;
+ baryOut[numOut + 0] = baryIn[ai + 0] * ac + baryIn[bi + 0] * bc;
+ baryOut[numOut + 1] = baryIn[ai + 1] * ac + baryIn[bi + 1] * bc;
+ numOut += 2;
+ }
+ if (bv >= 0.0f)
+ {
+ baryOut[numOut + 0] = baryIn[bi + 0];
+ baryOut[numOut + 1] = baryIn[bi + 1];
+ numOut += 2;
+ }
+ ai = bi;
+ av = bv;
+ }
+ }
+ return (numOut >> 1);
+}
+
+//------------------------------------------------------------------------
+
+__device__ __inline__ int clipTriangleWithFrustum(F32* bary, const F32* v0, const F32* v1, const F32* v2, const F32* d1, const F32* d2)
+{
+ int num = 3;
+ bary[0] = 0.0f, bary[1] = 0.0f;
+ bary[2] = 1.0f, bary[3] = 0.0f;
+ bary[4] = 0.0f, bary[5] = 1.0f;
+
+ if ((v0[3] < fabsf(v0[0])) | (v1[3] < fabsf(v1[0])) | (v2[3] < fabsf(v2[0])))
+ {
+ F32 temp[18];
+ num = clipPolygonWithPlane(temp, bary, num, v0[3] + v0[0], d1[3] + d1[0], d2[3] + d2[0]);
+ num = clipPolygonWithPlane(bary, temp, num, v0[3] - v0[0], d1[3] - d1[0], d2[3] - d2[0]);
+ }
+ if ((v0[3] < fabsf(v0[1])) | (v1[3] < fabsf(v1[1])) | (v2[3] < fabsf(v2[1])))
+ {
+ F32 temp[18];
+ num = clipPolygonWithPlane(temp, bary, num, v0[3] + v0[1], d1[3] + d1[1], d2[3] + d2[1]);
+ num = clipPolygonWithPlane(bary, temp, num, v0[3] - v0[1], d1[3] - d1[1], d2[3] - d2[1]);
+ }
+ if ((v0[3] < fabsf(v0[2])) | (v1[3] < fabsf(v1[2])) | (v2[3] < fabsf(v2[2])))
+ {
+ F32 temp[18];
+ num = clipPolygonWithPlane(temp, bary, num, v0[3] + v0[2], d1[3] + d1[2], d2[3] + d2[2]);
+ num = clipPolygonWithPlane(bary, temp, num, v0[3] - v0[2], d1[3] - d1[2], d2[3] - d2[2]);
+ }
+ return num;
+}
+
+//------------------------------------------------------------------------
+
+__device__ __inline__ U32 idiv_fast(U32 a, U32 b)
+{
+ return f32_to_u32_sat_rmi(((F32)a + 0.5f) / (F32)b);
+}
+
+//------------------------------------------------------------------------
+
+__device__ __inline__ U32 toABGR(float4 color)
+{
+ // 11 instructions: 4*FFMA, 4*F2I, 3*PRMT
+ U32 x = f32_to_u32_sat_rmi(fma_rm(color.x, (1 << 24) * 255.0f, (1 << 24) * 0.5f));
+ U32 y = f32_to_u32_sat_rmi(fma_rm(color.y, (1 << 24) * 255.0f, (1 << 24) * 0.5f));
+ U32 z = f32_to_u32_sat_rmi(fma_rm(color.z, (1 << 24) * 255.0f, (1 << 24) * 0.5f));
+ U32 w = f32_to_u32_sat_rmi(fma_rm(color.w, (1 << 24) * 255.0f, (1 << 24) * 0.5f));
+ return prmt(prmt(x, y, 0x0073), prmt(z, w, 0x0073), 0x5410);
+}
+
+//------------------------------------------------------------------------
+// v0 = subpixels relative to the bottom-left sampling point
+
+__device__ __inline__ uint3 setupPleq(float3 values, int2 v0, int2 d1, int2 d2, F32 areaRcp)
+{
+ F32 mx = fmaxf(fmaxf(values.x, values.y), values.z);
+ int sh = ::min(::max((__float_as_int(mx) >> 23) - (127 + 22), 0), 8);
+ S32 t0 = (U32)values.x >> sh;
+ S32 t1 = ((U32)values.y >> sh) - t0;
+ S32 t2 = ((U32)values.z >> sh) - t0;
+
+ U32 rcpMant = (__float_as_int(areaRcp) & 0x007FFFFF) | 0x00800000;
+ int rcpShift = (23 + 127) - (__float_as_int(areaRcp) >> 23);
+
+ uint3 pleq;
+ S64 xc = ((S64)t1 * d2.y - (S64)t2 * d1.y) * rcpMant;
+ S64 yc = ((S64)t2 * d1.x - (S64)t1 * d2.x) * rcpMant;
+ pleq.x = (U32)(xc >> (rcpShift - (sh + CR_SUBPIXEL_LOG2)));
+ pleq.y = (U32)(yc >> (rcpShift - (sh + CR_SUBPIXEL_LOG2)));
+
+ S32 centerX = (v0.x * 2 + min_min(d1.x, d2.x, 0) + max_max(d1.x, d2.x, 0)) >> (CR_SUBPIXEL_LOG2 + 1);
+ S32 centerY = (v0.y * 2 + min_min(d1.y, d2.y, 0) + max_max(d1.y, d2.y, 0)) >> (CR_SUBPIXEL_LOG2 + 1);
+ S32 vcx = v0.x - (centerX << CR_SUBPIXEL_LOG2);
+ S32 vcy = v0.y - (centerY << CR_SUBPIXEL_LOG2);
+
+ pleq.z = t0 << sh;
+ pleq.z -= (U32)(((xc >> 13) * vcx + (yc >> 13) * vcy) >> (rcpShift - (sh + 13)));
+ pleq.z -= pleq.x * centerX + pleq.y * centerY;
+ return pleq;
+}
+
+//------------------------------------------------------------------------
+
+__device__ __inline__ void cover8x8_setupLUT(volatile U64* lut)
+{
+ for (S32 lutIdx = threadIdx.x + blockDim.x * threadIdx.y; lutIdx < CR_COVER8X8_LUT_SIZE; lutIdx += blockDim.x * blockDim.y)
+ {
+ int half = (lutIdx < (12 << 5)) ? 0 : 1;
+ int yint = (lutIdx >> 5) - half * 12 - 3;
+ U32 shape = ((lutIdx >> 2) & 7) << (31 - 2);
+ S32 slctSwapXY = lutIdx << (31 - 1);
+ S32 slctNegX = lutIdx << (31 - 0);
+ S32 slctCompl = slctSwapXY ^ slctNegX;
+
+ U64 mask = 0;
+ int xlo = half * 4;
+ int xhi = xlo + 4;
+ for (int x = xlo; x < xhi; x++)
+ {
+ int ylo = slct(0, ::max(yint, 0), slctCompl);
+ int yhi = slct(::min(yint, 8), 8, slctCompl);
+ for (int y = ylo; y < yhi; y++)
+ {
+ int xx = slct(x, y, slctSwapXY);
+ int yy = slct(y, x, slctSwapXY);
+ xx = slct(xx, 7 - xx, slctNegX);
+ mask |= (U64)1 << (xx + yy * 8);
+ }
+ yint += shape >> 31;
+ shape <<= 1;
+ }
+ lut[lutIdx] = mask;
+ }
+}
+
+//------------------------------------------------------------------------
+
+__device__ __inline__ U64 cover8x8_exact_fast(S32 ox, S32 oy, S32 dx, S32 dy, U32 flips, volatile const U64* lut) // 52 instr
+{
+ F32 yinitBias = (F32)(1 << (31 - CR_MAXVIEWPORT_LOG2 - CR_SUBPIXEL_LOG2 * 2));
+ F32 yinitScale = (F32)(1 << (32 - CR_SUBPIXEL_LOG2));
+ F32 yincScale = 65536.0f * 65536.0f;
+
+ S32 slctFlipY = flips << (31 - CR_FLIPBIT_FLIP_Y);
+ S32 slctFlipX = flips << (31 - CR_FLIPBIT_FLIP_X);
+ S32 slctSwapXY = flips << (31 - CR_FLIPBIT_SWAP_XY);
+
+ // Evaluate cross product.
+
+ S32 t = ox * dy - oy * dx;
+ F32 det = (F32)slct(t, t - dy * (7 << CR_SUBPIXEL_LOG2), slctFlipX);
+ if (flips >= (1 << CR_FLIPBIT_COMPL))
+ det = -det;
+
+ // Represent Y as a function of X.
+
+ F32 xrcp = 1.0f / (F32)::abs(slct(dx, dy, slctSwapXY));
+ F32 yzero = det * yinitScale * xrcp + yinitBias;
+ S64 yinit = f32_to_s64(slct(yzero, -yzero, slctFlipY));
+ U32 yinc = f32_to_u32_sat((F32)::abs(slct(dy, dx, slctSwapXY)) * xrcp * yincScale);
+
+ // Lookup.
+
+ return cover8x8_lookupMask(yinit, yinc, flips, lut);
+}
+
+//------------------------------------------------------------------------
+
+__device__ __inline__ U64 cover8x8_lookupMask(S64 yinit, U32 yinc, U32 flips, volatile const U64* lut)
+{
+ // First half.
+
+ U32 yfrac = getLo(yinit);
+ U32 shape = add_clamp_0_x(getHi(yinit) + 4, 0, 11);
+ add_add_carry(yfrac, yfrac, yinc, shape, shape, shape);
+ add_add_carry(yfrac, yfrac, yinc, shape, shape, shape);
+ add_add_carry(yfrac, yfrac, yinc, shape, shape, shape);
+ int oct = flips & ((1 << CR_FLIPBIT_FLIP_X) | (1 << CR_FLIPBIT_SWAP_XY));
+ U64 mask = *(U64*)((U8*)lut + oct + (shape << 5));
+
+ // Second half.
+
+ add_add_carry(yfrac, yfrac, yinc, shape, shape, shape);
+ shape = add_clamp_0_x(getHi(yinit) + 4, __popc(shape & 15), 11);
+ add_add_carry(yfrac, yfrac, yinc, shape, shape, shape);
+ add_add_carry(yfrac, yfrac, yinc, shape, shape, shape);
+ add_add_carry(yfrac, yfrac, yinc, shape, shape, shape);
+ mask |= *(U64*)((U8*)lut + oct + (shape << 5) + (12 << 8));
+ return (flips >= (1 << CR_FLIPBIT_COMPL)) ? ~mask : mask;
+}
+
+//------------------------------------------------------------------------
+
+__device__ __inline__ U64 cover8x8_exact_noLUT(S32 ox, S32 oy, S32 dx, S32 dy)
+{
+ S32 curr = ox * dy - oy * dx;
+ if (dy > 0 || (dy == 0 && dx <= 0)) curr--; // exclusive
+ return cover8x8_generateMask_noLUT(curr, dx, dy);
+}
+
+//------------------------------------------------------------------------
+
+__device__ __inline__ U64 cover8x8_conservative_noLUT(S32 ox, S32 oy, S32 dx, S32 dy)
+{
+ S32 curr = ox * dy - oy * dx;
+ if (dy > 0 || (dy == 0 && dx <= 0)) curr--; // exclusive
+ curr += (::abs(dx) + ::abs(dy)) << (CR_SUBPIXEL_LOG2 - 1);
+ return cover8x8_generateMask_noLUT(curr, dx, dy);
+}
+
+//------------------------------------------------------------------------
+
+__device__ __inline__ U64 cover8x8_generateMask_noLUT(S32 curr, S32 dx, S32 dy)
+{
+ curr += (dx - dy) * (7 << CR_SUBPIXEL_LOG2);
+ S32 stepX = dy << (CR_SUBPIXEL_LOG2 + 1);
+ S32 stepYorig = -dx - dy * 7;
+ S32 stepY = stepYorig << (CR_SUBPIXEL_LOG2 + 1);
+
+ U32 hi = isetge(curr, 0);
+ U32 frac = curr + curr;
+ for (int i = 62; i >= 32; i--)
+ add_add_carry(frac, frac, ((i & 7) == 7) ? stepY : stepX, hi, hi, hi);
+
+ U32 lo = 0;
+ for (int i = 31; i >= 0; i--)
+ add_add_carry(frac, frac, ((i & 7) == 7) ? stepY : stepX, lo, lo, lo);
+
+ lo ^= lo >> 1, hi ^= hi >> 1;
+ lo ^= lo >> 2, hi ^= hi >> 2;
+ lo ^= lo >> 4, hi ^= hi >> 4;
+ lo ^= lo >> 8, hi ^= hi >> 8;
+ lo ^= lo >> 16, hi ^= hi >> 16;
+
+ if (dy < 0)
+ {
+ lo ^= 0x55AA55AA;
+ hi ^= 0x55AA55AA;
+ }
+ if (stepYorig < 0)
+ {
+ lo ^= 0xFF00FF00;
+ hi ^= 0x00FF00FF;
+ }
+ if ((hi & 1) != 0)
+ lo = ~lo;
+
+ return combineLoHi(lo, hi);
+}
+
+//------------------------------------------------------------------------
+
+template __device__ __inline__ void sortShared(T* ptr, int numItems)
+{
+ int thrInBlock = threadIdx.x + threadIdx.y * blockDim.x;
+ int range = 16;
+
+ // Use transposition sort within each 16-wide subrange.
+
+ int base = thrInBlock * 2;
+ bool act = (base < numItems - 1);
+ U32 actMask = __ballot_sync(~0u, act);
+ if (act)
+ {
+ bool tryOdd = (base < numItems - 2 && (~base & (range - 2)) != 0);
+ T mid = ptr[base + 1];
+
+ for (int iter = 0; iter < range; iter += 2)
+ {
+ // Evens.
+
+ T tmp = ptr[base + 0];
+ if (tmp > mid)
+ {
+ ptr[base + 0] = mid;
+ mid = tmp;
+ }
+ __syncwarp(actMask);
+
+ // Odds.
+
+ if (tryOdd)
+ {
+ tmp = ptr[base + 2];
+ if (mid > tmp)
+ {
+ ptr[base + 2] = mid;
+ mid = tmp;
+ }
+ }
+ __syncwarp(actMask);
+ }
+ ptr[base + 1] = mid;
+ }
+
+ // Multiple subranges => Merge hierarchically.
+
+ for (; range < numItems; range <<= 1)
+ {
+ // Assuming that we would insert the current item into the other
+ // subrange, use binary search to find the appropriate slot.
+
+ __syncthreads();
+
+ T item;
+ int slot;
+ if (thrInBlock < numItems)
+ {
+ item = ptr[thrInBlock];
+ slot = (thrInBlock & -range) ^ range;
+ if (slot < numItems)
+ {
+ T tmp = ptr[slot];
+ bool inclusive = ((thrInBlock & range) != 0);
+ if (tmp < item || (inclusive && tmp == item))
+ {
+ for (int step = (range >> 1); step != 0; step >>= 1)
+ {
+ int probe = slot + step;
+ if (probe < numItems)
+ {
+ tmp = ptr[probe];
+ if (tmp < item || (inclusive && tmp == item))
+ slot = probe;
+ }
+ }
+ slot++;
+ }
+ }
+ }
+
+ // Store the item at an appropriate place.
+
+ __syncthreads();
+
+ if (thrInBlock < numItems)
+ ptr[slot + (thrInBlock & (range * 2 - 1)) - range] = item;
+ }
+}
+
+//------------------------------------------------------------------------
+}
diff --git a/extensions/nvdiffrast/nvdiffrast/common/framework.h b/extensions/nvdiffrast/nvdiffrast/common/framework.h
new file mode 100644
index 0000000000000000000000000000000000000000..3b1b8e993f1c21bd9f0129e14645db9e773cec71
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/common/framework.h
@@ -0,0 +1,49 @@
+// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#pragma once
+
+// Framework-specific macros to enable code sharing.
+
+//------------------------------------------------------------------------
+// Tensorflow.
+
+#ifdef NVDR_TENSORFLOW
+#define EIGEN_USE_GPU
+#include "tensorflow/core/framework/op.h"
+#include "tensorflow/core/framework/op_kernel.h"
+#include "tensorflow/core/framework/shape_inference.h"
+#include "tensorflow/core/platform/default/logging.h"
+using namespace tensorflow;
+using namespace tensorflow::shape_inference;
+#define NVDR_CTX_ARGS OpKernelContext* _nvdr_ctx
+#define NVDR_CTX_PARAMS _nvdr_ctx
+#define NVDR_CHECK(COND, ERR) OP_REQUIRES(_nvdr_ctx, COND, errors::Internal(ERR))
+#define NVDR_CHECK_CUDA_ERROR(CUDA_CALL) OP_CHECK_CUDA_ERROR(_nvdr_ctx, CUDA_CALL)
+#define NVDR_CHECK_GL_ERROR(GL_CALL) OP_CHECK_GL_ERROR(_nvdr_ctx, GL_CALL)
+#endif
+
+//------------------------------------------------------------------------
+// PyTorch.
+
+#ifdef NVDR_TORCH
+#ifndef __CUDACC__
+#include
+#include
+#include
+#include
+#include
+#endif
+#define NVDR_CTX_ARGS int _nvdr_ctx_dummy
+#define NVDR_CTX_PARAMS 0
+#define NVDR_CHECK(COND, ERR) do { TORCH_CHECK(COND, ERR) } while(0)
+#define NVDR_CHECK_CUDA_ERROR(CUDA_CALL) do { cudaError_t err = CUDA_CALL; TORCH_CHECK(!err, "Cuda error: ", cudaGetLastError(), "[", #CUDA_CALL, ";]"); } while(0)
+#define NVDR_CHECK_GL_ERROR(GL_CALL) do { GL_CALL; GLenum err = glGetError(); TORCH_CHECK(err == GL_NO_ERROR, "OpenGL error: ", getGLErrorString(err), "[", #GL_CALL, ";]"); } while(0)
+#endif
+
+//------------------------------------------------------------------------
diff --git a/extensions/nvdiffrast/nvdiffrast/common/glutil.cpp b/extensions/nvdiffrast/nvdiffrast/common/glutil.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..bea4d86bf8ae95bc958a0cc8dd18238e4b663324
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/common/glutil.cpp
@@ -0,0 +1,403 @@
+// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+//------------------------------------------------------------------------
+// Common.
+//------------------------------------------------------------------------
+
+#include "framework.h"
+#include "glutil.h"
+#include
+#include
+
+// Create the function pointers.
+#define GLUTIL_EXT(return_type, name, ...) return_type (GLAPIENTRY* name)(__VA_ARGS__) = 0;
+#include "glutil_extlist.h"
+#undef GLUTIL_EXT
+
+// Track initialization status.
+static volatile bool s_glExtInitialized = false;
+
+// Error strings.
+const char* getGLErrorString(GLenum err)
+{
+ switch(err)
+ {
+ case GL_NO_ERROR: return "GL_NO_ERROR";
+ case GL_INVALID_ENUM: return "GL_INVALID_ENUM";
+ case GL_INVALID_VALUE: return "GL_INVALID_VALUE";
+ case GL_INVALID_OPERATION: return "GL_INVALID_OPERATION";
+ case GL_STACK_OVERFLOW: return "GL_STACK_OVERFLOW";
+ case GL_STACK_UNDERFLOW: return "GL_STACK_UNDERFLOW";
+ case GL_OUT_OF_MEMORY: return "GL_OUT_OF_MEMORY";
+ case GL_INVALID_FRAMEBUFFER_OPERATION: return "GL_INVALID_FRAMEBUFFER_OPERATION";
+ case GL_TABLE_TOO_LARGE: return "GL_TABLE_TOO_LARGE";
+ case GL_CONTEXT_LOST: return "GL_CONTEXT_LOST";
+ }
+ return "Unknown error";
+}
+
+//------------------------------------------------------------------------
+// Windows.
+//------------------------------------------------------------------------
+
+#ifdef _WIN32
+
+static CRITICAL_SECTION getInitializedCriticalSection(void)
+{
+ CRITICAL_SECTION cs;
+ InitializeCriticalSection(&cs);
+ return cs;
+}
+
+static CRITICAL_SECTION s_getProcAddressMutex = getInitializedCriticalSection();
+
+static void safeGetProcAddress(const char* name, PROC* pfn)
+{
+ PROC result = wglGetProcAddress(name);
+ if (!result)
+ {
+ LeaveCriticalSection(&s_getProcAddressMutex); // Prepare for thread exit.
+ LOG(FATAL) << "wglGetProcAddress() failed for '" << name << "'";
+ exit(1); // Should never get here but make sure we exit.
+ }
+ *pfn = result;
+}
+
+static void initializeGLExtensions(void)
+{
+ // Use critical section for thread safety.
+ EnterCriticalSection(&s_getProcAddressMutex);
+
+ // Only dig function pointers if not done already.
+ if (!s_glExtInitialized)
+ {
+ // Generate code to populate the function pointers.
+#define GLUTIL_EXT(return_type, name, ...) safeGetProcAddress(#name, (PROC*)&name);
+#include "glutil_extlist.h"
+#undef GLUTIL_EXT
+
+ // Mark as initialized.
+ s_glExtInitialized = true;
+ }
+
+ // Done.
+ LeaveCriticalSection(&s_getProcAddressMutex);
+ return;
+}
+
+void setGLContext(GLContext& glctx)
+{
+ if (!glctx.hglrc)
+ LOG(FATAL) << "setGLContext() called with null gltcx";
+ if (!wglMakeCurrent(glctx.hdc, glctx.hglrc))
+ LOG(FATAL) << "wglMakeCurrent() failed when setting GL context";
+
+ if (glctx.extInitialized)
+ return;
+ initializeGLExtensions();
+ glctx.extInitialized = 1;
+}
+
+void releaseGLContext(void)
+{
+ if (!wglMakeCurrent(NULL, NULL))
+ LOG(FATAL) << "wglMakeCurrent() failed when releasing GL context";
+}
+
+extern "C" int set_gpu(const char*); // In setgpu.lib
+GLContext createGLContext(int cudaDeviceIdx)
+{
+ if (cudaDeviceIdx >= 0)
+ {
+ char pciBusId[256] = "";
+ LOG(INFO) << "Creating GL context for Cuda device " << cudaDeviceIdx;
+ if (cudaDeviceGetPCIBusId(pciBusId, 255, cudaDeviceIdx))
+ {
+ LOG(INFO) << "PCI bus id query failed";
+ }
+ else
+ {
+ int res = set_gpu(pciBusId);
+ LOG(INFO) << "Selecting device with PCI bus id " << pciBusId << " - " << (res ? "failed, expect crash or major slowdown" : "success");
+ }
+ }
+
+ HINSTANCE hInstance = GetModuleHandle(NULL);
+ WNDCLASS wc = {};
+ wc.style = CS_OWNDC;
+ wc.lpfnWndProc = DefWindowProc;
+ wc.hInstance = hInstance;
+ wc.lpszClassName = "__DummyGLClassCPP";
+ int res = RegisterClass(&wc);
+
+ HWND hwnd = CreateWindow(
+ "__DummyGLClassCPP", // lpClassName
+ "__DummyGLWindowCPP", // lpWindowName
+ WS_OVERLAPPEDWINDOW, // dwStyle
+ CW_USEDEFAULT, // x
+ CW_USEDEFAULT, // y
+ 0, 0, // nWidth, nHeight
+ NULL, NULL, // hWndParent, hMenu
+ hInstance, // hInstance
+ NULL // lpParam
+ );
+
+ PIXELFORMATDESCRIPTOR pfd = {};
+ pfd.dwFlags = PFD_SUPPORT_OPENGL;
+ pfd.iPixelType = PFD_TYPE_RGBA;
+ pfd.iLayerType = PFD_MAIN_PLANE;
+ pfd.cColorBits = 32;
+ pfd.cDepthBits = 24;
+ pfd.cStencilBits = 8;
+
+ HDC hdc = GetDC(hwnd);
+ int pixelformat = ChoosePixelFormat(hdc, &pfd);
+ SetPixelFormat(hdc, pixelformat, &pfd);
+
+ HGLRC hglrc = wglCreateContext(hdc);
+ LOG(INFO) << std::hex << std::setfill('0')
+ << "WGL OpenGL context created (hdc: 0x" << std::setw(8) << (uint32_t)(uintptr_t)hdc
+ << ", hglrc: 0x" << std::setw(8) << (uint32_t)(uintptr_t)hglrc << ")";
+
+ GLContext glctx = {hdc, hglrc, 0};
+ return glctx;
+}
+
+void destroyGLContext(GLContext& glctx)
+{
+ if (!glctx.hglrc)
+ LOG(FATAL) << "destroyGLContext() called with null gltcx";
+
+ // If this is the current context, release it.
+ if (wglGetCurrentContext() == glctx.hglrc)
+ releaseGLContext();
+
+ HWND hwnd = WindowFromDC(glctx.hdc);
+ if (!hwnd)
+ LOG(FATAL) << "WindowFromDC() failed";
+ if (!ReleaseDC(hwnd, glctx.hdc))
+ LOG(FATAL) << "ReleaseDC() failed";
+ if (!wglDeleteContext(glctx.hglrc))
+ LOG(FATAL) << "wglDeleteContext() failed";
+ if (!DestroyWindow(hwnd))
+ LOG(FATAL) << "DestroyWindow() failed";
+
+ LOG(INFO) << std::hex << std::setfill('0')
+ << "WGL OpenGL context destroyed (hdc: 0x" << std::setw(8) << (uint32_t)(uintptr_t)glctx.hdc
+ << ", hglrc: 0x" << std::setw(8) << (uint32_t)(uintptr_t)glctx.hglrc << ")";
+
+ memset(&glctx, 0, sizeof(GLContext));
+}
+
+#endif // _WIN32
+
+//------------------------------------------------------------------------
+// Linux.
+//------------------------------------------------------------------------
+
+#ifdef __linux__
+
+static pthread_mutex_t s_getProcAddressMutex;
+
+typedef void (*PROCFN)();
+
+static void safeGetProcAddress(const char* name, PROCFN* pfn)
+{
+ PROCFN result = eglGetProcAddress(name);
+ if (!result)
+ {
+ pthread_mutex_unlock(&s_getProcAddressMutex); // Prepare for thread exit.
+ LOG(FATAL) << "wglGetProcAddress() failed for '" << name << "'";
+ exit(1); // Should never get here but make sure we exit.
+ }
+ *pfn = result;
+}
+
+static void initializeGLExtensions(void)
+{
+ pthread_mutex_lock(&s_getProcAddressMutex);
+
+ // Only dig function pointers if not done already.
+ if (!s_glExtInitialized)
+ {
+ // Generate code to populate the function pointers.
+#define GLUTIL_EXT(return_type, name, ...) safeGetProcAddress(#name, (PROCFN*)&name);
+#include "glutil_extlist.h"
+#undef GLUTIL_EXT
+
+ // Mark as initialized.
+ s_glExtInitialized = true;
+ }
+
+ pthread_mutex_unlock(&s_getProcAddressMutex);
+ return;
+}
+
+void setGLContext(GLContext& glctx)
+{
+ if (!glctx.context)
+ LOG(FATAL) << "setGLContext() called with null gltcx";
+
+ if (!eglMakeCurrent(glctx.display, EGL_NO_SURFACE, EGL_NO_SURFACE, glctx.context))
+ LOG(ERROR) << "eglMakeCurrent() failed when setting GL context";
+
+ if (glctx.extInitialized)
+ return;
+ initializeGLExtensions();
+ glctx.extInitialized = 1;
+}
+
+void releaseGLContext(void)
+{
+ EGLDisplay display = eglGetCurrentDisplay();
+ if (display == EGL_NO_DISPLAY)
+ LOG(WARNING) << "releaseGLContext() called with no active display";
+ if (!eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT))
+ LOG(FATAL) << "eglMakeCurrent() failed when releasing GL context";
+}
+
+static EGLDisplay getCudaDisplay(int cudaDeviceIdx)
+{
+ typedef EGLBoolean (*eglQueryDevicesEXT_t)(EGLint, EGLDeviceEXT, EGLint*);
+ typedef EGLBoolean (*eglQueryDeviceAttribEXT_t)(EGLDeviceEXT, EGLint, EGLAttrib*);
+ typedef EGLDisplay (*eglGetPlatformDisplayEXT_t)(EGLenum, void*, const EGLint*);
+
+ eglQueryDevicesEXT_t eglQueryDevicesEXT = (eglQueryDevicesEXT_t)eglGetProcAddress("eglQueryDevicesEXT");
+ if (!eglQueryDevicesEXT)
+ {
+ LOG(INFO) << "eglGetProcAddress(\"eglQueryDevicesEXT\") failed";
+ return 0;
+ }
+
+ eglQueryDeviceAttribEXT_t eglQueryDeviceAttribEXT = (eglQueryDeviceAttribEXT_t)eglGetProcAddress("eglQueryDeviceAttribEXT");
+ if (!eglQueryDeviceAttribEXT)
+ {
+ LOG(INFO) << "eglGetProcAddress(\"eglQueryDeviceAttribEXT\") failed";
+ return 0;
+ }
+
+ eglGetPlatformDisplayEXT_t eglGetPlatformDisplayEXT = (eglGetPlatformDisplayEXT_t)eglGetProcAddress("eglGetPlatformDisplayEXT");
+ if (!eglGetPlatformDisplayEXT)
+ {
+ LOG(INFO) << "eglGetProcAddress(\"eglGetPlatformDisplayEXT\") failed";
+ return 0;
+ }
+
+ int num_devices = 0;
+ eglQueryDevicesEXT(0, 0, &num_devices);
+ if (!num_devices)
+ return 0;
+
+ EGLDisplay display = 0;
+ EGLDeviceEXT* devices = (EGLDeviceEXT*)malloc(num_devices * sizeof(void*));
+ eglQueryDevicesEXT(num_devices, devices, &num_devices);
+ for (int i=0; i < num_devices; i++)
+ {
+ EGLDeviceEXT device = devices[i];
+ intptr_t value = -1;
+ if (eglQueryDeviceAttribEXT(device, EGL_CUDA_DEVICE_NV, &value) && value == cudaDeviceIdx)
+ {
+ display = eglGetPlatformDisplayEXT(EGL_PLATFORM_DEVICE_EXT, device, 0);
+ break;
+ }
+ }
+
+ free(devices);
+ return display;
+}
+
+GLContext createGLContext(int cudaDeviceIdx)
+{
+ EGLDisplay display = 0;
+
+ if (cudaDeviceIdx >= 0)
+ {
+ char pciBusId[256] = "";
+ LOG(INFO) << "Creating GL context for Cuda device " << cudaDeviceIdx;
+ display = getCudaDisplay(cudaDeviceIdx);
+ if (!display)
+ LOG(INFO) << "Failed, falling back to default display";
+ }
+
+ if (!display)
+ {
+ display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
+ if (display == EGL_NO_DISPLAY)
+ LOG(FATAL) << "eglGetDisplay() failed";
+ }
+
+ EGLint major;
+ EGLint minor;
+ if (!eglInitialize(display, &major, &minor))
+ LOG(FATAL) << "eglInitialize() failed";
+
+ // Choose configuration.
+
+ const EGLint context_attribs[] = {
+ EGL_RED_SIZE, 8,
+ EGL_GREEN_SIZE, 8,
+ EGL_BLUE_SIZE, 8,
+ EGL_ALPHA_SIZE, 8,
+ EGL_DEPTH_SIZE, 24,
+ EGL_STENCIL_SIZE, 8,
+ EGL_RENDERABLE_TYPE, EGL_OPENGL_BIT,
+ EGL_SURFACE_TYPE, EGL_PBUFFER_BIT,
+ EGL_NONE
+ };
+
+ EGLConfig config;
+ EGLint num_config;
+ if (!eglChooseConfig(display, context_attribs, &config, 1, &num_config))
+ LOG(FATAL) << "eglChooseConfig() failed";
+
+ // Create GL context.
+
+ if (!eglBindAPI(EGL_OPENGL_API))
+ LOG(FATAL) << "eglBindAPI() failed";
+
+ EGLContext context = eglCreateContext(display, config, EGL_NO_CONTEXT, NULL);
+ if (context == EGL_NO_CONTEXT)
+ LOG(FATAL) << "eglCreateContext() failed";
+
+ // Done.
+
+ LOG(INFO) << "EGL " << (int)minor << "." << (int)major << " OpenGL context created (disp: 0x"
+ << std::hex << std::setfill('0')
+ << std::setw(16) << (uintptr_t)display
+ << ", ctx: 0x" << std::setw(16) << (uintptr_t)context << ")";
+
+ GLContext glctx = {display, context, 0};
+ return glctx;
+}
+
+void destroyGLContext(GLContext& glctx)
+{
+ if (!glctx.context)
+ LOG(FATAL) << "destroyGLContext() called with null gltcx";
+
+ // If this is the current context, release it.
+ if (eglGetCurrentContext() == glctx.context)
+ releaseGLContext();
+
+ if (!eglDestroyContext(glctx.display, glctx.context))
+ LOG(ERROR) << "eglDestroyContext() failed";
+
+ LOG(INFO) << "EGL OpenGL context destroyed (disp: 0x"
+ << std::hex << std::setfill('0')
+ << std::setw(16) << (uintptr_t)glctx.display
+ << ", ctx: 0x" << std::setw(16) << (uintptr_t)glctx.context << ")";
+
+ memset(&glctx, 0, sizeof(GLContext));
+}
+
+//------------------------------------------------------------------------
+
+#endif // __linux__
+
+//------------------------------------------------------------------------
diff --git a/extensions/nvdiffrast/nvdiffrast/common/glutil.h b/extensions/nvdiffrast/nvdiffrast/common/glutil.h
new file mode 100644
index 0000000000000000000000000000000000000000..6e4c384626324b5d36e0cc9ac002eacbb10c65f2
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/common/glutil.h
@@ -0,0 +1,113 @@
+// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#pragma once
+
+//------------------------------------------------------------------------
+// Windows-specific headers and types.
+//------------------------------------------------------------------------
+
+#ifdef _WIN32
+#define NOMINMAX
+#include // Required by gl.h in Windows.
+#define GLAPIENTRY APIENTRY
+
+struct GLContext
+{
+ HDC hdc;
+ HGLRC hglrc;
+ int extInitialized;
+};
+
+#endif // _WIN32
+
+//------------------------------------------------------------------------
+// Linux-specific headers and types.
+//------------------------------------------------------------------------
+
+#ifdef __linux__
+#define EGL_NO_X11 // X11/Xlib.h has "#define Status int" which breaks Tensorflow. Avoid it.
+#define MESA_EGL_NO_X11_HEADERS
+#include
+#include
+#define GLAPIENTRY
+
+struct GLContext
+{
+ EGLDisplay display;
+ EGLContext context;
+ int extInitialized;
+};
+
+#endif // __linux__
+
+//------------------------------------------------------------------------
+// OpenGL, CUDA interop, GL extensions.
+//------------------------------------------------------------------------
+#define GL_GLEXT_LEGACY
+#include
+#include
+
+// Constants.
+#ifndef GL_VERSION_1_2
+#define GL_CLAMP_TO_EDGE 0x812F
+#define GL_TEXTURE_3D 0x806F
+#endif
+#ifndef GL_VERSION_1_5
+#define GL_ARRAY_BUFFER 0x8892
+#define GL_DYNAMIC_DRAW 0x88E8
+#define GL_ELEMENT_ARRAY_BUFFER 0x8893
+#endif
+#ifndef GL_VERSION_2_0
+#define GL_FRAGMENT_SHADER 0x8B30
+#define GL_INFO_LOG_LENGTH 0x8B84
+#define GL_LINK_STATUS 0x8B82
+#define GL_VERTEX_SHADER 0x8B31
+#endif
+#ifndef GL_VERSION_3_0
+#define GL_MAJOR_VERSION 0x821B
+#define GL_MINOR_VERSION 0x821C
+#define GL_RGBA32F 0x8814
+#define GL_TEXTURE_2D_ARRAY 0x8C1A
+#endif
+#ifndef GL_VERSION_3_2
+#define GL_GEOMETRY_SHADER 0x8DD9
+#endif
+#ifndef GL_ARB_framebuffer_object
+#define GL_COLOR_ATTACHMENT0 0x8CE0
+#define GL_COLOR_ATTACHMENT1 0x8CE1
+#define GL_DEPTH_STENCIL 0x84F9
+#define GL_DEPTH_STENCIL_ATTACHMENT 0x821A
+#define GL_DEPTH24_STENCIL8 0x88F0
+#define GL_FRAMEBUFFER 0x8D40
+#define GL_INVALID_FRAMEBUFFER_OPERATION 0x0506
+#define GL_UNSIGNED_INT_24_8 0x84FA
+#endif
+#ifndef GL_ARB_imaging
+#define GL_TABLE_TOO_LARGE 0x8031
+#endif
+#ifndef GL_KHR_robustness
+#define GL_CONTEXT_LOST 0x0507
+#endif
+
+// Declare function pointers to OpenGL extension functions.
+#define GLUTIL_EXT(return_type, name, ...) extern return_type (GLAPIENTRY* name)(__VA_ARGS__);
+#include "glutil_extlist.h"
+#undef GLUTIL_EXT
+
+//------------------------------------------------------------------------
+// Common functions.
+//------------------------------------------------------------------------
+
+void setGLContext (GLContext& glctx);
+void releaseGLContext (void);
+GLContext createGLContext (int cudaDeviceIdx);
+void destroyGLContext (GLContext& glctx);
+const char* getGLErrorString (GLenum err);
+
+//------------------------------------------------------------------------
diff --git a/extensions/nvdiffrast/nvdiffrast/common/glutil_extlist.h b/extensions/nvdiffrast/nvdiffrast/common/glutil_extlist.h
new file mode 100644
index 0000000000000000000000000000000000000000..6b0fdc2c7820ee4ead0c3e68ad8bafce033c482f
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/common/glutil_extlist.h
@@ -0,0 +1,48 @@
+// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#ifndef GL_VERSION_1_2
+GLUTIL_EXT(void, glTexImage3D, GLenum target, GLint level, GLint internalFormat, GLsizei width, GLsizei height, GLsizei depth, GLint border, GLenum format, GLenum type, const void *pixels);
+#endif
+#ifndef GL_VERSION_1_5
+GLUTIL_EXT(void, glBindBuffer, GLenum target, GLuint buffer);
+GLUTIL_EXT(void, glBufferData, GLenum target, ptrdiff_t size, const void* data, GLenum usage);
+GLUTIL_EXT(void, glGenBuffers, GLsizei n, GLuint* buffers);
+#endif
+#ifndef GL_VERSION_2_0
+GLUTIL_EXT(void, glAttachShader, GLuint program, GLuint shader);
+GLUTIL_EXT(void, glCompileShader, GLuint shader);
+GLUTIL_EXT(GLuint, glCreateProgram, void);
+GLUTIL_EXT(GLuint, glCreateShader, GLenum type);
+GLUTIL_EXT(void, glDrawBuffers, GLsizei n, const GLenum* bufs);
+GLUTIL_EXT(void, glEnableVertexAttribArray, GLuint index);
+GLUTIL_EXT(void, glGetProgramInfoLog, GLuint program, GLsizei bufSize, GLsizei* length, char* infoLog);
+GLUTIL_EXT(void, glGetProgramiv, GLuint program, GLenum pname, GLint* param);
+GLUTIL_EXT(void, glLinkProgram, GLuint program);
+GLUTIL_EXT(void, glShaderSource, GLuint shader, GLsizei count, const char *const* string, const GLint* length);
+GLUTIL_EXT(void, glUniform1f, GLint location, GLfloat v0);
+GLUTIL_EXT(void, glUniform2f, GLint location, GLfloat v0, GLfloat v1);
+GLUTIL_EXT(void, glUseProgram, GLuint program);
+GLUTIL_EXT(void, glVertexAttribPointer, GLuint index, GLint size, GLenum type, GLboolean normalized, GLsizei stride, const void* pointer);
+#endif
+#ifndef GL_VERSION_3_2
+GLUTIL_EXT(void, glFramebufferTexture, GLenum target, GLenum attachment, GLuint texture, GLint level);
+#endif
+#ifndef GL_ARB_framebuffer_object
+GLUTIL_EXT(void, glBindFramebuffer, GLenum target, GLuint framebuffer);
+GLUTIL_EXT(void, glGenFramebuffers, GLsizei n, GLuint* framebuffers);
+#endif
+#ifndef GL_ARB_vertex_array_object
+GLUTIL_EXT(void, glBindVertexArray, GLuint array);
+GLUTIL_EXT(void, glGenVertexArrays, GLsizei n, GLuint* arrays);
+#endif
+#ifndef GL_ARB_multi_draw_indirect
+GLUTIL_EXT(void, glMultiDrawElementsIndirect, GLenum mode, GLenum type, const void *indirect, GLsizei primcount, GLsizei stride);
+#endif
+
+//------------------------------------------------------------------------
diff --git a/extensions/nvdiffrast/nvdiffrast/common/interpolate.cu b/extensions/nvdiffrast/nvdiffrast/common/interpolate.cu
new file mode 100644
index 0000000000000000000000000000000000000000..f75f5f1f4ffa39bee40c01dc6b62843e658b83c6
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/common/interpolate.cu
@@ -0,0 +1,276 @@
+// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#include "common.h"
+#include "interpolate.h"
+
+//------------------------------------------------------------------------
+// Forward kernel.
+
+template
+static __forceinline__ __device__ void InterpolateFwdKernelTemplate(const InterpolateKernelParams p)
+{
+ // Calculate pixel position.
+ int px = blockIdx.x * blockDim.x + threadIdx.x;
+ int py = blockIdx.y * blockDim.y + threadIdx.y;
+ int pz = blockIdx.z;
+ if (px >= p.width || py >= p.height || pz >= p.depth)
+ return;
+
+ // Pixel index.
+ int pidx = px + p.width * (py + p.height * pz);
+
+ // Output ptrs.
+ float* out = p.out + pidx * p.numAttr;
+ float2* outDA = ENABLE_DA ? (((float2*)p.outDA) + pidx * p.numDiffAttr) : 0;
+
+ // Fetch rasterizer output.
+ float4 r = ((float4*)p.rast)[pidx];
+ int triIdx = float_to_triidx(r.w) - 1;
+ bool triValid = (triIdx >= 0 && triIdx < p.numTriangles);
+
+ // If no geometry in entire warp, zero the output and exit.
+ // Otherwise force barys to zero and output with live threads.
+ if (__all_sync(0xffffffffu, !triValid))
+ {
+ for (int i=0; i < p.numAttr; i++)
+ out[i] = 0.f;
+ if (ENABLE_DA)
+ for (int i=0; i < p.numDiffAttr; i++)
+ outDA[i] = make_float2(0.f, 0.f);
+ return;
+ }
+
+ // Fetch vertex indices.
+ int vi0 = triValid ? p.tri[triIdx * 3 + 0] : 0;
+ int vi1 = triValid ? p.tri[triIdx * 3 + 1] : 0;
+ int vi2 = triValid ? p.tri[triIdx * 3 + 2] : 0;
+
+ // Bail out if corrupt indices.
+ if (vi0 < 0 || vi0 >= p.numVertices ||
+ vi1 < 0 || vi1 >= p.numVertices ||
+ vi2 < 0 || vi2 >= p.numVertices)
+ return;
+
+ // In instance mode, adjust vertex indices by minibatch index unless broadcasting.
+ if (p.instance_mode && !p.attrBC)
+ {
+ vi0 += pz * p.numVertices;
+ vi1 += pz * p.numVertices;
+ vi2 += pz * p.numVertices;
+ }
+
+ // Pointers to attributes.
+ const float* a0 = p.attr + vi0 * p.numAttr;
+ const float* a1 = p.attr + vi1 * p.numAttr;
+ const float* a2 = p.attr + vi2 * p.numAttr;
+
+ // Barys. If no triangle, force all to zero -> output is zero.
+ float b0 = triValid ? r.x : 0.f;
+ float b1 = triValid ? r.y : 0.f;
+ float b2 = triValid ? (1.f - r.x - r.y) : 0.f;
+
+ // Interpolate and write attributes.
+ for (int i=0; i < p.numAttr; i++)
+ out[i] = b0*a0[i] + b1*a1[i] + b2*a2[i];
+
+ // No diff attrs? Exit.
+ if (!ENABLE_DA)
+ return;
+
+ // Read bary pixel differentials if we have a triangle.
+ float4 db = make_float4(0.f, 0.f, 0.f, 0.f);
+ if (triValid)
+ db = ((float4*)p.rastDB)[pidx];
+
+ // Unpack a bit.
+ float dudx = db.x;
+ float dudy = db.y;
+ float dvdx = db.z;
+ float dvdy = db.w;
+
+ // Calculate the pixel differentials of chosen attributes.
+ for (int i=0; i < p.numDiffAttr; i++)
+ {
+ // Input attribute index.
+ int j = p.diff_attrs_all ? i : p.diffAttrs[i];
+ if (j < 0)
+ j += p.numAttr; // Python-style negative indices.
+
+ // Zero output if invalid index.
+ float dsdx = 0.f;
+ float dsdy = 0.f;
+ if (j >= 0 && j < p.numAttr)
+ {
+ float s0 = a0[j];
+ float s1 = a1[j];
+ float s2 = a2[j];
+ float dsdu = s0 - s2;
+ float dsdv = s1 - s2;
+ dsdx = dudx*dsdu + dvdx*dsdv;
+ dsdy = dudy*dsdu + dvdy*dsdv;
+ }
+
+ // Write.
+ outDA[i] = make_float2(dsdx, dsdy);
+ }
+}
+
+// Template specializations.
+__global__ void InterpolateFwdKernel (const InterpolateKernelParams p) { InterpolateFwdKernelTemplate(p); }
+__global__ void InterpolateFwdKernelDa(const InterpolateKernelParams p) { InterpolateFwdKernelTemplate(p); }
+
+//------------------------------------------------------------------------
+// Gradient kernel.
+
+template
+static __forceinline__ __device__ void InterpolateGradKernelTemplate(const InterpolateKernelParams p)
+{
+ // Temporary space for coalesced atomics.
+ CA_DECLARE_TEMP(IP_GRAD_MAX_KERNEL_BLOCK_WIDTH * IP_GRAD_MAX_KERNEL_BLOCK_HEIGHT);
+
+ // Calculate pixel position.
+ int px = blockIdx.x * blockDim.x + threadIdx.x;
+ int py = blockIdx.y * blockDim.y + threadIdx.y;
+ int pz = blockIdx.z;
+ if (px >= p.width || py >= p.height || pz >= p.depth)
+ return;
+
+ // Pixel index.
+ int pidx = px + p.width * (py + p.height * pz);
+
+ // Fetch triangle ID. If none, output zero bary/db gradients and exit.
+ float4 r = ((float4*)p.rast)[pidx];
+ int triIdx = float_to_triidx(r.w) - 1;
+ if (triIdx < 0 || triIdx >= p.numTriangles)
+ {
+ ((float4*)p.gradRaster)[pidx] = make_float4(0.f, 0.f, 0.f, 0.f);
+ if (ENABLE_DA)
+ ((float4*)p.gradRasterDB)[pidx] = make_float4(0.f, 0.f, 0.f, 0.f);
+ return;
+ }
+
+ // Fetch vertex indices.
+ int vi0 = p.tri[triIdx * 3 + 0];
+ int vi1 = p.tri[triIdx * 3 + 1];
+ int vi2 = p.tri[triIdx * 3 + 2];
+
+ // Bail out if corrupt indices.
+ if (vi0 < 0 || vi0 >= p.numVertices ||
+ vi1 < 0 || vi1 >= p.numVertices ||
+ vi2 < 0 || vi2 >= p.numVertices)
+ return;
+
+ // In instance mode, adjust vertex indices by minibatch index unless broadcasting.
+ if (p.instance_mode && !p.attrBC)
+ {
+ vi0 += pz * p.numVertices;
+ vi1 += pz * p.numVertices;
+ vi2 += pz * p.numVertices;
+ }
+
+ // Initialize coalesced atomics.
+ CA_SET_GROUP(triIdx);
+
+ // Pointers to inputs.
+ const float* a0 = p.attr + vi0 * p.numAttr;
+ const float* a1 = p.attr + vi1 * p.numAttr;
+ const float* a2 = p.attr + vi2 * p.numAttr;
+ const float* pdy = p.dy + pidx * p.numAttr;
+
+ // Pointers to outputs.
+ float* ga0 = p.gradAttr + vi0 * p.numAttr;
+ float* ga1 = p.gradAttr + vi1 * p.numAttr;
+ float* ga2 = p.gradAttr + vi2 * p.numAttr;
+
+ // Barys and bary gradient accumulators.
+ float b0 = r.x;
+ float b1 = r.y;
+ float b2 = 1.f - r.x - r.y;
+ float gb0 = 0.f;
+ float gb1 = 0.f;
+
+ // Loop over attributes and accumulate attribute gradients.
+ for (int i=0; i < p.numAttr; i++)
+ {
+ float y = pdy[i];
+ float s0 = a0[i];
+ float s1 = a1[i];
+ float s2 = a2[i];
+ gb0 += y * (s0 - s2);
+ gb1 += y * (s1 - s2);
+ caAtomicAdd(ga0 + i, b0 * y);
+ caAtomicAdd(ga1 + i, b1 * y);
+ caAtomicAdd(ga2 + i, b2 * y);
+ }
+
+ // Write the bary gradients.
+ ((float4*)p.gradRaster)[pidx] = make_float4(gb0, gb1, 0.f, 0.f);
+
+ // If pixel differentials disabled, we're done.
+ if (!ENABLE_DA)
+ return;
+
+ // Calculate gradients based on attribute pixel differentials.
+ const float2* dda = ((float2*)p.dda) + pidx * p.numDiffAttr;
+ float gdudx = 0.f;
+ float gdudy = 0.f;
+ float gdvdx = 0.f;
+ float gdvdy = 0.f;
+
+ // Read bary pixel differentials.
+ float4 db = ((float4*)p.rastDB)[pidx];
+ float dudx = db.x;
+ float dudy = db.y;
+ float dvdx = db.z;
+ float dvdy = db.w;
+
+ for (int i=0; i < p.numDiffAttr; i++)
+ {
+ // Input attribute index.
+ int j = p.diff_attrs_all ? i : p.diffAttrs[i];
+ if (j < 0)
+ j += p.numAttr; // Python-style negative indices.
+
+ // Check that index is valid.
+ if (j >= 0 && j < p.numAttr)
+ {
+ float2 dsdxy = dda[i];
+ float dsdx = dsdxy.x;
+ float dsdy = dsdxy.y;
+
+ float s0 = a0[j];
+ float s1 = a1[j];
+ float s2 = a2[j];
+
+ // Gradients of db.
+ float dsdu = s0 - s2;
+ float dsdv = s1 - s2;
+ gdudx += dsdu * dsdx;
+ gdudy += dsdu * dsdy;
+ gdvdx += dsdv * dsdx;
+ gdvdy += dsdv * dsdy;
+
+ // Gradients of attributes.
+ float du = dsdx*dudx + dsdy*dudy;
+ float dv = dsdx*dvdx + dsdy*dvdy;
+ caAtomicAdd(ga0 + j, du);
+ caAtomicAdd(ga1 + j, dv);
+ caAtomicAdd(ga2 + j, -du - dv);
+ }
+ }
+
+ // Write.
+ ((float4*)p.gradRasterDB)[pidx] = make_float4(gdudx, gdudy, gdvdx, gdvdy);
+}
+
+// Template specializations.
+__global__ void InterpolateGradKernel (const InterpolateKernelParams p) { InterpolateGradKernelTemplate(p); }
+__global__ void InterpolateGradKernelDa(const InterpolateKernelParams p) { InterpolateGradKernelTemplate(p); }
+
+//------------------------------------------------------------------------
diff --git a/extensions/nvdiffrast/nvdiffrast/common/interpolate.h b/extensions/nvdiffrast/nvdiffrast/common/interpolate.h
new file mode 100644
index 0000000000000000000000000000000000000000..335bb5a8baf53aa96f0cf2f51d0a0fc91ba49527
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/common/interpolate.h
@@ -0,0 +1,49 @@
+// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#pragma once
+
+//------------------------------------------------------------------------
+// Constants and helpers.
+
+#define IP_FWD_MAX_KERNEL_BLOCK_WIDTH 8
+#define IP_FWD_MAX_KERNEL_BLOCK_HEIGHT 8
+#define IP_GRAD_MAX_KERNEL_BLOCK_WIDTH 8
+#define IP_GRAD_MAX_KERNEL_BLOCK_HEIGHT 8
+#define IP_MAX_DIFF_ATTRS 32
+
+//------------------------------------------------------------------------
+// CUDA kernel params.
+
+struct InterpolateKernelParams
+{
+ const int* tri; // Incoming triangle buffer.
+ const float* attr; // Incoming attribute buffer.
+ const float* rast; // Incoming rasterizer output buffer.
+ const float* rastDB; // Incoming rasterizer output buffer for bary derivatives.
+ const float* dy; // Incoming attribute gradients.
+ const float* dda; // Incoming attr diff gradients.
+ float* out; // Outgoing interpolated attributes.
+ float* outDA; // Outgoing texcoord major axis lengths.
+ float* gradAttr; // Outgoing attribute gradients.
+ float* gradRaster; // Outgoing rasterizer gradients.
+ float* gradRasterDB; // Outgoing rasterizer bary diff gradients.
+ int numTriangles; // Number of triangles.
+ int numVertices; // Number of vertices.
+ int numAttr; // Number of total vertex attributes.
+ int numDiffAttr; // Number of attributes to differentiate.
+ int width; // Image width.
+ int height; // Image height.
+ int depth; // Minibatch size.
+ int attrBC; // 0=normal, 1=attr is broadcast.
+ int instance_mode; // 0=normal, 1=instance mode.
+ int diff_attrs_all; // 0=normal, 1=produce pixel differentials for all attributes.
+ int diffAttrs[IP_MAX_DIFF_ATTRS]; // List of attributes to differentiate.
+};
+
+//------------------------------------------------------------------------
diff --git a/extensions/nvdiffrast/nvdiffrast/common/rasterize.cu b/extensions/nvdiffrast/nvdiffrast/common/rasterize.cu
new file mode 100644
index 0000000000000000000000000000000000000000..bdc518c9bec3ef45b74dcd75bc8429107b3c9896
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/common/rasterize.cu
@@ -0,0 +1,276 @@
+// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#include "common.h"
+#include "rasterize.h"
+
+//------------------------------------------------------------------------
+// Cuda forward rasterizer pixel shader kernel.
+
+__global__ void RasterizeCudaFwdShaderKernel(const RasterizeCudaFwdShaderParams p)
+{
+ // Calculate pixel position.
+ int px = blockIdx.x * blockDim.x + threadIdx.x;
+ int py = blockIdx.y * blockDim.y + threadIdx.y;
+ int pz = blockIdx.z;
+ if (px >= p.width_out || py >= p.height_out || pz >= p.depth)
+ return;
+
+ // Pixel indices.
+ int pidx_in = px + p.width_in * (py + p.height_in * pz);
+ int pidx_out = px + p.width_out * (py + p.height_out * pz);
+
+ // Fetch triangle idx.
+ int triIdx = p.in_idx[pidx_in] - 1;
+ if (triIdx < 0 || triIdx >= p.numTriangles)
+ {
+ // No or corrupt triangle.
+ ((float4*)p.out)[pidx_out] = make_float4(0.0, 0.0, 0.0, 0.0); // Clear out.
+ ((float4*)p.out_db)[pidx_out] = make_float4(0.0, 0.0, 0.0, 0.0); // Clear out_db.
+ return;
+ }
+
+ // Fetch vertex indices.
+ int vi0 = p.tri[triIdx * 3 + 0];
+ int vi1 = p.tri[triIdx * 3 + 1];
+ int vi2 = p.tri[triIdx * 3 + 2];
+
+ // Bail out if vertex indices are corrupt.
+ if (vi0 < 0 || vi0 >= p.numVertices ||
+ vi1 < 0 || vi1 >= p.numVertices ||
+ vi2 < 0 || vi2 >= p.numVertices)
+ return;
+
+ // In instance mode, adjust vertex indices by minibatch index.
+ if (p.instance_mode)
+ {
+ vi0 += pz * p.numVertices;
+ vi1 += pz * p.numVertices;
+ vi2 += pz * p.numVertices;
+ }
+
+ // Fetch vertex positions.
+ float4 p0 = ((float4*)p.pos)[vi0];
+ float4 p1 = ((float4*)p.pos)[vi1];
+ float4 p2 = ((float4*)p.pos)[vi2];
+
+ // Evaluate edge functions.
+ float fx = p.xs * (float)px + p.xo;
+ float fy = p.ys * (float)py + p.yo;
+ float p0x = p0.x - fx * p0.w;
+ float p0y = p0.y - fy * p0.w;
+ float p1x = p1.x - fx * p1.w;
+ float p1y = p1.y - fy * p1.w;
+ float p2x = p2.x - fx * p2.w;
+ float p2y = p2.y - fy * p2.w;
+ float a0 = p1x*p2y - p1y*p2x;
+ float a1 = p2x*p0y - p2y*p0x;
+ float a2 = p0x*p1y - p0y*p1x;
+
+ // Perspective correct, normalized barycentrics.
+ float iw = 1.f / (a0 + a1 + a2);
+ float b0 = a0 * iw;
+ float b1 = a1 * iw;
+
+ // Compute z/w for depth buffer.
+ float z = p0.z * a0 + p1.z * a1 + p2.z * a2;
+ float w = p0.w * a0 + p1.w * a1 + p2.w * a2;
+ float zw = z / w;
+
+ // Clamps to avoid NaNs.
+ b0 = __saturatef(b0); // Clamp to [+0.0, 1.0].
+ b1 = __saturatef(b1); // Clamp to [+0.0, 1.0].
+ zw = fmaxf(fminf(zw, 1.f), -1.f);
+
+ // Emit output.
+ ((float4*)p.out)[pidx_out] = make_float4(b0, b1, zw, triidx_to_float(triIdx + 1));
+
+ // Calculate bary pixel differentials.
+ float dfxdx = p.xs * iw;
+ float dfydy = p.ys * iw;
+ float da0dx = p2.y*p1.w - p1.y*p2.w;
+ float da0dy = p1.x*p2.w - p2.x*p1.w;
+ float da1dx = p0.y*p2.w - p2.y*p0.w;
+ float da1dy = p2.x*p0.w - p0.x*p2.w;
+ float da2dx = p1.y*p0.w - p0.y*p1.w;
+ float da2dy = p0.x*p1.w - p1.x*p0.w;
+ float datdx = da0dx + da1dx + da2dx;
+ float datdy = da0dy + da1dy + da2dy;
+ float dudx = dfxdx * (b0 * datdx - da0dx);
+ float dudy = dfydy * (b0 * datdy - da0dy);
+ float dvdx = dfxdx * (b1 * datdx - da1dx);
+ float dvdy = dfydy * (b1 * datdy - da1dy);
+
+ // Emit bary pixel differentials.
+ ((float4*)p.out_db)[pidx_out] = make_float4(dudx, dudy, dvdx, dvdy);
+}
+
+//------------------------------------------------------------------------
+// Gradient Cuda kernel.
+
+template
+static __forceinline__ __device__ void RasterizeGradKernelTemplate(const RasterizeGradParams p)
+{
+ // Temporary space for coalesced atomics.
+ CA_DECLARE_TEMP(RAST_GRAD_MAX_KERNEL_BLOCK_WIDTH * RAST_GRAD_MAX_KERNEL_BLOCK_HEIGHT);
+
+ // Calculate pixel position.
+ int px = blockIdx.x * blockDim.x + threadIdx.x;
+ int py = blockIdx.y * blockDim.y + threadIdx.y;
+ int pz = blockIdx.z;
+ if (px >= p.width || py >= p.height || pz >= p.depth)
+ return;
+
+ // Pixel index.
+ int pidx = px + p.width * (py + p.height * pz);
+
+ // Read triangle idx and dy.
+ float2 dy = ((float2*)p.dy)[pidx * 2];
+ float4 ddb = ENABLE_DB ? ((float4*)p.ddb)[pidx] : make_float4(0.f, 0.f, 0.f, 0.f);
+ int triIdx = float_to_triidx(((float*)p.out)[pidx * 4 + 3]) - 1;
+
+ // Exit if nothing to do.
+ if (triIdx < 0 || triIdx >= p.numTriangles)
+ return; // No or corrupt triangle.
+ int grad_all_dy = __float_as_int(dy.x) | __float_as_int(dy.y); // Bitwise OR of all incoming gradients.
+ int grad_all_ddb = 0;
+ if (ENABLE_DB)
+ grad_all_ddb = __float_as_int(ddb.x) | __float_as_int(ddb.y) | __float_as_int(ddb.z) | __float_as_int(ddb.w);
+ if (((grad_all_dy | grad_all_ddb) << 1) == 0)
+ return; // All incoming gradients are +0/-0.
+
+ // Fetch vertex indices.
+ int vi0 = p.tri[triIdx * 3 + 0];
+ int vi1 = p.tri[triIdx * 3 + 1];
+ int vi2 = p.tri[triIdx * 3 + 2];
+
+ // Bail out if vertex indices are corrupt.
+ if (vi0 < 0 || vi0 >= p.numVertices ||
+ vi1 < 0 || vi1 >= p.numVertices ||
+ vi2 < 0 || vi2 >= p.numVertices)
+ return;
+
+ // In instance mode, adjust vertex indices by minibatch index.
+ if (p.instance_mode)
+ {
+ vi0 += pz * p.numVertices;
+ vi1 += pz * p.numVertices;
+ vi2 += pz * p.numVertices;
+ }
+
+ // Initialize coalesced atomics.
+ CA_SET_GROUP(triIdx);
+
+ // Fetch vertex positions.
+ float4 p0 = ((float4*)p.pos)[vi0];
+ float4 p1 = ((float4*)p.pos)[vi1];
+ float4 p2 = ((float4*)p.pos)[vi2];
+
+ // Evaluate edge functions.
+ float fx = p.xs * (float)px + p.xo;
+ float fy = p.ys * (float)py + p.yo;
+ float p0x = p0.x - fx * p0.w;
+ float p0y = p0.y - fy * p0.w;
+ float p1x = p1.x - fx * p1.w;
+ float p1y = p1.y - fy * p1.w;
+ float p2x = p2.x - fx * p2.w;
+ float p2y = p2.y - fy * p2.w;
+ float a0 = p1x*p2y - p1y*p2x;
+ float a1 = p2x*p0y - p2y*p0x;
+ float a2 = p0x*p1y - p0y*p1x;
+
+ // Compute inverse area with epsilon.
+ float at = a0 + a1 + a2;
+ float ep = copysignf(1e-6f, at); // ~1 pixel in 1k x 1k image.
+ float iw = 1.f / (at + ep);
+
+ // Perspective correct, normalized barycentrics.
+ float b0 = a0 * iw;
+ float b1 = a1 * iw;
+
+ // Position gradients.
+ float gb0 = dy.x * iw;
+ float gb1 = dy.y * iw;
+ float gbb = gb0 * b0 + gb1 * b1;
+ float gp0x = gbb * (p2y - p1y) - gb1 * p2y;
+ float gp1x = gbb * (p0y - p2y) + gb0 * p2y;
+ float gp2x = gbb * (p1y - p0y) - gb0 * p1y + gb1 * p0y;
+ float gp0y = gbb * (p1x - p2x) + gb1 * p2x;
+ float gp1y = gbb * (p2x - p0x) - gb0 * p2x;
+ float gp2y = gbb * (p0x - p1x) + gb0 * p1x - gb1 * p0x;
+ float gp0w = -fx * gp0x - fy * gp0y;
+ float gp1w = -fx * gp1x - fy * gp1y;
+ float gp2w = -fx * gp2x - fy * gp2y;
+
+ // Bary differential gradients.
+ if (ENABLE_DB && ((grad_all_ddb) << 1) != 0)
+ {
+ float dfxdX = p.xs * iw;
+ float dfydY = p.ys * iw;
+ ddb.x *= dfxdX;
+ ddb.y *= dfydY;
+ ddb.z *= dfxdX;
+ ddb.w *= dfydY;
+
+ float da0dX = p1.y * p2.w - p2.y * p1.w;
+ float da1dX = p2.y * p0.w - p0.y * p2.w;
+ float da2dX = p0.y * p1.w - p1.y * p0.w;
+ float da0dY = p2.x * p1.w - p1.x * p2.w;
+ float da1dY = p0.x * p2.w - p2.x * p0.w;
+ float da2dY = p1.x * p0.w - p0.x * p1.w;
+ float datdX = da0dX + da1dX + da2dX;
+ float datdY = da0dY + da1dY + da2dY;
+
+ float x01 = p0.x - p1.x;
+ float x12 = p1.x - p2.x;
+ float x20 = p2.x - p0.x;
+ float y01 = p0.y - p1.y;
+ float y12 = p1.y - p2.y;
+ float y20 = p2.y - p0.y;
+ float w01 = p0.w - p1.w;
+ float w12 = p1.w - p2.w;
+ float w20 = p2.w - p0.w;
+
+ float a0p1 = fy * p2.x - fx * p2.y;
+ float a0p2 = fx * p1.y - fy * p1.x;
+ float a1p0 = fx * p2.y - fy * p2.x;
+ float a1p2 = fy * p0.x - fx * p0.y;
+
+ float wdudX = 2.f * b0 * datdX - da0dX;
+ float wdudY = 2.f * b0 * datdY - da0dY;
+ float wdvdX = 2.f * b1 * datdX - da1dX;
+ float wdvdY = 2.f * b1 * datdY - da1dY;
+
+ float c0 = iw * (ddb.x * wdudX + ddb.y * wdudY + ddb.z * wdvdX + ddb.w * wdvdY);
+ float cx = c0 * fx - ddb.x * b0 - ddb.z * b1;
+ float cy = c0 * fy - ddb.y * b0 - ddb.w * b1;
+ float cxy = iw * (ddb.x * datdX + ddb.y * datdY);
+ float czw = iw * (ddb.z * datdX + ddb.w * datdY);
+
+ gp0x += c0 * y12 - cy * w12 + czw * p2y + ddb.w * p2.w;
+ gp1x += c0 * y20 - cy * w20 - cxy * p2y - ddb.y * p2.w;
+ gp2x += c0 * y01 - cy * w01 + cxy * p1y - czw * p0y + ddb.y * p1.w - ddb.w * p0.w;
+ gp0y += cx * w12 - c0 * x12 - czw * p2x - ddb.z * p2.w;
+ gp1y += cx * w20 - c0 * x20 + cxy * p2x + ddb.x * p2.w;
+ gp2y += cx * w01 - c0 * x01 - cxy * p1x + czw * p0x - ddb.x * p1.w + ddb.z * p0.w;
+ gp0w += cy * x12 - cx * y12 - czw * a1p0 + ddb.z * p2.y - ddb.w * p2.x;
+ gp1w += cy * x20 - cx * y20 - cxy * a0p1 - ddb.x * p2.y + ddb.y * p2.x;
+ gp2w += cy * x01 - cx * y01 - cxy * a0p2 - czw * a1p2 + ddb.x * p1.y - ddb.y * p1.x - ddb.z * p0.y + ddb.w * p0.x;
+ }
+
+ // Accumulate using coalesced atomics.
+ caAtomicAdd3_xyw(p.grad + 4 * vi0, gp0x, gp0y, gp0w);
+ caAtomicAdd3_xyw(p.grad + 4 * vi1, gp1x, gp1y, gp1w);
+ caAtomicAdd3_xyw(p.grad + 4 * vi2, gp2x, gp2y, gp2w);
+}
+
+// Template specializations.
+__global__ void RasterizeGradKernel (const RasterizeGradParams p) { RasterizeGradKernelTemplate(p); }
+__global__ void RasterizeGradKernelDb(const RasterizeGradParams p) { RasterizeGradKernelTemplate(p); }
+
+//------------------------------------------------------------------------
diff --git a/extensions/nvdiffrast/nvdiffrast/common/rasterize.h b/extensions/nvdiffrast/nvdiffrast/common/rasterize.h
new file mode 100644
index 0000000000000000000000000000000000000000..30c5e4951239891c4d9c1f28bc0012a39c4a6b06
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/common/rasterize.h
@@ -0,0 +1,60 @@
+// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#pragma once
+
+//------------------------------------------------------------------------
+// Constants and helpers.
+
+#define RAST_CUDA_FWD_SHADER_KERNEL_BLOCK_WIDTH 8
+#define RAST_CUDA_FWD_SHADER_KERNEL_BLOCK_HEIGHT 8
+#define RAST_GRAD_MAX_KERNEL_BLOCK_WIDTH 8
+#define RAST_GRAD_MAX_KERNEL_BLOCK_HEIGHT 8
+
+//------------------------------------------------------------------------
+// CUDA forward rasterizer shader kernel params.
+
+struct RasterizeCudaFwdShaderParams
+{
+ const float* pos; // Vertex positions.
+ const int* tri; // Triangle indices.
+ const int* in_idx; // Triangle idx buffer from rasterizer.
+ float* out; // Main output buffer.
+ float* out_db; // Bary pixel gradient output buffer.
+ int numTriangles; // Number of triangles.
+ int numVertices; // Number of vertices.
+ int width_in; // Input image width.
+ int height_in; // Input image height.
+ int width_out; // Output image width.
+ int height_out; // Output image height.
+ int depth; // Size of minibatch.
+ int instance_mode; // 1 if in instance rendering mode.
+ float xs, xo, ys, yo; // Pixel position to clip-space x, y transform.
+};
+
+//------------------------------------------------------------------------
+// Gradient CUDA kernel params.
+
+struct RasterizeGradParams
+{
+ const float* pos; // Incoming position buffer.
+ const int* tri; // Incoming triangle buffer.
+ const float* out; // Rasterizer output buffer.
+ const float* dy; // Incoming gradients of rasterizer output buffer.
+ const float* ddb; // Incoming gradients of bary diff output buffer.
+ float* grad; // Outgoing position gradients.
+ int numTriangles; // Number of triangles.
+ int numVertices; // Number of vertices.
+ int width; // Image width.
+ int height; // Image height.
+ int depth; // Size of minibatch.
+ int instance_mode; // 1 if in instance rendering mode.
+ float xs, xo, ys, yo; // Pixel position to clip-space x, y transform.
+};
+
+//------------------------------------------------------------------------
diff --git a/extensions/nvdiffrast/nvdiffrast/common/rasterize_gl.cpp b/extensions/nvdiffrast/nvdiffrast/common/rasterize_gl.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..404dcf221bb1182a6755e503927127be113453a8
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/common/rasterize_gl.cpp
@@ -0,0 +1,644 @@
+// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#include "rasterize_gl.h"
+#include "glutil.h"
+#include
+#define STRINGIFY_SHADER_SOURCE(x) #x
+
+//------------------------------------------------------------------------
+// Helpers.
+
+#define ROUND_UP(x, y) ((((x) + ((y) - 1)) / (y)) * (y))
+static int ROUND_UP_BITS(uint32_t x, uint32_t y)
+{
+ // Round x up so that it has at most y bits of mantissa.
+ if (x < (1u << y))
+ return x;
+ uint32_t m = 0;
+ while (x & ~m)
+ m = (m << 1) | 1u;
+ m >>= y;
+ if (!(x & m))
+ return x;
+ return (x | m) + 1u;
+}
+
+//------------------------------------------------------------------------
+// Draw command struct used by rasterizer.
+
+struct GLDrawCmd
+{
+ uint32_t count;
+ uint32_t instanceCount;
+ uint32_t firstIndex;
+ uint32_t baseVertex;
+ uint32_t baseInstance;
+};
+
+//------------------------------------------------------------------------
+// GL helpers.
+
+static void compileGLShader(NVDR_CTX_ARGS, const RasterizeGLState& s, GLuint* pShader, GLenum shaderType, const char* src_buf)
+{
+ std::string src(src_buf);
+
+ // Set preprocessor directives.
+ int n = src.find('\n') + 1; // After first line containing #version directive.
+ if (s.enableZModify)
+ src.insert(n, "#define IF_ZMODIFY(x) x\n");
+ else
+ src.insert(n, "#define IF_ZMODIFY(x)\n");
+
+ const char *cstr = src.c_str();
+ *pShader = 0;
+ NVDR_CHECK_GL_ERROR(*pShader = glCreateShader(shaderType));
+ NVDR_CHECK_GL_ERROR(glShaderSource(*pShader, 1, &cstr, 0));
+ NVDR_CHECK_GL_ERROR(glCompileShader(*pShader));
+}
+
+static void constructGLProgram(NVDR_CTX_ARGS, GLuint* pProgram, GLuint glVertexShader, GLuint glGeometryShader, GLuint glFragmentShader)
+{
+ *pProgram = 0;
+
+ GLuint glProgram = 0;
+ NVDR_CHECK_GL_ERROR(glProgram = glCreateProgram());
+ NVDR_CHECK_GL_ERROR(glAttachShader(glProgram, glVertexShader));
+ NVDR_CHECK_GL_ERROR(glAttachShader(glProgram, glGeometryShader));
+ NVDR_CHECK_GL_ERROR(glAttachShader(glProgram, glFragmentShader));
+ NVDR_CHECK_GL_ERROR(glLinkProgram(glProgram));
+
+ GLint linkStatus = 0;
+ NVDR_CHECK_GL_ERROR(glGetProgramiv(glProgram, GL_LINK_STATUS, &linkStatus));
+ if (!linkStatus)
+ {
+ GLint infoLen = 0;
+ NVDR_CHECK_GL_ERROR(glGetProgramiv(glProgram, GL_INFO_LOG_LENGTH, &infoLen));
+ if (infoLen)
+ {
+ const char* hdr = "glLinkProgram() failed:\n";
+ std::vector info(strlen(hdr) + infoLen);
+ strcpy(&info[0], hdr);
+ NVDR_CHECK_GL_ERROR(glGetProgramInfoLog(glProgram, infoLen, &infoLen, &info[strlen(hdr)]));
+ NVDR_CHECK(0, &info[0]);
+ }
+ NVDR_CHECK(0, "glLinkProgram() failed");
+ }
+
+ *pProgram = glProgram;
+}
+
+//------------------------------------------------------------------------
+// Shared C++ functions.
+
+void rasterizeInitGLContext(NVDR_CTX_ARGS, RasterizeGLState& s, int cudaDeviceIdx)
+{
+ // Create GL context and set it current.
+ s.glctx = createGLContext(cudaDeviceIdx);
+ setGLContext(s.glctx);
+
+ // Version check.
+ GLint vMajor = 0;
+ GLint vMinor = 0;
+ glGetIntegerv(GL_MAJOR_VERSION, &vMajor);
+ glGetIntegerv(GL_MINOR_VERSION, &vMinor);
+ glGetError(); // Clear possible GL_INVALID_ENUM error in version query.
+ LOG(INFO) << "OpenGL version reported as " << vMajor << "." << vMinor;
+ NVDR_CHECK((vMajor == 4 && vMinor >= 4) || vMajor > 4, "OpenGL 4.4 or later is required");
+
+ // Enable depth modification workaround on A100 and later.
+ int capMajor = 0;
+ NVDR_CHECK_CUDA_ERROR(cudaDeviceGetAttribute(&capMajor, cudaDevAttrComputeCapabilityMajor, cudaDeviceIdx));
+ s.enableZModify = (capMajor >= 8);
+
+ // Number of output buffers.
+ int num_outputs = s.enableDB ? 2 : 1;
+
+ // Set up vertex shader.
+ compileGLShader(NVDR_CTX_PARAMS, s, &s.glVertexShader, GL_VERTEX_SHADER,
+ "#version 330\n"
+ "#extension GL_ARB_shader_draw_parameters : enable\n"
+ STRINGIFY_SHADER_SOURCE(
+ layout(location = 0) in vec4 in_pos;
+ out int v_layer;
+ out int v_offset;
+ void main()
+ {
+ int layer = gl_DrawIDARB;
+ gl_Position = in_pos;
+ v_layer = layer;
+ v_offset = gl_BaseInstanceARB; // Sneak in TriID offset here.
+ }
+ )
+ );
+
+ // Geometry and fragment shaders depend on if bary differential output is enabled or not.
+ if (s.enableDB)
+ {
+ // Set up geometry shader. Calculation of per-pixel bary differentials is based on:
+ // u = (u/w) / (1/w)
+ // --> du/dX = d((u/w) / (1/w))/dX
+ // --> du/dX = [d(u/w)/dX - u*d(1/w)/dX] * w
+ // and we know both d(u/w)/dX and d(1/w)/dX are constant over triangle.
+ compileGLShader(NVDR_CTX_PARAMS, s, &s.glGeometryShader, GL_GEOMETRY_SHADER,
+ "#version 430\n"
+ STRINGIFY_SHADER_SOURCE(
+ layout(triangles) in;
+ layout(triangle_strip, max_vertices=3) out;
+ layout(location = 0) uniform vec2 vp_scale;
+ in int v_layer[];
+ in int v_offset[];
+ out vec4 var_uvzw;
+ out vec4 var_db;
+ void main()
+ {
+ // Plane equations for bary differentials.
+ float w0 = gl_in[0].gl_Position.w;
+ float w1 = gl_in[1].gl_Position.w;
+ float w2 = gl_in[2].gl_Position.w;
+ vec2 p0 = gl_in[0].gl_Position.xy;
+ vec2 p1 = gl_in[1].gl_Position.xy;
+ vec2 p2 = gl_in[2].gl_Position.xy;
+ vec2 e0 = p0*w2 - p2*w0;
+ vec2 e1 = p1*w2 - p2*w1;
+ float a = e0.x*e1.y - e0.y*e1.x;
+
+ // Clamp area to an epsilon to avoid arbitrarily high bary differentials.
+ float eps = 1e-6f; // ~1 pixel in 1k x 1k image.
+ float ca = (abs(a) >= eps) ? a : (a < 0.f) ? -eps : eps; // Clamp with sign.
+ float ia = 1.f / ca; // Inverse area.
+
+ vec2 ascl = ia * vp_scale;
+ float dudx = e1.y * ascl.x;
+ float dudy = -e1.x * ascl.y;
+ float dvdx = -e0.y * ascl.x;
+ float dvdy = e0.x * ascl.y;
+
+ float duwdx = w2 * dudx;
+ float dvwdx = w2 * dvdx;
+ float duvdx = w0 * dudx + w1 * dvdx;
+ float duwdy = w2 * dudy;
+ float dvwdy = w2 * dvdy;
+ float duvdy = w0 * dudy + w1 * dvdy;
+
+ vec4 db0 = vec4(duvdx - dvwdx, duvdy - dvwdy, dvwdx, dvwdy);
+ vec4 db1 = vec4(duwdx, duwdy, duvdx - duwdx, duvdy - duwdy);
+ vec4 db2 = vec4(duwdx, duwdy, dvwdx, dvwdy);
+
+ int layer_id = v_layer[0];
+ int prim_id = gl_PrimitiveIDIn + v_offset[0];
+
+ gl_Layer = layer_id; gl_PrimitiveID = prim_id; gl_Position = vec4(gl_in[0].gl_Position.x, gl_in[0].gl_Position.y, gl_in[0].gl_Position.z, gl_in[0].gl_Position.w); var_uvzw = vec4(1.f, 0.f, gl_in[0].gl_Position.z, gl_in[0].gl_Position.w); var_db = db0; EmitVertex();
+ gl_Layer = layer_id; gl_PrimitiveID = prim_id; gl_Position = vec4(gl_in[1].gl_Position.x, gl_in[1].gl_Position.y, gl_in[1].gl_Position.z, gl_in[1].gl_Position.w); var_uvzw = vec4(0.f, 1.f, gl_in[1].gl_Position.z, gl_in[1].gl_Position.w); var_db = db1; EmitVertex();
+ gl_Layer = layer_id; gl_PrimitiveID = prim_id; gl_Position = vec4(gl_in[2].gl_Position.x, gl_in[2].gl_Position.y, gl_in[2].gl_Position.z, gl_in[2].gl_Position.w); var_uvzw = vec4(0.f, 0.f, gl_in[2].gl_Position.z, gl_in[2].gl_Position.w); var_db = db2; EmitVertex();
+ }
+ )
+ );
+
+ // Set up fragment shader.
+ compileGLShader(NVDR_CTX_PARAMS, s, &s.glFragmentShader, GL_FRAGMENT_SHADER,
+ "#version 430\n"
+ STRINGIFY_SHADER_SOURCE(
+ in vec4 var_uvzw;
+ in vec4 var_db;
+ layout(location = 0) out vec4 out_raster;
+ layout(location = 1) out vec4 out_db;
+ IF_ZMODIFY(
+ layout(location = 1) uniform float in_dummy;
+ )
+ void main()
+ {
+ int id_int = gl_PrimitiveID + 1;
+ float id_float = (id_int <= 0x01000000) ? float(id_int) : intBitsToFloat(0x4a800000 + id_int);
+
+ out_raster = vec4(var_uvzw.x, var_uvzw.y, var_uvzw.z / var_uvzw.w, id_float);
+ out_db = var_db * var_uvzw.w;
+ IF_ZMODIFY(gl_FragDepth = gl_FragCoord.z + in_dummy;)
+ }
+ )
+ );
+
+ // Set up fragment shader for depth peeling.
+ compileGLShader(NVDR_CTX_PARAMS, s, &s.glFragmentShaderDP, GL_FRAGMENT_SHADER,
+ "#version 430\n"
+ STRINGIFY_SHADER_SOURCE(
+ in vec4 var_uvzw;
+ in vec4 var_db;
+ layout(binding = 0) uniform sampler2DArray out_prev;
+ layout(location = 0) out vec4 out_raster;
+ layout(location = 1) out vec4 out_db;
+ IF_ZMODIFY(
+ layout(location = 1) uniform float in_dummy;
+ )
+ void main()
+ {
+ int id_int = gl_PrimitiveID + 1;
+ float id_float = (id_int <= 0x01000000) ? float(id_int) : intBitsToFloat(0x4a800000 + id_int);
+
+ vec4 prev = texelFetch(out_prev, ivec3(gl_FragCoord.x, gl_FragCoord.y, gl_Layer), 0);
+ float depth_new = var_uvzw.z / var_uvzw.w;
+ if (prev.w == 0 || depth_new <= prev.z)
+ discard;
+ out_raster = vec4(var_uvzw.x, var_uvzw.y, depth_new, id_float);
+ out_db = var_db * var_uvzw.w;
+ IF_ZMODIFY(gl_FragDepth = gl_FragCoord.z + in_dummy;)
+ }
+ )
+ );
+ }
+ else
+ {
+ // Geometry shader without bary differential output.
+ compileGLShader(NVDR_CTX_PARAMS, s, &s.glGeometryShader, GL_GEOMETRY_SHADER,
+ "#version 330\n"
+ STRINGIFY_SHADER_SOURCE(
+ layout(triangles) in;
+ layout(triangle_strip, max_vertices=3) out;
+ in int v_layer[];
+ in int v_offset[];
+ out vec4 var_uvzw;
+ void main()
+ {
+ int layer_id = v_layer[0];
+ int prim_id = gl_PrimitiveIDIn + v_offset[0];
+
+ gl_Layer = layer_id; gl_PrimitiveID = prim_id; gl_Position = vec4(gl_in[0].gl_Position.x, gl_in[0].gl_Position.y, gl_in[0].gl_Position.z, gl_in[0].gl_Position.w); var_uvzw = vec4(1.f, 0.f, gl_in[0].gl_Position.z, gl_in[0].gl_Position.w); EmitVertex();
+ gl_Layer = layer_id; gl_PrimitiveID = prim_id; gl_Position = vec4(gl_in[1].gl_Position.x, gl_in[1].gl_Position.y, gl_in[1].gl_Position.z, gl_in[1].gl_Position.w); var_uvzw = vec4(0.f, 1.f, gl_in[1].gl_Position.z, gl_in[1].gl_Position.w); EmitVertex();
+ gl_Layer = layer_id; gl_PrimitiveID = prim_id; gl_Position = vec4(gl_in[2].gl_Position.x, gl_in[2].gl_Position.y, gl_in[2].gl_Position.z, gl_in[2].gl_Position.w); var_uvzw = vec4(0.f, 0.f, gl_in[2].gl_Position.z, gl_in[2].gl_Position.w); EmitVertex();
+ }
+ )
+ );
+
+ // Fragment shader without bary differential output.
+ compileGLShader(NVDR_CTX_PARAMS, s, &s.glFragmentShader, GL_FRAGMENT_SHADER,
+ "#version 430\n"
+ STRINGIFY_SHADER_SOURCE(
+ in vec4 var_uvzw;
+ layout(location = 0) out vec4 out_raster;
+ IF_ZMODIFY(
+ layout(location = 1) uniform float in_dummy;
+ )
+ void main()
+ {
+ int id_int = gl_PrimitiveID + 1;
+ float id_float = (id_int <= 0x01000000) ? float(id_int) : intBitsToFloat(0x4a800000 + id_int);
+
+ out_raster = vec4(var_uvzw.x, var_uvzw.y, var_uvzw.z / var_uvzw.w, id_float);
+ IF_ZMODIFY(gl_FragDepth = gl_FragCoord.z + in_dummy;)
+ }
+ )
+ );
+
+ // Depth peeling variant of fragment shader.
+ compileGLShader(NVDR_CTX_PARAMS, s, &s.glFragmentShaderDP, GL_FRAGMENT_SHADER,
+ "#version 430\n"
+ STRINGIFY_SHADER_SOURCE(
+ in vec4 var_uvzw;
+ layout(binding = 0) uniform sampler2DArray out_prev;
+ layout(location = 0) out vec4 out_raster;
+ IF_ZMODIFY(
+ layout(location = 1) uniform float in_dummy;
+ )
+ void main()
+ {
+ int id_int = gl_PrimitiveID + 1;
+ float id_float = (id_int <= 0x01000000) ? float(id_int) : intBitsToFloat(0x4a800000 + id_int);
+
+ vec4 prev = texelFetch(out_prev, ivec3(gl_FragCoord.x, gl_FragCoord.y, gl_Layer), 0);
+ float depth_new = var_uvzw.z / var_uvzw.w;
+ if (prev.w == 0 || depth_new <= prev.z)
+ discard;
+ out_raster = vec4(var_uvzw.x, var_uvzw.y, var_uvzw.z / var_uvzw.w, id_float);
+ IF_ZMODIFY(gl_FragDepth = gl_FragCoord.z + in_dummy;)
+ }
+ )
+ );
+ }
+
+ // Finalize programs.
+ constructGLProgram(NVDR_CTX_PARAMS, &s.glProgram, s.glVertexShader, s.glGeometryShader, s.glFragmentShader);
+ constructGLProgram(NVDR_CTX_PARAMS, &s.glProgramDP, s.glVertexShader, s.glGeometryShader, s.glFragmentShaderDP);
+
+ // Construct main fbo and bind permanently.
+ NVDR_CHECK_GL_ERROR(glGenFramebuffers(1, &s.glFBO));
+ NVDR_CHECK_GL_ERROR(glBindFramebuffer(GL_FRAMEBUFFER, s.glFBO));
+
+ // Enable two color attachments.
+ GLenum draw_buffers[2] = { GL_COLOR_ATTACHMENT0, GL_COLOR_ATTACHMENT1 };
+ NVDR_CHECK_GL_ERROR(glDrawBuffers(num_outputs, draw_buffers));
+
+ // Construct vertex array object.
+ NVDR_CHECK_GL_ERROR(glGenVertexArrays(1, &s.glVAO));
+ NVDR_CHECK_GL_ERROR(glBindVertexArray(s.glVAO));
+
+ // Construct position buffer, bind permanently, enable, set ptr.
+ NVDR_CHECK_GL_ERROR(glGenBuffers(1, &s.glPosBuffer));
+ NVDR_CHECK_GL_ERROR(glBindBuffer(GL_ARRAY_BUFFER, s.glPosBuffer));
+ NVDR_CHECK_GL_ERROR(glEnableVertexAttribArray(0));
+ NVDR_CHECK_GL_ERROR(glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, 0, 0));
+
+ // Construct index buffer and bind permanently.
+ NVDR_CHECK_GL_ERROR(glGenBuffers(1, &s.glTriBuffer));
+ NVDR_CHECK_GL_ERROR(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s.glTriBuffer));
+
+ // Set up depth test.
+ NVDR_CHECK_GL_ERROR(glEnable(GL_DEPTH_TEST));
+ NVDR_CHECK_GL_ERROR(glDepthFunc(GL_LESS));
+ NVDR_CHECK_GL_ERROR(glClearDepth(1.0));
+
+ // Create and bind output buffers. Storage is allocated later.
+ NVDR_CHECK_GL_ERROR(glGenTextures(num_outputs, s.glColorBuffer));
+ for (int i=0; i < num_outputs; i++)
+ {
+ NVDR_CHECK_GL_ERROR(glBindTexture(GL_TEXTURE_2D_ARRAY, s.glColorBuffer[i]));
+ NVDR_CHECK_GL_ERROR(glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + i, s.glColorBuffer[i], 0));
+ }
+
+ // Create and bind depth/stencil buffer. Storage is allocated later.
+ NVDR_CHECK_GL_ERROR(glGenTextures(1, &s.glDepthStencilBuffer));
+ NVDR_CHECK_GL_ERROR(glBindTexture(GL_TEXTURE_2D_ARRAY, s.glDepthStencilBuffer));
+ NVDR_CHECK_GL_ERROR(glFramebufferTexture(GL_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, s.glDepthStencilBuffer, 0));
+
+ // Create texture name for previous output buffer (depth peeling).
+ NVDR_CHECK_GL_ERROR(glGenTextures(1, &s.glPrevOutBuffer));
+}
+
+void rasterizeResizeBuffers(NVDR_CTX_ARGS, RasterizeGLState& s, bool& changes, int posCount, int triCount, int width, int height, int depth)
+{
+ changes = false;
+
+ // Resize vertex buffer?
+ if (posCount > s.posCount)
+ {
+ if (s.cudaPosBuffer)
+ NVDR_CHECK_CUDA_ERROR(cudaGraphicsUnregisterResource(s.cudaPosBuffer));
+ s.posCount = (posCount > 64) ? ROUND_UP_BITS(posCount, 2) : 64;
+ LOG(INFO) << "Increasing position buffer size to " << s.posCount << " float32";
+ NVDR_CHECK_GL_ERROR(glBufferData(GL_ARRAY_BUFFER, s.posCount * sizeof(float), NULL, GL_DYNAMIC_DRAW));
+ NVDR_CHECK_CUDA_ERROR(cudaGraphicsGLRegisterBuffer(&s.cudaPosBuffer, s.glPosBuffer, cudaGraphicsRegisterFlagsWriteDiscard));
+ changes = true;
+ }
+
+ // Resize triangle buffer?
+ if (triCount > s.triCount)
+ {
+ if (s.cudaTriBuffer)
+ NVDR_CHECK_CUDA_ERROR(cudaGraphicsUnregisterResource(s.cudaTriBuffer));
+ s.triCount = (triCount > 64) ? ROUND_UP_BITS(triCount, 2) : 64;
+ LOG(INFO) << "Increasing triangle buffer size to " << s.triCount << " int32";
+ NVDR_CHECK_GL_ERROR(glBufferData(GL_ELEMENT_ARRAY_BUFFER, s.triCount * sizeof(int32_t), NULL, GL_DYNAMIC_DRAW));
+ NVDR_CHECK_CUDA_ERROR(cudaGraphicsGLRegisterBuffer(&s.cudaTriBuffer, s.glTriBuffer, cudaGraphicsRegisterFlagsWriteDiscard));
+ changes = true;
+ }
+
+ // Resize framebuffer?
+ if (width > s.width || height > s.height || depth > s.depth)
+ {
+ int num_outputs = s.enableDB ? 2 : 1;
+ if (s.cudaColorBuffer[0])
+ for (int i=0; i < num_outputs; i++)
+ NVDR_CHECK_CUDA_ERROR(cudaGraphicsUnregisterResource(s.cudaColorBuffer[i]));
+
+ if (s.cudaPrevOutBuffer)
+ {
+ NVDR_CHECK_CUDA_ERROR(cudaGraphicsUnregisterResource(s.cudaPrevOutBuffer));
+ s.cudaPrevOutBuffer = 0;
+ }
+
+ // New framebuffer size.
+ s.width = (width > s.width) ? width : s.width;
+ s.height = (height > s.height) ? height : s.height;
+ s.depth = (depth > s.depth) ? depth : s.depth;
+ s.width = ROUND_UP(s.width, 32);
+ s.height = ROUND_UP(s.height, 32);
+ LOG(INFO) << "Increasing frame buffer size to (width, height, depth) = (" << s.width << ", " << s.height << ", " << s.depth << ")";
+
+ // Allocate color buffers.
+ for (int i=0; i < num_outputs; i++)
+ {
+ NVDR_CHECK_GL_ERROR(glBindTexture(GL_TEXTURE_2D_ARRAY, s.glColorBuffer[i]));
+ NVDR_CHECK_GL_ERROR(glTexImage3D(GL_TEXTURE_2D_ARRAY, 0, GL_RGBA32F, s.width, s.height, s.depth, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0));
+ NVDR_CHECK_GL_ERROR(glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAG_FILTER, GL_NEAREST));
+ NVDR_CHECK_GL_ERROR(glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER, GL_NEAREST));
+ NVDR_CHECK_GL_ERROR(glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE));
+ NVDR_CHECK_GL_ERROR(glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE));
+ }
+
+ // Allocate depth/stencil buffer.
+ NVDR_CHECK_GL_ERROR(glBindTexture(GL_TEXTURE_2D_ARRAY, s.glDepthStencilBuffer));
+ NVDR_CHECK_GL_ERROR(glTexImage3D(GL_TEXTURE_2D_ARRAY, 0, GL_DEPTH24_STENCIL8, s.width, s.height, s.depth, 0, GL_DEPTH_STENCIL, GL_UNSIGNED_INT_24_8, 0));
+
+ // (Re-)register all GL buffers into Cuda.
+ for (int i=0; i < num_outputs; i++)
+ NVDR_CHECK_CUDA_ERROR(cudaGraphicsGLRegisterImage(&s.cudaColorBuffer[i], s.glColorBuffer[i], GL_TEXTURE_3D, cudaGraphicsRegisterFlagsReadOnly));
+
+ changes = true;
+ }
+}
+
+void rasterizeRender(NVDR_CTX_ARGS, RasterizeGLState& s, cudaStream_t stream, const float* posPtr, int posCount, int vtxPerInstance, const int32_t* triPtr, int triCount, const int32_t* rangesPtr, int width, int height, int depth, int peeling_idx)
+{
+ // Only copy inputs if we are on first iteration of depth peeling or not doing it at all.
+ if (peeling_idx < 1)
+ {
+ if (triPtr)
+ {
+ // Copy both position and triangle buffers.
+ void* glPosPtr = NULL;
+ void* glTriPtr = NULL;
+ size_t posBytes = 0;
+ size_t triBytes = 0;
+ NVDR_CHECK_CUDA_ERROR(cudaGraphicsMapResources(2, &s.cudaPosBuffer, stream));
+ NVDR_CHECK_CUDA_ERROR(cudaGraphicsResourceGetMappedPointer(&glPosPtr, &posBytes, s.cudaPosBuffer));
+ NVDR_CHECK_CUDA_ERROR(cudaGraphicsResourceGetMappedPointer(&glTriPtr, &triBytes, s.cudaTriBuffer));
+ NVDR_CHECK(posBytes >= posCount * sizeof(float), "mapped GL position buffer size mismatch");
+ NVDR_CHECK(triBytes >= triCount * sizeof(int32_t), "mapped GL triangle buffer size mismatch");
+ NVDR_CHECK_CUDA_ERROR(cudaMemcpyAsync(glPosPtr, posPtr, posCount * sizeof(float), cudaMemcpyDeviceToDevice, stream));
+ NVDR_CHECK_CUDA_ERROR(cudaMemcpyAsync(glTriPtr, triPtr, triCount * sizeof(int32_t), cudaMemcpyDeviceToDevice, stream));
+ NVDR_CHECK_CUDA_ERROR(cudaGraphicsUnmapResources(2, &s.cudaPosBuffer, stream));
+ }
+ else
+ {
+ // Copy position buffer only. Triangles are already copied and known to be constant.
+ void* glPosPtr = NULL;
+ size_t posBytes = 0;
+ NVDR_CHECK_CUDA_ERROR(cudaGraphicsMapResources(1, &s.cudaPosBuffer, stream));
+ NVDR_CHECK_CUDA_ERROR(cudaGraphicsResourceGetMappedPointer(&glPosPtr, &posBytes, s.cudaPosBuffer));
+ NVDR_CHECK(posBytes >= posCount * sizeof(float), "mapped GL position buffer size mismatch");
+ NVDR_CHECK_CUDA_ERROR(cudaMemcpyAsync(glPosPtr, posPtr, posCount * sizeof(float), cudaMemcpyDeviceToDevice, stream));
+ NVDR_CHECK_CUDA_ERROR(cudaGraphicsUnmapResources(1, &s.cudaPosBuffer, stream));
+ }
+ }
+
+ // Select program based on whether we have a depth peeling input or not.
+ if (peeling_idx < 1)
+ {
+ // Normal case: No peeling, or peeling disabled.
+ NVDR_CHECK_GL_ERROR(glUseProgram(s.glProgram));
+ }
+ else
+ {
+ // If we don't have a third buffer yet, create one.
+ if (!s.cudaPrevOutBuffer)
+ {
+ NVDR_CHECK_GL_ERROR(glBindTexture(GL_TEXTURE_2D_ARRAY, s.glPrevOutBuffer));
+ NVDR_CHECK_GL_ERROR(glTexImage3D(GL_TEXTURE_2D_ARRAY, 0, GL_RGBA32F, s.width, s.height, s.depth, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0));
+ NVDR_CHECK_GL_ERROR(glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAG_FILTER, GL_NEAREST));
+ NVDR_CHECK_GL_ERROR(glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER, GL_NEAREST));
+ NVDR_CHECK_GL_ERROR(glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE));
+ NVDR_CHECK_GL_ERROR(glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE));
+ NVDR_CHECK_CUDA_ERROR(cudaGraphicsGLRegisterImage(&s.cudaPrevOutBuffer, s.glPrevOutBuffer, GL_TEXTURE_3D, cudaGraphicsRegisterFlagsReadOnly));
+ }
+
+ // Swap the GL buffers.
+ GLuint glTempBuffer = s.glPrevOutBuffer;
+ s.glPrevOutBuffer = s.glColorBuffer[0];
+ s.glColorBuffer[0] = glTempBuffer;
+
+ // Swap the Cuda buffers.
+ cudaGraphicsResource_t cudaTempBuffer = s.cudaPrevOutBuffer;
+ s.cudaPrevOutBuffer = s.cudaColorBuffer[0];
+ s.cudaColorBuffer[0] = cudaTempBuffer;
+
+ // Bind the new output buffer.
+ NVDR_CHECK_GL_ERROR(glBindTexture(GL_TEXTURE_2D_ARRAY, s.glColorBuffer[0]));
+ NVDR_CHECK_GL_ERROR(glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, s.glColorBuffer[0], 0));
+
+ // Bind old buffer as the input texture.
+ NVDR_CHECK_GL_ERROR(glBindTexture(GL_TEXTURE_2D_ARRAY, s.glPrevOutBuffer));
+
+ // Activate the correct program.
+ NVDR_CHECK_GL_ERROR(glUseProgram(s.glProgramDP));
+ }
+
+ // Set viewport, clear color buffer(s) and depth/stencil buffer.
+ NVDR_CHECK_GL_ERROR(glViewport(0, 0, width, height));
+ NVDR_CHECK_GL_ERROR(glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT));
+
+ // If outputting bary differentials, set resolution uniform
+ if (s.enableDB)
+ NVDR_CHECK_GL_ERROR(glUniform2f(0, 2.f / (float)width, 2.f / (float)height));
+
+ // Set the dummy uniform if depth modification workaround is active.
+ if (s.enableZModify)
+ NVDR_CHECK_GL_ERROR(glUniform1f(1, 0.f));
+
+ // Render the meshes.
+ if (depth == 1 && !rangesPtr)
+ {
+ // Trivial case.
+ NVDR_CHECK_GL_ERROR(glDrawElements(GL_TRIANGLES, triCount, GL_UNSIGNED_INT, 0));
+ }
+ else
+ {
+ // Populate a buffer for draw commands and execute it.
+ std::vector drawCmdBuffer(depth);
+
+ if (!rangesPtr)
+ {
+ // Fill in range array to instantiate the same triangles for each output layer.
+ // Triangle IDs starts at zero (i.e., one) for each layer, so they correspond to
+ // the first dimension in addressing the triangle array.
+ for (int i=0; i < depth; i++)
+ {
+ GLDrawCmd& cmd = drawCmdBuffer[i];
+ cmd.firstIndex = 0;
+ cmd.count = triCount;
+ cmd.baseVertex = vtxPerInstance * i;
+ cmd.baseInstance = 0;
+ cmd.instanceCount = 1;
+ }
+ }
+ else
+ {
+ // Fill in the range array according to user-given ranges. Triangle IDs point
+ // to the input triangle array, NOT index within range, so they correspond to
+ // the first dimension in addressing the triangle array.
+ for (int i=0, j=0; i < depth; i++)
+ {
+ GLDrawCmd& cmd = drawCmdBuffer[i];
+ int first = rangesPtr[j++];
+ int count = rangesPtr[j++];
+ NVDR_CHECK(first >= 0 && count >= 0, "range contains negative values");
+ NVDR_CHECK((first + count) * 3 <= triCount, "range extends beyond end of triangle buffer");
+ cmd.firstIndex = first * 3;
+ cmd.count = count * 3;
+ cmd.baseVertex = 0;
+ cmd.baseInstance = first;
+ cmd.instanceCount = 1;
+ }
+ }
+
+ // Draw!
+ NVDR_CHECK_GL_ERROR(glMultiDrawElementsIndirect(GL_TRIANGLES, GL_UNSIGNED_INT, &drawCmdBuffer[0], depth, sizeof(GLDrawCmd)));
+ }
+}
+
+void rasterizeCopyResults(NVDR_CTX_ARGS, RasterizeGLState& s, cudaStream_t stream, float** outputPtr, int width, int height, int depth)
+{
+ // Copy color buffers to output tensors.
+ cudaArray_t array = 0;
+ cudaChannelFormatDesc arrayDesc = {}; // For error checking.
+ cudaExtent arrayExt = {}; // For error checking.
+ int num_outputs = s.enableDB ? 2 : 1;
+ NVDR_CHECK_CUDA_ERROR(cudaGraphicsMapResources(num_outputs, s.cudaColorBuffer, stream));
+ for (int i=0; i < num_outputs; i++)
+ {
+ NVDR_CHECK_CUDA_ERROR(cudaGraphicsSubResourceGetMappedArray(&array, s.cudaColorBuffer[i], 0, 0));
+ NVDR_CHECK_CUDA_ERROR(cudaArrayGetInfo(&arrayDesc, &arrayExt, NULL, array));
+ NVDR_CHECK(arrayDesc.f == cudaChannelFormatKindFloat, "CUDA mapped array data kind mismatch");
+ NVDR_CHECK(arrayDesc.x == 32 && arrayDesc.y == 32 && arrayDesc.z == 32 && arrayDesc.w == 32, "CUDA mapped array data width mismatch");
+ NVDR_CHECK(arrayExt.width >= width && arrayExt.height >= height && arrayExt.depth >= depth, "CUDA mapped array extent mismatch");
+ cudaMemcpy3DParms p = {0};
+ p.srcArray = array;
+ p.dstPtr.ptr = outputPtr[i];
+ p.dstPtr.pitch = width * 4 * sizeof(float);
+ p.dstPtr.xsize = width;
+ p.dstPtr.ysize = height;
+ p.extent.width = width;
+ p.extent.height = height;
+ p.extent.depth = depth;
+ p.kind = cudaMemcpyDeviceToDevice;
+ NVDR_CHECK_CUDA_ERROR(cudaMemcpy3DAsync(&p, stream));
+ }
+ NVDR_CHECK_CUDA_ERROR(cudaGraphicsUnmapResources(num_outputs, s.cudaColorBuffer, stream));
+}
+
+void rasterizeReleaseBuffers(NVDR_CTX_ARGS, RasterizeGLState& s)
+{
+ int num_outputs = s.enableDB ? 2 : 1;
+
+ if (s.cudaPosBuffer)
+ {
+ NVDR_CHECK_CUDA_ERROR(cudaGraphicsUnregisterResource(s.cudaPosBuffer));
+ s.cudaPosBuffer = 0;
+ }
+
+ if (s.cudaTriBuffer)
+ {
+ NVDR_CHECK_CUDA_ERROR(cudaGraphicsUnregisterResource(s.cudaTriBuffer));
+ s.cudaTriBuffer = 0;
+ }
+
+ for (int i=0; i < num_outputs; i++)
+ {
+ if (s.cudaColorBuffer[i])
+ {
+ NVDR_CHECK_CUDA_ERROR(cudaGraphicsUnregisterResource(s.cudaColorBuffer[i]));
+ s.cudaColorBuffer[i] = 0;
+ }
+ }
+
+ if (s.cudaPrevOutBuffer)
+ {
+ NVDR_CHECK_CUDA_ERROR(cudaGraphicsUnregisterResource(s.cudaPrevOutBuffer));
+ s.cudaPrevOutBuffer = 0;
+ }
+}
+
+//------------------------------------------------------------------------
diff --git a/extensions/nvdiffrast/nvdiffrast/common/rasterize_gl.h b/extensions/nvdiffrast/nvdiffrast/common/rasterize_gl.h
new file mode 100644
index 0000000000000000000000000000000000000000..ed0f75036a837cf5345a7aa27abcf39bf0ddbd40
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/common/rasterize_gl.h
@@ -0,0 +1,60 @@
+// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#pragma once
+
+//------------------------------------------------------------------------
+// Do not try to include OpenGL stuff when compiling CUDA kernels for torch.
+
+#if !(defined(NVDR_TORCH) && defined(__CUDACC__))
+#include "framework.h"
+#include "glutil.h"
+
+//------------------------------------------------------------------------
+// OpenGL-related persistent state for forward op.
+
+struct RasterizeGLState // Must be initializable by memset to zero.
+{
+ int width; // Allocated frame buffer width.
+ int height; // Allocated frame buffer height.
+ int depth; // Allocated frame buffer depth.
+ int posCount; // Allocated position buffer in floats.
+ int triCount; // Allocated triangle buffer in ints.
+ GLContext glctx;
+ GLuint glFBO;
+ GLuint glColorBuffer[2];
+ GLuint glPrevOutBuffer;
+ GLuint glDepthStencilBuffer;
+ GLuint glVAO;
+ GLuint glTriBuffer;
+ GLuint glPosBuffer;
+ GLuint glProgram;
+ GLuint glProgramDP;
+ GLuint glVertexShader;
+ GLuint glGeometryShader;
+ GLuint glFragmentShader;
+ GLuint glFragmentShaderDP;
+ cudaGraphicsResource_t cudaColorBuffer[2];
+ cudaGraphicsResource_t cudaPrevOutBuffer;
+ cudaGraphicsResource_t cudaPosBuffer;
+ cudaGraphicsResource_t cudaTriBuffer;
+ int enableDB;
+ int enableZModify; // Modify depth in shader, workaround for a rasterization issue on A100.
+};
+
+//------------------------------------------------------------------------
+// Shared C++ code prototypes.
+
+void rasterizeInitGLContext(NVDR_CTX_ARGS, RasterizeGLState& s, int cudaDeviceIdx);
+void rasterizeResizeBuffers(NVDR_CTX_ARGS, RasterizeGLState& s, bool& changes, int posCount, int triCount, int width, int height, int depth);
+void rasterizeRender(NVDR_CTX_ARGS, RasterizeGLState& s, cudaStream_t stream, const float* posPtr, int posCount, int vtxPerInstance, const int32_t* triPtr, int triCount, const int32_t* rangesPtr, int width, int height, int depth, int peeling_idx);
+void rasterizeCopyResults(NVDR_CTX_ARGS, RasterizeGLState& s, cudaStream_t stream, float** outputPtr, int width, int height, int depth);
+void rasterizeReleaseBuffers(NVDR_CTX_ARGS, RasterizeGLState& s);
+
+//------------------------------------------------------------------------
+#endif // !(defined(NVDR_TORCH) && defined(__CUDACC__))
diff --git a/extensions/nvdiffrast/nvdiffrast/common/texture.cpp b/extensions/nvdiffrast/nvdiffrast/common/texture.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..8c38fb5a2d8fe8075719d24b25162c8c34347c02
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/common/texture.cpp
@@ -0,0 +1,104 @@
+// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#include "framework.h"
+#include "texture.h"
+
+//------------------------------------------------------------------------
+// Mip stack construction and access helpers.
+
+void raiseMipSizeError(NVDR_CTX_ARGS, const TextureKernelParams& p)
+{
+ char buf[1024];
+ int bufsz = 1024;
+
+ std::string msg = "Mip-map size error - cannot downsample an odd extent greater than 1. Resize the texture so that both spatial extents are powers of two, or limit the number of mip maps using max_mip_level argument.\n";
+
+ int w = p.texWidth;
+ int h = p.texHeight;
+ bool ew = false;
+ bool eh = false;
+
+ msg += "Attempted mip stack construction:\n";
+ msg += "level width height\n";
+ msg += "----- ----- ------\n";
+ snprintf(buf, bufsz, "base %5d %5d\n", w, h);
+ msg += buf;
+
+ int mipTotal = 0;
+ int level = 0;
+ while ((w|h) > 1 && !(ew || eh)) // Stop at first impossible size.
+ {
+ // Current level.
+ level += 1;
+
+ // Determine if downsampling fails.
+ ew = ew || (w > 1 && (w & 1));
+ eh = eh || (h > 1 && (h & 1));
+
+ // Downsample.
+ if (w > 1) w >>= 1;
+ if (h > 1) h >>= 1;
+
+ // Append level size to error message.
+ snprintf(buf, bufsz, "mip %-2d ", level);
+ msg += buf;
+ if (ew) snprintf(buf, bufsz, " err ");
+ else snprintf(buf, bufsz, "%5d ", w);
+ msg += buf;
+ if (eh) snprintf(buf, bufsz, " err\n");
+ else snprintf(buf, bufsz, "%5d\n", h);
+ msg += buf;
+ }
+
+ NVDR_CHECK(0, msg);
+}
+
+int calculateMipInfo(NVDR_CTX_ARGS, TextureKernelParams& p, int* mipOffsets)
+{
+ // No levels at all?
+ if (p.mipLevelLimit == 0)
+ {
+ p.mipLevelMax = 0;
+ return 0;
+ }
+
+ // Current level size.
+ int w = p.texWidth;
+ int h = p.texHeight;
+
+ int mipTotal = 0;
+ int level = 0;
+ int c = (p.boundaryMode == TEX_BOUNDARY_MODE_CUBE) ? (p.channels * 6) : p.channels;
+ mipOffsets[0] = 0;
+ while ((w|h) > 1)
+ {
+ // Current level.
+ level += 1;
+
+ // Quit if cannot downsample.
+ if ((w > 1 && (w & 1)) || (h > 1 && (h & 1)))
+ raiseMipSizeError(NVDR_CTX_PARAMS, p);
+
+ // Downsample.
+ if (w > 1) w >>= 1;
+ if (h > 1) h >>= 1;
+
+ mipOffsets[level] = mipTotal; // Store the mip offset (#floats).
+ mipTotal += w * h * p.texDepth * c;
+
+ // Hit the level limit?
+ if (p.mipLevelLimit >= 0 && level == p.mipLevelLimit)
+ break;
+ }
+
+ p.mipLevelMax = level;
+ return mipTotal;
+}
+
+//------------------------------------------------------------------------
diff --git a/extensions/nvdiffrast/nvdiffrast/common/texture.h b/extensions/nvdiffrast/nvdiffrast/common/texture.h
new file mode 100644
index 0000000000000000000000000000000000000000..a8d5ee1b6aa5b19ead3460afd24b9f8e64f456dd
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/common/texture.h
@@ -0,0 +1,78 @@
+// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#pragma once
+#include "framework.h"
+
+//------------------------------------------------------------------------
+// Constants.
+
+#define TEX_DEBUG_MIP_RETAIN_VARIANCE 0 // For debugging
+#define TEX_FWD_MAX_KERNEL_BLOCK_WIDTH 8
+#define TEX_FWD_MAX_KERNEL_BLOCK_HEIGHT 8
+#define TEX_FWD_MAX_MIP_KERNEL_BLOCK_WIDTH 8
+#define TEX_FWD_MAX_MIP_KERNEL_BLOCK_HEIGHT 8
+#define TEX_GRAD_MAX_KERNEL_BLOCK_WIDTH 8
+#define TEX_GRAD_MAX_KERNEL_BLOCK_HEIGHT 8
+#define TEX_GRAD_MAX_MIP_KERNEL_BLOCK_WIDTH 8
+#define TEX_GRAD_MAX_MIP_KERNEL_BLOCK_HEIGHT 8
+#define TEX_MAX_MIP_LEVEL 16 // Currently a texture cannot be larger than 2 GB because we use 32-bit indices everywhere.
+#define TEX_MODE_NEAREST 0 // Nearest on base level.
+#define TEX_MODE_LINEAR 1 // Bilinear on base level.
+#define TEX_MODE_LINEAR_MIPMAP_NEAREST 2 // Bilinear on nearest mip level.
+#define TEX_MODE_LINEAR_MIPMAP_LINEAR 3 // Trilinear.
+#define TEX_MODE_COUNT 4
+#define TEX_BOUNDARY_MODE_CUBE 0 // Cube map mode.
+#define TEX_BOUNDARY_MODE_WRAP 1 // Wrap (u, v).
+#define TEX_BOUNDARY_MODE_CLAMP 2 // Clamp (u, v).
+#define TEX_BOUNDARY_MODE_ZERO 3 // Pad with zeros.
+#define TEX_BOUNDARY_MODE_COUNT 4
+
+//------------------------------------------------------------------------
+// CUDA kernel params.
+
+struct TextureKernelParams
+{
+ const float* tex[TEX_MAX_MIP_LEVEL]; // Incoming texture buffer with mip levels.
+ const float* uv; // Incoming texcoord buffer.
+ const float* uvDA; // Incoming uv pixel diffs or NULL.
+ const float* mipLevelBias; // Incoming mip level bias or NULL.
+ const float* dy; // Incoming output gradient.
+ float* out; // Outgoing texture data.
+ float* gradTex[TEX_MAX_MIP_LEVEL]; // Outgoing texture gradients with mip levels.
+ float* gradUV; // Outgoing texcoord gradient.
+ float* gradUVDA; // Outgoing texcoord pixel differential gradient.
+ float* gradMipLevelBias; // Outgoing mip level bias gradient.
+ int enableMip; // If true, we have uv_da and/or mip_level_bias input(s), and a mip tensor.
+ int filterMode; // One of the TEX_MODE_ constants.
+ int boundaryMode; // One of the TEX_BOUNDARY_MODE_ contants.
+ int texConst; // If true, texture is known to be constant.
+ int mipLevelLimit; // Mip level limit coming from the op.
+ int channels; // Number of texture channels.
+ int imgWidth; // Image width.
+ int imgHeight; // Image height.
+ int texWidth; // Texture width.
+ int texHeight; // Texture height.
+ int texDepth; // Texture depth.
+ int n; // Minibatch size.
+ int mipLevelMax; // Maximum mip level index. Zero if mips disabled.
+ int mipLevelOut; // Mip level being calculated in builder kernel.
+};
+
+//------------------------------------------------------------------------
+// C++ helper function prototypes.
+
+void raiseMipSizeError(NVDR_CTX_ARGS, const TextureKernelParams& p);
+int calculateMipInfo(NVDR_CTX_ARGS, TextureKernelParams& p, int* mipOffsets);
+
+//------------------------------------------------------------------------
+// Macros.
+
+#define mipLevelSize(p, i) make_int2(((p).texWidth >> (i)) > 1 ? ((p).texWidth >> (i)) : 1, ((p).texHeight >> (i)) > 1 ? ((p).texHeight >> (i)) : 1)
+
+//------------------------------------------------------------------------
diff --git a/extensions/nvdiffrast/nvdiffrast/common/texture_.cu b/extensions/nvdiffrast/nvdiffrast/common/texture_.cu
new file mode 100644
index 0000000000000000000000000000000000000000..40bd62974b76a7cd5fa594bb74a1d61330857011
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/common/texture_.cu
@@ -0,0 +1,1156 @@
+// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#include "common.h"
+#include "texture.h"
+
+//------------------------------------------------------------------------
+// Memory access and math helpers.
+
+static __device__ __forceinline__ void accum_from_mem(float* a, int s, float b, float c) { a[0] += b * c; }
+static __device__ __forceinline__ void accum_from_mem(float* a, int s, float2 b, float c) { a[0] += b.x * c; a[s] += b.y * c; }
+static __device__ __forceinline__ void accum_from_mem(float* a, int s, float4 b, float c) { a[0] += b.x * c; a[s] += b.y * c; a[2*s] += b.z * c; a[3*s] += b.w * c; }
+static __device__ __forceinline__ void accum_to_mem(float& a, float* b, int s) { a += b[0]; }
+static __device__ __forceinline__ void accum_to_mem(float2& a, float* b, int s) { float2 v = a; v.x += b[0]; v.y += b[s]; a = v; }
+static __device__ __forceinline__ void accum_to_mem(float4& a, float* b, int s) { float4 v = a; v.x += b[0]; v.y += b[s]; v.z += b[2*s]; v.w += b[3*s]; a = v; }
+static __device__ __forceinline__ bool isfinite_vec3(const float3& a) { return isfinite(a.x) && isfinite(a.y) && isfinite(a.z); }
+static __device__ __forceinline__ bool isfinite_vec4(const float4& a) { return isfinite(a.x) && isfinite(a.y) && isfinite(a.z) && isfinite(a.w); }
+template static __device__ __forceinline__ T lerp (const T& a, const T& b, float c) { return a + c * (b - a); }
+template static __device__ __forceinline__ T bilerp(const T& a, const T& b, const T& c, const T& d, const float2& e) { return lerp(lerp(a, b, e.x), lerp(c, d, e.x), e.y); }
+
+//------------------------------------------------------------------------
+// Cube map wrapping for smooth filtering across edges and corners. At corners,
+// one of the texture coordinates will be negative. For correct interpolation,
+// the missing texel must take the average color of the other three.
+
+static __constant__ uint32_t c_cubeWrapMask1[48] =
+{
+ 0x1530a440, 0x1133a550, 0x6103a110, 0x1515aa44, 0x6161aa11, 0x40154a04, 0x44115a05, 0x04611a01,
+ 0x2630a440, 0x2233a550, 0x5203a110, 0x2626aa44, 0x5252aa11, 0x40264a04, 0x44225a05, 0x04521a01,
+ 0x32608064, 0x3366a055, 0x13062091, 0x32328866, 0x13132299, 0x50320846, 0x55330a55, 0x05130219,
+ 0x42508064, 0x4455a055, 0x14052091, 0x42428866, 0x14142299, 0x60420846, 0x66440a55, 0x06140219,
+ 0x5230a044, 0x5533a055, 0x1503a011, 0x5252aa44, 0x1515aa11, 0x40520a44, 0x44550a55, 0x04150a11,
+ 0x6130a044, 0x6633a055, 0x2603a011, 0x6161aa44, 0x2626aa11, 0x40610a44, 0x44660a55, 0x04260a11,
+};
+
+static __constant__ uint8_t c_cubeWrapMask2[48] =
+{
+ 0x26, 0x33, 0x11, 0x05, 0x00, 0x09, 0x0c, 0x04, 0x04, 0x00, 0x00, 0x05, 0x00, 0x81, 0xc0, 0x40,
+ 0x02, 0x03, 0x09, 0x00, 0x0a, 0x00, 0x00, 0x02, 0x64, 0x30, 0x90, 0x55, 0xa0, 0x99, 0xcc, 0x64,
+ 0x24, 0x30, 0x10, 0x05, 0x00, 0x01, 0x00, 0x00, 0x06, 0x03, 0x01, 0x05, 0x00, 0x89, 0xcc, 0x44,
+};
+
+static __device__ __forceinline__ int4 wrapCubeMap(int face, int ix0, int ix1, int iy0, int iy1, int w)
+{
+ // Calculate case number.
+ int cx = (ix0 < 0) ? 0 : (ix1 >= w) ? 2 : 1;
+ int cy = (iy0 < 0) ? 0 : (iy1 >= w) ? 6 : 3;
+ int c = cx + cy;
+ if (c >= 5)
+ c--;
+ c = (face << 3) + c;
+
+ // Compute coordinates and faces.
+ unsigned int m = c_cubeWrapMask1[c];
+ int x0 = (m >> 0) & 3; x0 = (x0 == 0) ? 0 : (x0 == 1) ? ix0 : iy0;
+ int x1 = (m >> 2) & 3; x1 = (x1 == 0) ? 0 : (x1 == 1) ? ix1 : iy0;
+ int x2 = (m >> 4) & 3; x2 = (x2 == 0) ? 0 : (x2 == 1) ? ix0 : iy1;
+ int x3 = (m >> 6) & 3; x3 = (x3 == 0) ? 0 : (x3 == 1) ? ix1 : iy1;
+ int y0 = (m >> 8) & 3; y0 = (y0 == 0) ? 0 : (y0 == 1) ? ix0 : iy0;
+ int y1 = (m >> 10) & 3; y1 = (y1 == 0) ? 0 : (y1 == 1) ? ix1 : iy0;
+ int y2 = (m >> 12) & 3; y2 = (y2 == 0) ? 0 : (y2 == 1) ? ix0 : iy1;
+ int y3 = (m >> 14) & 3; y3 = (y3 == 0) ? 0 : (y3 == 1) ? ix1 : iy1;
+ int f0 = ((m >> 16) & 15) - 1;
+ int f1 = ((m >> 20) & 15) - 1;
+ int f2 = ((m >> 24) & 15) - 1;
+ int f3 = ((m >> 28) ) - 1;
+
+ // Flips.
+ unsigned int f = c_cubeWrapMask2[c];
+ int w1 = w - 1;
+ if (f & 0x01) x0 = w1 - x0;
+ if (f & 0x02) x1 = w1 - x1;
+ if (f & 0x04) x2 = w1 - x2;
+ if (f & 0x08) x3 = w1 - x3;
+ if (f & 0x10) y0 = w1 - y0;
+ if (f & 0x20) y1 = w1 - y1;
+ if (f & 0x40) y2 = w1 - y2;
+ if (f & 0x80) y3 = w1 - y3;
+
+ // Done.
+ int4 tcOut;
+ tcOut.x = x0 + (y0 + f0 * w) * w;
+ tcOut.y = x1 + (y1 + f1 * w) * w;
+ tcOut.z = x2 + (y2 + f2 * w) * w;
+ tcOut.w = x3 + (y3 + f3 * w) * w;
+ return tcOut;
+}
+
+//------------------------------------------------------------------------
+// Cube map indexing and gradient functions.
+
+// Map a 3D lookup vector into an (s,t) face coordinates (returned in first .
+// two parameters) and face index.
+static __device__ __forceinline__ int indexCubeMap(float& x, float& y, float z)
+{
+ float ax = fabsf(x);
+ float ay = fabsf(y);
+ float az = fabsf(z);
+ int idx;
+ float c;
+ if (az > fmaxf(ax, ay)) { idx = 4; c = z; }
+ else if (ay > ax) { idx = 2; c = y; y = z; }
+ else { idx = 0; c = x; x = z; }
+ if (c < 0.f) idx += 1;
+ float m = __frcp_rz(fabsf(c)) * .5;
+ float m0 = __uint_as_float(__float_as_uint(m) ^ ((0x21u >> idx) << 31));
+ float m1 = (idx != 2) ? -m : m;
+ x = x * m0 + .5;
+ y = y * m1 + .5;
+ if (!isfinite(x) || !isfinite(y))
+ return -1; // Invalid uv.
+ x = fminf(fmaxf(x, 0.f), 1.f);
+ y = fminf(fmaxf(y, 0.f), 1.f);
+ return idx;
+}
+
+// Based on dA/d{s,t}, compute dA/d{x,y,z} at a given 3D lookup vector.
+static __device__ __forceinline__ float3 indexCubeMapGrad(float3 uv, float gu, float gv)
+{
+ float ax = fabsf(uv.x);
+ float ay = fabsf(uv.y);
+ float az = fabsf(uv.z);
+ int idx;
+ float c;
+ float c0 = gu;
+ float c1 = gv;
+ if (az > fmaxf(ax, ay)) { idx = 0x10; c = uv.z; c0 *= uv.x; c1 *= uv.y; }
+ else if (ay > ax) { idx = 0x04; c = uv.y; c0 *= uv.x; c1 *= uv.z; }
+ else { idx = 0x01; c = uv.x; c0 *= uv.z; c1 *= uv.y; }
+ if (c < 0.f) idx += idx;
+ float m = __frcp_rz(fabsf(c));
+ c0 = (idx & 0x34) ? -c0 : c0;
+ c1 = (idx & 0x2e) ? -c1 : c1;
+ float gl = (c0 + c1) * m;
+ float gx = (idx & 0x03) ? gl : (idx & 0x20) ? -gu : gu;
+ float gy = (idx & 0x0c) ? gl : -gv;
+ float gz = (idx & 0x30) ? gl : (idx & 0x03) ? gu : gv;
+ gz = (idx & 0x09) ? -gz : gz;
+ float3 res = make_float3(gx, gy, gz) * (m * .5f);
+ if (!isfinite_vec3(res))
+ return make_float3(0.f, 0.f, 0.f); // Invalid uv.
+ return res;
+}
+
+// Based on dL/d(d{s,t}/s{X,Y}), compute dL/d(d{x,y,z}/d{X,Y}). This is just two
+// indexCubeMapGrad() functions rolled together.
+static __device__ __forceinline__ void indexCubeMapGrad4(float3 uv, float4 dw, float3& g0, float3& g1)
+{
+ float ax = fabsf(uv.x);
+ float ay = fabsf(uv.y);
+ float az = fabsf(uv.z);
+ int idx;
+ float c, c0, c1;
+ if (az > fmaxf(ax, ay)) { idx = 0x10; c = uv.z; c0 = uv.x; c1 = uv.y; }
+ else if (ay > ax) { idx = 0x04; c = uv.y; c0 = uv.x; c1 = uv.z; }
+ else { idx = 0x01; c = uv.x; c0 = uv.z; c1 = uv.y; }
+ if (c < 0.f) idx += idx;
+ float m = __frcp_rz(fabsf(c));
+ c0 = (idx & 0x34) ? -c0 : c0;
+ c1 = (idx & 0x2e) ? -c1 : c1;
+ float gl0 = (dw.x * c0 + dw.z * c1) * m;
+ float gl1 = (dw.y * c0 + dw.w * c1) * m;
+ float gx0 = (idx & 0x03) ? gl0 : (idx & 0x20) ? -dw.x : dw.x;
+ float gx1 = (idx & 0x03) ? gl1 : (idx & 0x20) ? -dw.y : dw.y;
+ float gy0 = (idx & 0x0c) ? gl0 : -dw.z;
+ float gy1 = (idx & 0x0c) ? gl1 : -dw.w;
+ float gz0 = (idx & 0x30) ? gl0 : (idx & 0x03) ? dw.x : dw.z;
+ float gz1 = (idx & 0x30) ? gl1 : (idx & 0x03) ? dw.y : dw.w;
+ if (idx & 0x09)
+ {
+ gz0 = -gz0;
+ gz1 = -gz1;
+ }
+ g0 = make_float3(gx0, gy0, gz0) * (m * .5f);
+ g1 = make_float3(gx1, gy1, gz1) * (m * .5f);
+ if (!isfinite_vec3(g0) || !isfinite_vec3(g1))
+ {
+ g0 = make_float3(0.f, 0.f, 0.f); // Invalid uv.
+ g1 = make_float3(0.f, 0.f, 0.f);
+ }
+}
+
+// Compute d{s,t}/d{X,Y} based on d{x,y,z}/d{X,Y} at a given 3D lookup vector.
+// Result is (ds/dX, ds/dY, dt/dX, dt/dY).
+static __device__ __forceinline__ float4 indexCubeMapGradST(float3 uv, float3 dvdX, float3 dvdY)
+{
+ float ax = fabsf(uv.x);
+ float ay = fabsf(uv.y);
+ float az = fabsf(uv.z);
+ int idx;
+ float c, gu, gv;
+ if (az > fmaxf(ax, ay)) { idx = 0x10; c = uv.z; gu = uv.x; gv = uv.y; }
+ else if (ay > ax) { idx = 0x04; c = uv.y; gu = uv.x; gv = uv.z; }
+ else { idx = 0x01; c = uv.x; gu = uv.z; gv = uv.y; }
+ if (c < 0.f) idx += idx;
+ if (idx & 0x09)
+ {
+ dvdX.z = -dvdX.z;
+ dvdY.z = -dvdY.z;
+ }
+ float m = __frcp_rz(fabsf(c));
+ float dm = m * .5f;
+ float mm = m * dm;
+ gu *= (idx & 0x34) ? -mm : mm;
+ gv *= (idx & 0x2e) ? -mm : mm;
+
+ float4 res;
+ if (idx & 0x03)
+ {
+ res = make_float4(gu * dvdX.x + dm * dvdX.z,
+ gu * dvdY.x + dm * dvdY.z,
+ gv * dvdX.x - dm * dvdX.y,
+ gv * dvdY.x - dm * dvdY.y);
+ }
+ else if (idx & 0x0c)
+ {
+ res = make_float4(gu * dvdX.y + dm * dvdX.x,
+ gu * dvdY.y + dm * dvdY.x,
+ gv * dvdX.y + dm * dvdX.z,
+ gv * dvdY.y + dm * dvdY.z);
+ }
+ else // (idx & 0x30)
+ {
+ res = make_float4(gu * dvdX.z + copysignf(dm, c) * dvdX.x,
+ gu * dvdY.z + copysignf(dm, c) * dvdY.x,
+ gv * dvdX.z - dm * dvdX.y,
+ gv * dvdY.z - dm * dvdY.y);
+ }
+
+ if (!isfinite_vec4(res))
+ return make_float4(0.f, 0.f, 0.f, 0.f);
+
+ return res;
+}
+
+// Compute d(d{s,t}/d{X,Y})/d{x,y,z}, i.e., how the pixel derivatives of 2D face
+// coordinates change w.r.t. 3D texture coordinate vector, returned as follows:
+// | d(ds/dX)/dx d(ds/dY)/dx d(dt/dX)/dx d(dt/dY)/dx |
+// | d(ds/dX)/dy d(ds/dY)/dy d(dt/dX)/dy d(dt/dY)/dy |
+// | d(ds/dX)/dz d(ds/dY)/dz d(dt/dX)/dz d(dt/dY)/dz |
+static __device__ __forceinline__ void indexCubeMapGrad2(float3 uv, float3 dvdX, float3 dvdY, float4& dx, float4& dy, float4& dz)
+{
+ float ax = fabsf(uv.x);
+ float ay = fabsf(uv.y);
+ float az = fabsf(uv.z);
+ int idx;
+ float c, gu, gv;
+ if (az > fmaxf(ax, ay)) { idx = 0x10; c = uv.z; gu = uv.x; gv = uv.y; }
+ else if (ay > ax) { idx = 0x04; c = uv.y; gu = uv.x; gv = uv.z; }
+ else { idx = 0x01; c = uv.x; gu = uv.z; gv = uv.y; }
+ if (c < 0.f) idx += idx;
+
+ if (idx & 0x09)
+ {
+ dvdX.z = -dvdX.z;
+ dvdY.z = -dvdY.z;
+ }
+
+ float m = __frcp_rz(c);
+ float dm = -m * fabsf(m) * .5;
+ float mm = m * m * .5;
+ float mu = (idx & 0x34) ? -mm : mm;
+ float mv = (idx & 0x2e) ? -mm : mm;
+ gu *= -2.0 * m * mu;
+ gv *= -2.0 * m * mv;
+
+ if (idx & 0x03)
+ {
+ dx.x = gu * dvdX.x + dm * dvdX.z;
+ dx.y = gu * dvdY.x + dm * dvdY.z;
+ dx.z = gv * dvdX.x - dm * dvdX.y;
+ dx.w = gv * dvdY.x - dm * dvdY.y;
+ dy.x = 0.f;
+ dy.y = 0.f;
+ dy.z = mv * dvdX.x;
+ dy.w = mv * dvdY.x;
+ dz.x = mu * dvdX.x;
+ dz.y = mu * dvdY.x;
+ dz.z = 0.f;
+ dz.w = 0.f;
+ }
+ else if (idx & 0x0c)
+ {
+ dx.x = mu * dvdX.y;
+ dx.y = mu * dvdY.y;
+ dx.z = 0.f;
+ dx.w = 0.f;
+ dy.x = gu * dvdX.y + dm * dvdX.x;
+ dy.y = gu * dvdY.y + dm * dvdY.x;
+ dy.z = gv * dvdX.y + dm * dvdX.z;
+ dy.w = gv * dvdY.y + dm * dvdY.z;
+ dz.x = 0.f;
+ dz.y = 0.f;
+ dz.z = mv * dvdX.y;
+ dz.w = mv * dvdY.y;
+ }
+ else // (idx & 0x30)
+ {
+ dx.x = mu * dvdX.z;
+ dx.y = mu * dvdY.z;
+ dx.z = 0.f;
+ dx.w = 0.f;
+ dy.x = 0.f;
+ dy.y = 0.f;
+ dy.z = mv * dvdX.z;
+ dy.w = mv * dvdY.z;
+ dz.x = gu * dvdX.z - fabsf(dm) * dvdX.x;
+ dz.y = gu * dvdY.z - fabsf(dm) * dvdY.x;
+ dz.z = gv * dvdX.z - dm * dvdX.y;
+ dz.w = gv * dvdY.z - dm * dvdY.y;
+ }
+}
+
+//------------------------------------------------------------------------
+// General texture indexing.
+
+template
+static __device__ __forceinline__ int indexTextureNearest(const TextureKernelParams& p, float3 uv, int tz)
+{
+ int w = p.texWidth;
+ int h = p.texHeight;
+ float u = uv.x;
+ float v = uv.y;
+
+ // Cube map indexing.
+ if (CUBE_MODE)
+ {
+ // No wrap. Fold face index into tz right away.
+ int idx = indexCubeMap(u, v, uv.z); // Rewrites u, v.
+ if (idx < 0)
+ return -1; // Invalid uv.
+ tz = 6 * tz + idx;
+ }
+ else
+ {
+ // Handle boundary.
+ if (p.boundaryMode == TEX_BOUNDARY_MODE_WRAP)
+ {
+ u = u - (float)__float2int_rd(u);
+ v = v - (float)__float2int_rd(v);
+ }
+ }
+
+ u = u * (float)w;
+ v = v * (float)h;
+
+ int iu = __float2int_rd(u);
+ int iv = __float2int_rd(v);
+
+ // In zero boundary mode, return texture address -1.
+ if (!CUBE_MODE && p.boundaryMode == TEX_BOUNDARY_MODE_ZERO)
+ {
+ if (iu < 0 || iu >= w || iv < 0 || iv >= h)
+ return -1;
+ }
+
+ // Otherwise clamp and calculate the coordinate properly.
+ iu = min(max(iu, 0), w-1);
+ iv = min(max(iv, 0), h-1);
+ return iu + w * (iv + tz * h);
+}
+
+template
+static __device__ __forceinline__ float2 indexTextureLinear(const TextureKernelParams& p, float3 uv, int tz, int4& tcOut, int level)
+{
+ // Mip level size.
+ int2 sz = mipLevelSize(p, level);
+ int w = sz.x;
+ int h = sz.y;
+
+ // Compute texture-space u, v.
+ float u = uv.x;
+ float v = uv.y;
+ bool clampU = false;
+ bool clampV = false;
+
+ // Cube map indexing.
+ int face = 0;
+ if (CUBE_MODE)
+ {
+ // Neither clamp or wrap.
+ face = indexCubeMap(u, v, uv.z); // Rewrites u, v.
+ if (face < 0)
+ {
+ tcOut.x = tcOut.y = tcOut.z = tcOut.w = -1; // Invalid uv.
+ return make_float2(0.f, 0.f);
+ }
+ u = u * (float)w - 0.5f;
+ v = v * (float)h - 0.5f;
+ }
+ else
+ {
+ if (p.boundaryMode == TEX_BOUNDARY_MODE_WRAP)
+ {
+ // Wrap.
+ u = u - (float)__float2int_rd(u);
+ v = v - (float)__float2int_rd(v);
+ }
+
+ // Move to texel space.
+ u = u * (float)w - 0.5f;
+ v = v * (float)h - 0.5f;
+
+ if (p.boundaryMode == TEX_BOUNDARY_MODE_CLAMP)
+ {
+ // Clamp to center of edge texels.
+ u = fminf(fmaxf(u, 0.f), w - 1.f);
+ v = fminf(fmaxf(v, 0.f), h - 1.f);
+ clampU = (u == 0.f || u == w - 1.f);
+ clampV = (v == 0.f || v == h - 1.f);
+ }
+ }
+
+ // Compute texel coordinates and weights.
+ int iu0 = __float2int_rd(u);
+ int iv0 = __float2int_rd(v);
+ int iu1 = iu0 + (clampU ? 0 : 1); // Ensure zero u/v gradients with clamped.
+ int iv1 = iv0 + (clampV ? 0 : 1);
+ u -= (float)iu0;
+ v -= (float)iv0;
+
+ // Cube map wrapping.
+ bool cubeWrap = CUBE_MODE && (iu0 < 0 || iv0 < 0 || iu1 >= w || iv1 >= h);
+ if (cubeWrap)
+ {
+ tcOut = wrapCubeMap(face, iu0, iu1, iv0, iv1, w);
+ tcOut += 6 * tz * w * h; // Bring in tz.
+ return make_float2(u, v); // Done.
+ }
+
+ // Fold cube map face into tz.
+ if (CUBE_MODE)
+ tz = 6 * tz + face;
+
+ // Wrap overflowing texel indices.
+ if (!CUBE_MODE && p.boundaryMode == TEX_BOUNDARY_MODE_WRAP)
+ {
+ if (iu0 < 0) iu0 += w;
+ if (iv0 < 0) iv0 += h;
+ if (iu1 >= w) iu1 -= w;
+ if (iv1 >= h) iv1 -= h;
+ }
+
+ // Coordinates with tz folded in.
+ int iu0z = iu0 + tz * w * h;
+ int iu1z = iu1 + tz * w * h;
+ tcOut.x = iu0z + w * iv0;
+ tcOut.y = iu1z + w * iv0;
+ tcOut.z = iu0z + w * iv1;
+ tcOut.w = iu1z + w * iv1;
+
+ // Invalidate texture addresses outside unit square if we are in zero mode.
+ if (!CUBE_MODE && p.boundaryMode == TEX_BOUNDARY_MODE_ZERO)
+ {
+ bool iu0_out = (iu0 < 0 || iu0 >= w);
+ bool iu1_out = (iu1 < 0 || iu1 >= w);
+ bool iv0_out = (iv0 < 0 || iv0 >= h);
+ bool iv1_out = (iv1 < 0 || iv1 >= h);
+ if (iu0_out || iv0_out) tcOut.x = -1;
+ if (iu1_out || iv0_out) tcOut.y = -1;
+ if (iu0_out || iv1_out) tcOut.z = -1;
+ if (iu1_out || iv1_out) tcOut.w = -1;
+ }
+
+ // All done.
+ return make_float2(u, v);
+}
+
+//------------------------------------------------------------------------
+// Mip level calculation.
+
+template
+static __device__ __forceinline__ void calculateMipLevel(int& level0, int& level1, float& flevel, const TextureKernelParams& p, int pidx, float3 uv, float4* pdw, float3* pdfdv)
+{
+ // Do nothing if mips not in use.
+ if (FILTER_MODE == TEX_MODE_NEAREST || FILTER_MODE == TEX_MODE_LINEAR)
+ return;
+
+ // Determine mip level based on UV pixel derivatives. If no derivatives are given (mip level bias only), leave as zero.
+ if (!BIAS_ONLY)
+ {
+ // Get pixel derivatives of texture coordinates.
+ float4 uvDA;
+ float3 dvdX, dvdY; // Gradients use these later.
+ if (CUBE_MODE)
+ {
+ // Fetch.
+ float2 d0 = ((const float2*)p.uvDA)[3 * pidx + 0];
+ float2 d1 = ((const float2*)p.uvDA)[3 * pidx + 1];
+ float2 d2 = ((const float2*)p.uvDA)[3 * pidx + 2];
+
+ // Map d{x,y,z}/d{X,Y} into d{s,t}/d{X,Y}.
+ dvdX = make_float3(d0.x, d1.x, d2.x); // d{x,y,z}/dX
+ dvdY = make_float3(d0.y, d1.y, d2.y); // d{x,y,z}/dY
+ uvDA = indexCubeMapGradST(uv, dvdX, dvdY); // d{s,t}/d{X,Y}
+ }
+ else
+ {
+ // Fetch.
+ uvDA = ((const float4*)p.uvDA)[pidx];
+ }
+
+ // Scaling factors.
+ float uscl = p.texWidth;
+ float vscl = p.texHeight;
+
+ // d[s,t]/d[X,Y].
+ float dsdx = uvDA.x * uscl;
+ float dsdy = uvDA.y * uscl;
+ float dtdx = uvDA.z * vscl;
+ float dtdy = uvDA.w * vscl;
+
+ // Calculate footprint axis lengths.
+ float A = dsdx*dsdx + dtdx*dtdx;
+ float B = dsdy*dsdy + dtdy*dtdy;
+ float C = dsdx*dsdy + dtdx*dtdy;
+ float l2b = 0.5 * (A + B);
+ float l2n = 0.25 * (A-B)*(A-B) + C*C;
+ float l2a = sqrt(l2n);
+ float lenMinorSqr = fmaxf(0.0, l2b - l2a);
+ float lenMajorSqr = l2b + l2a;
+
+ // Footprint vs. mip level gradient.
+ if (pdw && FILTER_MODE == TEX_MODE_LINEAR_MIPMAP_LINEAR)
+ {
+ float dw = 0.72134752f / (l2n + l2a * l2b); // Constant is 0.5/ln(2).
+ float AB = dw * .5f * (A - B);
+ float Cw = dw * C;
+ float l2aw = dw * l2a;
+ float d_f_ddsdX = uscl * (dsdx * (l2aw + AB) + dsdy * Cw);
+ float d_f_ddsdY = uscl * (dsdy * (l2aw - AB) + dsdx * Cw);
+ float d_f_ddtdX = vscl * (dtdx * (l2aw + AB) + dtdy * Cw);
+ float d_f_ddtdY = vscl * (dtdy * (l2aw - AB) + dtdx * Cw);
+
+ float4 d_f_dw = make_float4(d_f_ddsdX, d_f_ddsdY, d_f_ddtdX, d_f_ddtdY);
+ if (!CUBE_MODE)
+ *pdw = isfinite_vec4(d_f_dw) ? d_f_dw : make_float4(0.f, 0.f, 0.f, 0.f);
+
+ // In cube maps, there is also a texture coordinate vs. mip level gradient.
+ // Only output nonzero vectors if both are free of inf/Nan garbage.
+ if (CUBE_MODE)
+ {
+ float4 dx, dy, dz;
+ indexCubeMapGrad2(uv, dvdX, dvdY, dx, dy, dz);
+ float3 d_dsdX_dv = make_float3(dx.x, dy.x, dz.x);
+ float3 d_dsdY_dv = make_float3(dx.y, dy.y, dz.y);
+ float3 d_dtdX_dv = make_float3(dx.z, dy.z, dz.z);
+ float3 d_dtdY_dv = make_float3(dx.w, dy.w, dz.w);
+
+ float3 d_f_dv = make_float3(0.f, 0.f, 0.f);
+ d_f_dv += d_dsdX_dv * d_f_ddsdX;
+ d_f_dv += d_dsdY_dv * d_f_ddsdY;
+ d_f_dv += d_dtdX_dv * d_f_ddtdX;
+ d_f_dv += d_dtdY_dv * d_f_ddtdY;
+
+ bool finite = isfinite_vec4(d_f_dw) && isfinite_vec3(d_f_dv);
+ *pdw = finite ? d_f_dw : make_float4(0.f, 0.f, 0.f, 0.f);
+ *pdfdv = finite ? d_f_dv : make_float3(0.f, 0.f, 0.f);
+ }
+ }
+
+ // Finally, calculate mip level.
+ flevel = .5f * __log2f(lenMajorSqr); // May be inf/NaN, but clamp fixes it.
+ }
+
+ // Bias the mip level and clamp.
+ if (p.mipLevelBias)
+ flevel += p.mipLevelBias[pidx];
+ flevel = fminf(fmaxf(flevel, 0.f), (float)p.mipLevelMax);
+
+ // Calculate levels depending on filter mode.
+ level0 = __float2int_rd(flevel);
+
+ // Leave everything else at zero if flevel == 0 (magnification) or when in linear-mipmap-nearest mode.
+ if (FILTER_MODE == TEX_MODE_LINEAR_MIPMAP_LINEAR && flevel > 0.f)
+ {
+ level1 = min(level0 + 1, p.mipLevelMax);
+ flevel -= level0; // Fractional part. Zero if clamped on last level.
+ }
+}
+
+//------------------------------------------------------------------------
+// Texel fetch and accumulator helpers that understand cube map corners.
+
+template
+static __device__ __forceinline__ void fetchQuad(T& a00, T& a10, T& a01, T& a11, const float* pIn, int4 tc, bool corner)
+{
+ // For invalid cube map uv, tc will be all negative, and all texel values will be zero.
+ if (corner)
+ {
+ T avg = zero_value();
+ if (tc.x >= 0) avg += (a00 = *((const T*)&pIn[tc.x]));
+ if (tc.y >= 0) avg += (a10 = *((const T*)&pIn[tc.y]));
+ if (tc.z >= 0) avg += (a01 = *((const T*)&pIn[tc.z]));
+ if (tc.w >= 0) avg += (a11 = *((const T*)&pIn[tc.w]));
+ avg *= 0.33333333f;
+ if (tc.x < 0) a00 = avg;
+ if (tc.y < 0) a10 = avg;
+ if (tc.z < 0) a01 = avg;
+ if (tc.w < 0) a11 = avg;
+ }
+ else
+ {
+ a00 = (tc.x >= 0) ? *((const T*)&pIn[tc.x]) : zero_value();
+ a10 = (tc.y >= 0) ? *((const T*)&pIn[tc.y]) : zero_value();
+ a01 = (tc.z >= 0) ? *((const T*)&pIn[tc.z]) : zero_value();
+ a11 = (tc.w >= 0) ? *((const T*)&pIn[tc.w]) : zero_value();
+ }
+}
+
+static __device__ __forceinline__ void accumQuad(float4 c, float* pOut, int level, int4 tc, bool corner, CA_TEMP_PARAM)
+{
+ // For invalid cube map uv, tc will be all negative, and no accumulation will take place.
+ if (corner)
+ {
+ float cb;
+ if (tc.x < 0) cb = c.x;
+ if (tc.y < 0) cb = c.y;
+ if (tc.z < 0) cb = c.z;
+ if (tc.w < 0) cb = c.w;
+ cb *= 0.33333333f;
+ if (tc.x >= 0) caAtomicAddTexture(pOut, level, tc.x, c.x + cb);
+ if (tc.y >= 0) caAtomicAddTexture(pOut, level, tc.y, c.y + cb);
+ if (tc.z >= 0) caAtomicAddTexture(pOut, level, tc.z, c.z + cb);
+ if (tc.w >= 0) caAtomicAddTexture(pOut, level, tc.w, c.w + cb);
+ }
+ else
+ {
+ if (tc.x >= 0) caAtomicAddTexture(pOut, level, tc.x, c.x);
+ if (tc.y >= 0) caAtomicAddTexture(pOut, level, tc.y, c.y);
+ if (tc.z >= 0) caAtomicAddTexture(pOut, level, tc.z, c.z);
+ if (tc.w >= 0) caAtomicAddTexture(pOut, level, tc.w, c.w);
+ }
+}
+
+//------------------------------------------------------------------------
+// Mip builder kernel.
+
+template
+static __forceinline__ __device__ void MipBuildKernelTemplate(const TextureKernelParams p)
+{
+ // Sizes.
+ int2 sz_in = mipLevelSize(p, p.mipLevelOut - 1);
+ int2 sz_out = mipLevelSize(p, p.mipLevelOut);
+
+ // Calculate pixel position.
+ int px = blockIdx.x * blockDim.x + threadIdx.x;
+ int py = blockIdx.y * blockDim.y + threadIdx.y;
+ int pz = blockIdx.z;
+ if (px >= sz_out.x || py >= sz_out.y)
+ return;
+
+ // Pixel indices.
+ int pidx_in0 = p.channels * (((px + sz_in.x * py) << 1) + (pz * sz_in.x * sz_in.y));
+ int pidx_in1 = pidx_in0 + p.channels * sz_in.x; // Next pixel down.
+ int pidx_out = p.channels * (px + sz_out.x * (py + sz_out.y * pz));
+
+ // Input and output pointers.
+ const float* pin = p.tex[p.mipLevelOut - 1];
+ float* pout = (float*)p.tex[p.mipLevelOut];
+
+ // Special case: Input texture height or width is 1.
+ if (sz_in.x == 1 || sz_in.y == 1)
+ {
+ if (sz_in.y == 1)
+ pidx_in1 = pidx_in0 + p.channels; // Next pixel on the right.
+
+ for (int i=0; i < p.channels; i += C)
+ {
+ T v0 = *((const T*)&pin[pidx_in0 + i]);
+ T v1 = *((const T*)&pin[pidx_in1 + i]);
+ T avg = .5f * (v0 + v1);
+#if TEX_DEBUG_MIP_RETAIN_VARIANCE
+ avg = (avg - .5f) * 1.41421356f + .5f;
+#endif
+ *((T*)&pout[pidx_out + i]) = avg;
+ }
+
+ return;
+ }
+
+ for (int i=0; i < p.channels; i += C)
+ {
+ T v0 = *((const T*)&pin[pidx_in0 + i]);
+ T v1 = *((const T*)&pin[pidx_in0 + i + p.channels]);
+ T v2 = *((const T*)&pin[pidx_in1 + i]);
+ T v3 = *((const T*)&pin[pidx_in1 + i + p.channels]);
+ T avg = .25f * (v0 + v1 + v2 + v3);
+#if TEX_DEBUG_MIP_RETAIN_VARIANCE
+ avg = (avg - .5f) * 2.f + .5f;
+#endif
+ *((T*)&pout[pidx_out + i]) = avg;
+ }
+}
+
+// Template specializations.
+__global__ void MipBuildKernel1(const TextureKernelParams p) { MipBuildKernelTemplate(p); }
+__global__ void MipBuildKernel2(const TextureKernelParams p) { MipBuildKernelTemplate(p); }
+__global__ void MipBuildKernel4(const TextureKernelParams p) { MipBuildKernelTemplate(p); }
+
+//------------------------------------------------------------------------
+// Forward kernel.
+
+template
+static __forceinline__ __device__ void TextureFwdKernelTemplate(const TextureKernelParams p)
+{
+ // Calculate pixel position.
+ int px = blockIdx.x * blockDim.x + threadIdx.x;
+ int py = blockIdx.y * blockDim.y + threadIdx.y;
+ int pz = blockIdx.z;
+ int tz = (p.texDepth == 1) ? 0 : pz;
+ if (px >= p.imgWidth || py >= p.imgHeight || pz >= p.n)
+ return;
+
+ // Pixel index.
+ int pidx = px + p.imgWidth * (py + p.imgHeight * pz);
+
+ // Output ptr.
+ float* pOut = p.out + pidx * p.channels;
+
+ // Get UV.
+ float3 uv;
+ if (CUBE_MODE)
+ uv = ((const float3*)p.uv)[pidx];
+ else
+ uv = make_float3(((const float2*)p.uv)[pidx], 0.f);
+
+ // Nearest mode.
+ if (FILTER_MODE == TEX_MODE_NEAREST)
+ {
+ int tc = indexTextureNearest(p, uv, tz);
+ tc *= p.channels;
+ const float* pIn = p.tex[0];
+
+ // Copy if valid tc, otherwise output zero.
+ for (int i=0; i < p.channels; i += C)
+ *((T*)&pOut[i]) = (tc >= 0) ? *((const T*)&pIn[tc + i]) : zero_value();
+
+ return; // Exit.
+ }
+
+ // Calculate mip level. In 'linear' mode these will all stay zero.
+ float flevel = 0.f; // Fractional level.
+ int level0 = 0; // Discrete level 0.
+ int level1 = 0; // Discrete level 1.
+ calculateMipLevel(level0, level1, flevel, p, pidx, uv, 0, 0);
+
+ // Get texel indices and pointer for level 0.
+ int4 tc0 = make_int4(0, 0, 0, 0);
+ float2 uv0 = indexTextureLinear(p, uv, tz, tc0, level0);
+ const float* pIn0 = p.tex[level0];
+ bool corner0 = CUBE_MODE && ((tc0.x | tc0.y | tc0.z | tc0.w) < 0);
+ tc0 *= p.channels;
+
+ // Bilinear fetch.
+ if (FILTER_MODE == TEX_MODE_LINEAR || FILTER_MODE == TEX_MODE_LINEAR_MIPMAP_NEAREST)
+ {
+ // Interpolate.
+ for (int i=0; i < p.channels; i += C, tc0 += C)
+ {
+ T a00, a10, a01, a11;
+ fetchQuad(a00, a10, a01, a11, pIn0, tc0, corner0);
+ *((T*)&pOut[i]) = bilerp(a00, a10, a01, a11, uv0);
+ }
+ return; // Exit.
+ }
+
+ // Get texel indices and pointer for level 1.
+ int4 tc1 = make_int4(0, 0, 0, 0);
+ float2 uv1 = indexTextureLinear(p, uv, tz, tc1, level1);
+ const float* pIn1 = p.tex[level1];
+ bool corner1 = CUBE_MODE && ((tc1.x | tc1.y | tc1.z | tc1.w) < 0);
+ tc1 *= p.channels;
+
+ // Trilinear fetch.
+ for (int i=0; i < p.channels; i += C, tc0 += C, tc1 += C)
+ {
+ // First level.
+ T a00, a10, a01, a11;
+ fetchQuad(a00, a10, a01, a11, pIn0, tc0, corner0);
+ T a = bilerp(a00, a10, a01, a11, uv0);
+
+ // Second level unless in magnification mode.
+ if (flevel > 0.f)
+ {
+ T b00, b10, b01, b11;
+ fetchQuad(b00, b10, b01, b11, pIn1, tc1, corner1);
+ T b = bilerp(b00, b10, b01, b11, uv1);
+ a = lerp(a, b, flevel); // Interpolate between levels.
+ }
+
+ // Write.
+ *((T*)&pOut[i]) = a;
+ }
+}
+
+// Template specializations.
+__global__ void TextureFwdKernelNearest1 (const TextureKernelParams p) { TextureFwdKernelTemplate(p); }
+__global__ void TextureFwdKernelNearest2 (const TextureKernelParams p) { TextureFwdKernelTemplate(p); }
+__global__ void TextureFwdKernelNearest4 (const TextureKernelParams p) { TextureFwdKernelTemplate(p); }
+__global__ void TextureFwdKernelLinear1 (const TextureKernelParams p) { TextureFwdKernelTemplate(p); }
+__global__ void TextureFwdKernelLinear2 (const TextureKernelParams p) { TextureFwdKernelTemplate(p); }
+__global__ void TextureFwdKernelLinear4 (const TextureKernelParams p) { TextureFwdKernelTemplate(p); }
+__global__ void TextureFwdKernelLinearMipmapNearest1 (const TextureKernelParams p) { TextureFwdKernelTemplate(p); }
+__global__ void TextureFwdKernelLinearMipmapNearest2 (const TextureKernelParams p) { TextureFwdKernelTemplate(p); }
+__global__ void TextureFwdKernelLinearMipmapNearest4 (const TextureKernelParams p) { TextureFwdKernelTemplate(p); }
+__global__ void TextureFwdKernelLinearMipmapLinear1 (const TextureKernelParams p) { TextureFwdKernelTemplate(p); }
+__global__ void TextureFwdKernelLinearMipmapLinear2 (const TextureKernelParams p) { TextureFwdKernelTemplate(p); }
+__global__ void TextureFwdKernelLinearMipmapLinear4 (const TextureKernelParams p) { TextureFwdKernelTemplate(p); }
+__global__ void TextureFwdKernelCubeNearest1 (const TextureKernelParams p) { TextureFwdKernelTemplate(p); }
+__global__ void TextureFwdKernelCubeNearest2 (const TextureKernelParams p) { TextureFwdKernelTemplate(p); }
+__global__ void TextureFwdKernelCubeNearest4 (const TextureKernelParams p) { TextureFwdKernelTemplate(p); }
+__global__ void TextureFwdKernelCubeLinear1 (const TextureKernelParams p) { TextureFwdKernelTemplate(p); }
+__global__ void TextureFwdKernelCubeLinear2 (const TextureKernelParams p) { TextureFwdKernelTemplate(p); }
+__global__ void TextureFwdKernelCubeLinear4 (const TextureKernelParams p) { TextureFwdKernelTemplate(p); }
+__global__ void TextureFwdKernelCubeLinearMipmapNearest1 (const TextureKernelParams p) { TextureFwdKernelTemplate(p); }
+__global__ void TextureFwdKernelCubeLinearMipmapNearest2 (const TextureKernelParams p) { TextureFwdKernelTemplate(p); }
+__global__ void TextureFwdKernelCubeLinearMipmapNearest4 (const TextureKernelParams p) { TextureFwdKernelTemplate(p); }
+__global__ void TextureFwdKernelCubeLinearMipmapLinear1 (const TextureKernelParams p) { TextureFwdKernelTemplate(p); }
+__global__ void TextureFwdKernelCubeLinearMipmapLinear2 (const TextureKernelParams p) { TextureFwdKernelTemplate(p); }
+__global__ void TextureFwdKernelCubeLinearMipmapLinear4 (const TextureKernelParams p) { TextureFwdKernelTemplate(p); }
+__global__ void TextureFwdKernelLinearMipmapNearestBO1 (const TextureKernelParams p) { TextureFwdKernelTemplate(p); }
+__global__ void TextureFwdKernelLinearMipmapNearestBO2 (const TextureKernelParams p) { TextureFwdKernelTemplate(p); }
+__global__ void TextureFwdKernelLinearMipmapNearestBO4 (const TextureKernelParams p) { TextureFwdKernelTemplate(p); }
+__global__ void TextureFwdKernelLinearMipmapLinearBO1 (const TextureKernelParams p) { TextureFwdKernelTemplate(p); }
+__global__ void TextureFwdKernelLinearMipmapLinearBO2 (const TextureKernelParams p) { TextureFwdKernelTemplate(p); }
+__global__ void TextureFwdKernelLinearMipmapLinearBO4 (const TextureKernelParams p) { TextureFwdKernelTemplate(p); }
+__global__ void TextureFwdKernelCubeLinearMipmapNearestBO1 (const TextureKernelParams p) { TextureFwdKernelTemplate(p); }
+__global__ void TextureFwdKernelCubeLinearMipmapNearestBO2 (const TextureKernelParams p) { TextureFwdKernelTemplate(p); }
+__global__ void TextureFwdKernelCubeLinearMipmapNearestBO4 (const TextureKernelParams p) { TextureFwdKernelTemplate(p); }
+__global__ void TextureFwdKernelCubeLinearMipmapLinearBO1 (const TextureKernelParams p) { TextureFwdKernelTemplate(p); }
+__global__ void TextureFwdKernelCubeLinearMipmapLinearBO2 (const TextureKernelParams p) { TextureFwdKernelTemplate(p); }
+__global__ void TextureFwdKernelCubeLinearMipmapLinearBO4 (const TextureKernelParams p) { TextureFwdKernelTemplate(p); }
+
+//------------------------------------------------------------------------
+// Gradient mip puller kernel.
+
+template
+static __forceinline__ __device__ void MipGradKernelTemplate(const TextureKernelParams p)
+{
+ // Calculate pixel position.
+ int px = blockIdx.x * blockDim.x + threadIdx.x;
+ int py = blockIdx.y * blockDim.y + threadIdx.y;
+ int pz = blockIdx.z;
+ if (px >= p.texWidth || py >= p.texHeight)
+ return;
+
+ // Number of wide elements.
+ int c = p.channels;
+ if (C == 2) c >>= 1;
+ if (C == 4) c >>= 2;
+
+ // Dynamically allocated shared memory for holding a texel.
+ extern __shared__ float s_texelAccum[];
+ int sharedOfs = threadIdx.x + threadIdx.y * blockDim.x;
+ int sharedStride = blockDim.x * blockDim.y;
+# define TEXEL_ACCUM(_i) (s_texelAccum + (sharedOfs + (_i) * sharedStride))
+
+ // Clear the texel.
+ for (int i=0; i < p.channels; i++)
+ *TEXEL_ACCUM(i) = 0.f;
+
+ // Track texel position and accumulation weight over the mip stack.
+ int x = px;
+ int y = py;
+ float w = 1.f;
+
+ // Pull gradients from all levels.
+ int2 sz = mipLevelSize(p, 0); // Previous level size.
+ for (int level=1; level <= p.mipLevelMax; level++)
+ {
+ // Weight decay depends on previous level size.
+ if (sz.x > 1) w *= .5f;
+ if (sz.y > 1) w *= .5f;
+
+ // Current level size and coordinates.
+ sz = mipLevelSize(p, level);
+ x >>= 1;
+ y >>= 1;
+
+ T* pIn = (T*)(p.gradTex[level] + (x + sz.x * (y + sz.y * pz)) * p.channels);
+ for (int i=0; i < c; i++)
+ accum_from_mem(TEXEL_ACCUM(i * C), sharedStride, pIn[i], w);
+ }
+
+ // Add to main texture gradients.
+ T* pOut = (T*)(p.gradTex[0] + (px + p.texWidth * (py + p.texHeight * pz)) * p.channels);
+ for (int i=0; i < c; i++)
+ accum_to_mem(pOut[i], TEXEL_ACCUM(i * C), sharedStride);
+}
+
+// Template specializations.
+__global__ void MipGradKernel1(const TextureKernelParams p) { MipGradKernelTemplate(p); }
+__global__ void MipGradKernel2(const TextureKernelParams p) { MipGradKernelTemplate(p); }
+__global__ void MipGradKernel4(const TextureKernelParams p) { MipGradKernelTemplate(p); }
+
+//------------------------------------------------------------------------
+// Gradient kernel.
+
+template
+static __forceinline__ __device__ void TextureGradKernelTemplate(const TextureKernelParams p)
+{
+ // Temporary space for coalesced atomics.
+ CA_DECLARE_TEMP(TEX_GRAD_MAX_KERNEL_BLOCK_WIDTH * TEX_GRAD_MAX_KERNEL_BLOCK_HEIGHT);
+
+ // Calculate pixel position.
+ int px = blockIdx.x * blockDim.x + threadIdx.x;
+ int py = blockIdx.y * blockDim.y + threadIdx.y;
+ int pz = blockIdx.z;
+ int tz = (p.texDepth == 1) ? 0 : pz;
+ if (px >= p.imgWidth || py >= p.imgHeight || pz >= p.n)
+ return;
+
+ // Pixel index.
+ int pidx = px + p.imgWidth * (py + p.imgHeight * pz);
+
+ // Early exit if output gradients are zero.
+ const float* pDy = p.dy + pidx * p.channels;
+ unsigned int dmax = 0u;
+ if ((p.channels & 3) == 0)
+ {
+ for (int i=0; i < p.channels; i += 4)
+ {
+ uint4 dy = *((const uint4*)&pDy[i]);
+ dmax |= (dy.x | dy.y | dy.z | dy.w);
+ }
+ }
+ else
+ {
+ for (int i=0; i < p.channels; i++)
+ dmax |= __float_as_uint(pDy[i]);
+ }
+
+ // Store zeros and exit.
+ if (__uint_as_float(dmax) == 0.f)
+ {
+ if (CUBE_MODE)
+ {
+ if (FILTER_MODE != TEX_MODE_NEAREST)
+ ((float3*)p.gradUV)[pidx] = make_float3(0.f, 0.f, 0.f);
+ if (FILTER_MODE == TEX_MODE_LINEAR_MIPMAP_LINEAR)
+ {
+ if (p.gradUVDA)
+ {
+ ((float2*)p.gradUVDA)[3 * pidx + 0] = make_float2(0.f, 0.f);
+ ((float2*)p.gradUVDA)[3 * pidx + 1] = make_float2(0.f, 0.f);
+ ((float2*)p.gradUVDA)[3 * pidx + 2] = make_float2(0.f, 0.f);
+ }
+ if (p.gradMipLevelBias)
+ p.gradMipLevelBias[pidx] = 0.f;
+ }
+ }
+ else
+ {
+ if (FILTER_MODE != TEX_MODE_NEAREST)
+ ((float2*)p.gradUV)[pidx] = make_float2(0.f, 0.f);
+ if (FILTER_MODE == TEX_MODE_LINEAR_MIPMAP_LINEAR)
+ {
+ if (p.gradUVDA)
+ ((float4*)p.gradUVDA)[pidx] = make_float4(0.f, 0.f, 0.f, 0.f);
+ if (p.gradMipLevelBias)
+ p.gradMipLevelBias[pidx] = 0.f;
+ }
+ }
+ return;
+ }
+
+ // Get UV.
+ float3 uv;
+ if (CUBE_MODE)
+ uv = ((const float3*)p.uv)[pidx];
+ else
+ uv = make_float3(((const float2*)p.uv)[pidx], 0.f);
+
+ // Nearest mode - texture gradients only.
+ if (FILTER_MODE == TEX_MODE_NEAREST)
+ {
+ int tc = indexTextureNearest(p, uv, tz);
+ if (tc < 0)
+ return; // Outside texture.
+
+ tc *= p.channels;
+ float* pOut = p.gradTex[0];
+
+ // Accumulate texture gradients.
+ for (int i=0; i < p.channels; i++)
+ caAtomicAddTexture(pOut, 0, tc + i, pDy[i]);
+
+ return; // Exit.
+ }
+
+ // Calculate mip level. In 'linear' mode these will all stay zero.
+ float4 dw = make_float4(0.f, 0.f, 0.f, 0.f);
+ float3 dfdv = make_float3(0.f, 0.f, 0.f);
+ float flevel = 0.f; // Fractional level.
+ int level0 = 0; // Discrete level 0.
+ int level1 = 0; // Discrete level 1.
+ calculateMipLevel(level0, level1, flevel, p, pidx, uv, &dw, &dfdv);
+
+ // UV gradient accumulators.
+ float gu = 0.f;
+ float gv = 0.f;
+
+ // Get texel indices and pointers for level 0.
+ int4 tc0 = make_int4(0, 0, 0, 0);
+ float2 uv0 = indexTextureLinear(p, uv, tz, tc0, level0);
+ const float* pIn0 = p.tex[level0];
+ float* pOut0 = p.gradTex[level0];
+ bool corner0 = CUBE_MODE && ((tc0.x | tc0.y | tc0.z | tc0.w) < 0);
+ tc0 *= p.channels;
+
+ // Texel weights.
+ float uv011 = uv0.x * uv0.y;
+ float uv010 = uv0.x - uv011;
+ float uv001 = uv0.y - uv011;
+ float uv000 = 1.f - uv0.x - uv001;
+ float4 tw0 = make_float4(uv000, uv010, uv001, uv011);
+
+ // Attribute weights.
+ int2 sz0 = mipLevelSize(p, level0);
+ float sclu0 = (float)sz0.x;
+ float sclv0 = (float)sz0.y;
+
+ // Bilinear mode - texture and uv gradients.
+ if (FILTER_MODE == TEX_MODE_LINEAR || FILTER_MODE == TEX_MODE_LINEAR_MIPMAP_NEAREST)
+ {
+ for (int i=0; i < p.channels; i++, tc0 += 1)
+ {
+ float dy = pDy[i];
+ accumQuad(tw0 * dy, pOut0, level0, tc0, corner0, CA_TEMP);
+
+ float a00, a10, a01, a11;
+ fetchQuad(a00, a10, a01, a11, pIn0, tc0, corner0);
+ float ad = (a11 + a00 - a10 - a01);
+ gu += dy * ((a10 - a00) + uv0.y * ad) * sclu0;
+ gv += dy * ((a01 - a00) + uv0.x * ad) * sclv0;
+ }
+
+ // Store UV gradients and exit.
+ if (CUBE_MODE)
+ ((float3*)p.gradUV)[pidx] = indexCubeMapGrad(uv, gu, gv);
+ else
+ ((float2*)p.gradUV)[pidx] = make_float2(gu, gv);
+
+ return;
+ }
+
+ // Accumulate fractional mip level gradient.
+ float df = 0; // dL/df.
+
+ // Get texel indices and pointers for level 1.
+ int4 tc1 = make_int4(0, 0, 0, 0);
+ float2 uv1 = indexTextureLinear(p, uv, tz, tc1, level1);
+ const float* pIn1 = p.tex[level1];
+ float* pOut1 = p.gradTex[level1];
+ bool corner1 = CUBE_MODE && ((tc1.x | tc1.y | tc1.z | tc1.w) < 0);
+ tc1 *= p.channels;
+
+ // Texel weights.
+ float uv111 = uv1.x * uv1.y;
+ float uv110 = uv1.x - uv111;
+ float uv101 = uv1.y - uv111;
+ float uv100 = 1.f - uv1.x - uv101;
+ float4 tw1 = make_float4(uv100, uv110, uv101, uv111);
+
+ // Attribute weights.
+ int2 sz1 = mipLevelSize(p, level1);
+ float sclu1 = (float)sz1.x;
+ float sclv1 = (float)sz1.y;
+
+ // Trilinear mode.
+ for (int i=0; i < p.channels; i++, tc0 += 1, tc1 += 1)
+ {
+ float dy = pDy[i];
+ float dy0 = (1.f - flevel) * dy;
+ accumQuad(tw0 * dy0, pOut0, level0, tc0, corner0, CA_TEMP);
+
+ // UV gradients for first level.
+ float a00, a10, a01, a11;
+ fetchQuad(a00, a10, a01, a11, pIn0, tc0, corner0);
+ float ad = (a11 + a00 - a10 - a01);
+ gu += dy0 * ((a10 - a00) + uv0.y * ad) * sclu0;
+ gv += dy0 * ((a01 - a00) + uv0.x * ad) * sclv0;
+
+ // Second level unless in magnification mode.
+ if (flevel > 0.f)
+ {
+ // Texture gradients for second level.
+ float dy1 = flevel * dy;
+ accumQuad(tw1 * dy1, pOut1, level1, tc1, corner1, CA_TEMP);
+
+ // UV gradients for second level.
+ float b00, b10, b01, b11;
+ fetchQuad(b00, b10, b01, b11, pIn1, tc1, corner1);
+ float bd = (b11 + b00 - b10 - b01);
+ gu += dy1 * ((b10 - b00) + uv1.y * bd) * sclu1;
+ gv += dy1 * ((b01 - b00) + uv1.x * bd) * sclv1;
+
+ // Mip level gradient.
+ float a = bilerp(a00, a10, a01, a11, uv0);
+ float b = bilerp(b00, b10, b01, b11, uv1);
+ df += (b-a) * dy;
+ }
+ }
+
+ // Store UV gradients.
+ if (CUBE_MODE)
+ ((float3*)p.gradUV)[pidx] = indexCubeMapGrad(uv, gu, gv) + (dfdv * df);
+ else
+ ((float2*)p.gradUV)[pidx] = make_float2(gu, gv);
+
+ // Store mip level bias gradient.
+ if (p.gradMipLevelBias)
+ p.gradMipLevelBias[pidx] = df;
+
+ // Store UV pixel differential gradients.
+ if (!BIAS_ONLY)
+ {
+ // Final gradients.
+ dw *= df; // dL/(d{s,y}/d{X,Y}) = df/(d{s,y}/d{X,Y}) * dL/df.
+
+ // Store them.
+ if (CUBE_MODE)
+ {
+ // Remap from dL/(d{s,t}/s{X,Y}) to dL/(d{x,y,z}/d{X,Y}).
+ float3 g0, g1;
+ indexCubeMapGrad4(uv, dw, g0, g1);
+ ((float2*)p.gradUVDA)[3 * pidx + 0] = make_float2(g0.x, g1.x);
+ ((float2*)p.gradUVDA)[3 * pidx + 1] = make_float2(g0.y, g1.y);
+ ((float2*)p.gradUVDA)[3 * pidx + 2] = make_float2(g0.z, g1.z);
+ }
+ else
+ ((float4*)p.gradUVDA)[pidx] = dw;
+ }
+}
+
+// Template specializations.
+__global__ void TextureGradKernelNearest (const TextureKernelParams p) { TextureGradKernelTemplate(p); }
+__global__ void TextureGradKernelLinear (const TextureKernelParams p) { TextureGradKernelTemplate(p); }
+__global__ void TextureGradKernelLinearMipmapNearest (const TextureKernelParams p) { TextureGradKernelTemplate(p); }
+__global__ void TextureGradKernelLinearMipmapLinear (const TextureKernelParams p) { TextureGradKernelTemplate(p); }
+__global__ void TextureGradKernelCubeNearest (const TextureKernelParams p) { TextureGradKernelTemplate(p); }
+__global__ void TextureGradKernelCubeLinear (const TextureKernelParams p) { TextureGradKernelTemplate(p); }
+__global__ void TextureGradKernelCubeLinearMipmapNearest (const TextureKernelParams p) { TextureGradKernelTemplate(p); }
+__global__ void TextureGradKernelCubeLinearMipmapLinear (const TextureKernelParams p) { TextureGradKernelTemplate(p); }
+__global__ void TextureGradKernelLinearMipmapNearestBO (const TextureKernelParams p) { TextureGradKernelTemplate(p); }
+__global__ void TextureGradKernelLinearMipmapLinearBO (const TextureKernelParams p) { TextureGradKernelTemplate(p); }
+__global__ void TextureGradKernelCubeLinearMipmapNearestBO (const TextureKernelParams p) { TextureGradKernelTemplate(p); }
+__global__ void TextureGradKernelCubeLinearMipmapLinearBO (const TextureKernelParams p) { TextureGradKernelTemplate(p); }
+
+//------------------------------------------------------------------------
diff --git a/extensions/nvdiffrast/nvdiffrast/lib/setgpu.lib b/extensions/nvdiffrast/nvdiffrast/lib/setgpu.lib
new file mode 100644
index 0000000000000000000000000000000000000000..add9a0c4f631cb56dbee31a05ed97339930301e2
Binary files /dev/null and b/extensions/nvdiffrast/nvdiffrast/lib/setgpu.lib differ
diff --git a/extensions/nvdiffrast/nvdiffrast/tensorflow/__init__.py b/extensions/nvdiffrast/nvdiffrast/tensorflow/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..c2ac67a712d7df7ecc40cc2d1dfd67e5f738be9f
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/tensorflow/__init__.py
@@ -0,0 +1,12 @@
+# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
+#
+# NVIDIA CORPORATION and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+from .ops import rasterize, interpolate, texture, antialias
+from .plugin_loader import set_cache_dir
+
+__all__ = ["rasterize", "interpolate", "texture", "antialias", "set_cache_dir"]
diff --git a/extensions/nvdiffrast/nvdiffrast/tensorflow/ops.py b/extensions/nvdiffrast/nvdiffrast/tensorflow/ops.py
new file mode 100644
index 0000000000000000000000000000000000000000..130e2e195e2dce3e007aaebc55cc03837cf77c02
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/tensorflow/ops.py
@@ -0,0 +1,303 @@
+# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
+#
+# NVIDIA CORPORATION and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+import tensorflow as tf
+import numpy as np
+import os
+from . import plugin_loader
+
+#----------------------------------------------------------------------------
+# Helpers.
+#----------------------------------------------------------------------------
+
+# OpenGL-related linker options depending on platform.
+def _get_gl_opts():
+ libs = {
+ 'posix': ['GL', 'EGL'],
+ 'nt': ['gdi32', 'opengl32', 'user32', 'setgpu'],
+ }
+ return ['-l' + x for x in libs[os.name]]
+
+# Load the cpp plugin.
+def _get_plugin():
+ fn = os.path.join(os.path.dirname(__file__), 'tf_all.cu')
+ return plugin_loader.get_plugin(fn, extra_nvcc_options=_get_gl_opts() + ['-DNVDR_TENSORFLOW'])
+
+# Convert parameter to a numpy array if possible.
+def _get_constant(x, dtype):
+ try:
+ return np.asarray(x, dtype=dtype)
+ except (TypeError, ValueError):
+ return None
+
+# Tests for a construction-time constantness instead of tf.constant node because
+# the latter can be overridden in Session.run() feed_dict at evaluation time.
+def _is_constant(x, dtype):
+ if isinstance(x, np.ndarray):
+ return np.can_cast(x.dtype, dtype, 'unsafe')
+ else:
+ return _get_constant(x, dtype) is not None
+
+#----------------------------------------------------------------------------
+# Rasterize.
+#----------------------------------------------------------------------------
+
+def rasterize(pos, tri, resolution, ranges=None, tri_const=False, output_db=True, grad_db=True):
+ assert tri_const is True or tri_const is False
+ assert output_db is True or output_db is False
+
+ # Known constant resolution?
+ resolution_c = _get_constant(resolution, np.int32)
+
+ # Known constant triangles?
+ tri_const = tri_const or _is_constant(tri, np.int32)
+
+ # Convert all inputs to tensors / base types.
+ tri_const = 1 if tri_const else 0
+ tri = tf.convert_to_tensor(tri, dtype=tf.int32)
+ pos = tf.convert_to_tensor(pos, dtype=tf.float32)
+ resolution = tf.convert_to_tensor(resolution, dtype=tf.int32)
+ if ranges is None:
+ ranges = tf.convert_to_tensor(np.zeros(shape=[0, 2], dtype=np.int32)) # Empty tensor.
+ else:
+ ranges = tf.convert_to_tensor(ranges, dtype=tf.int32) # Convert input to tensor.
+
+ # Infer as much about the output shape as possible.
+ out_shape = [None, None, None, 4]
+ if pos.shape.rank == 3: # Instanced mode.
+ out_shape[0] = pos.shape[0].value
+ elif pos.shape.rank == 2: # Range mode.
+ if ranges.shape.rank not in [None, 0]:
+ out_shape[0] = ranges.shape[0].value
+ if resolution_c is not None:
+ assert resolution_c.shape == (2,)
+ out_shape[1], out_shape[2] = resolution_c
+
+ # Output pixel differentials.
+ @tf.custom_gradient
+ def func_db(pos):
+ out, out_db = _get_plugin().rasterize_fwd(pos, tri, resolution, ranges, 1, tri_const)
+ out.set_shape(out_shape)
+ out_db.set_shape(out_shape)
+ def grad(dy, ddb):
+ if grad_db:
+ return _get_plugin().rasterize_grad_db(pos, tri, out, dy, ddb)
+ else:
+ return _get_plugin().rasterize_grad(pos, tri, out, dy)
+ return (out, out_db), grad
+
+ # Do not output pixel differentials.
+ @tf.custom_gradient
+ def func(pos):
+ out, out_db = _get_plugin().rasterize_fwd(pos, tri, resolution, ranges, 0, tri_const)
+ out.set_shape(out_shape)
+ out_db.set_shape(out_shape[:-1] + [0]) # Zero channels in out_db.
+ def grad(dy, _):
+ return _get_plugin().rasterize_grad(pos, tri, out, dy)
+ return (out, out_db), grad
+
+ # Choose stub.
+ if output_db:
+ return func_db(pos)
+ else:
+ return func(pos)
+
+#----------------------------------------------------------------------------
+# Interpolate.
+#----------------------------------------------------------------------------
+
+def interpolate(attr, rast, tri, rast_db=None, diff_attrs=None):
+ # Sanitize the list of pixel differential attributes.
+ if diff_attrs is None:
+ diff_attrs = []
+ elif diff_attrs != 'all':
+ diff_attrs = _get_constant(diff_attrs, np.int32)
+ assert (diff_attrs is not None) and len(diff_attrs.shape) == 1
+ diff_attrs = diff_attrs.tolist()
+
+ # Convert all inputs to tensors.
+ attr = tf.convert_to_tensor(attr, dtype=tf.float32)
+ rast = tf.convert_to_tensor(rast, dtype=tf.float32)
+ tri = tf.convert_to_tensor(tri, dtype=tf.int32)
+ if diff_attrs:
+ rast_db = tf.convert_to_tensor(rast_db, dtype=tf.float32)
+
+ # Infer output shape.
+ out_shape = [None, None, None, None]
+ if rast.shape.rank is not None:
+ out_shape = [rast.shape[0].value, rast.shape[1].value, rast.shape[2].value, None]
+ if attr.shape.rank in [2, 3]:
+ out_shape[3] = attr.shape[-1].value
+
+ # Output pixel differentials for at least some attributes.
+ @tf.custom_gradient
+ def func_da(attr, rast, rast_db):
+ diff_attrs_all = int(diff_attrs == 'all')
+ diff_attrs_list = [] if diff_attrs_all else diff_attrs
+ out, out_da = _get_plugin().interpolate_fwd_da(attr, rast, tri, rast_db, diff_attrs_all, diff_attrs_list)
+
+ # Infer number of channels in out_da.
+ if not diff_attrs_all:
+ da_channels = 2 * len(diff_attrs)
+ if (attr.shape.rank in [2, 3]) and (attr.shape[-1].value is not None):
+ da_channels = 2 * attr.shape[-1].value
+ else:
+ da_channels = None
+
+ # Set output shapes.
+ out.set_shape(out_shape)
+ out_da.set_shape([out_shape[0], out_shape[1], out_shape[2], da_channels])
+
+ def grad(dy, dda):
+ return _get_plugin().interpolate_grad_da(attr, rast, tri, dy, rast_db, dda, diff_attrs_all, diff_attrs_list)
+ return (out, out_da), grad
+
+ # No pixel differentials for any attribute.
+ @tf.custom_gradient
+ def func(attr, rast):
+ out, out_da = _get_plugin().interpolate_fwd(attr, rast, tri)
+ out.set_shape(out_shape)
+ out_da.set_shape(out_shape[:-1] + [0]) # Zero channels in out_da.
+ def grad(dy, _):
+ return _get_plugin().interpolate_grad(attr, rast, tri, dy)
+ return (out, out_da), grad
+
+ # Choose stub.
+ if diff_attrs:
+ return func_da(attr, rast, rast_db)
+ else:
+ return func(attr, rast)
+
+#----------------------------------------------------------------------------
+# Texture.
+#----------------------------------------------------------------------------
+
+def texture(tex, uv, uv_da=None, filter_mode='auto', boundary_mode='wrap', tex_const=False, max_mip_level=None):
+ assert tex_const is True or tex_const is False
+
+ # Default filter mode.
+ if filter_mode == 'auto':
+ filter_mode = 'linear-mipmap-linear' if (uv_da is not None) else 'linear'
+
+ # Known constant texture?
+ tex_const = tex_const or _is_constant(tex, np.float32)
+
+ # Sanitize inputs.
+ tex_const = 1 if tex_const else 0
+ if max_mip_level is None:
+ max_mip_level = -1
+ else:
+ max_mip_level = int(max_mip_level)
+ assert max_mip_level >= 0
+
+ # Convert inputs to tensors.
+ tex = tf.convert_to_tensor(tex, dtype=tf.float32)
+ uv = tf.convert_to_tensor(uv, dtype=tf.float32)
+ if 'mipmap' in filter_mode:
+ uv_da = tf.convert_to_tensor(uv_da, dtype=tf.float32)
+
+ # Infer output shape.
+ out_shape = [None, None, None, None]
+ if uv.shape.rank is not None:
+ assert uv.shape.rank == 4
+ out_shape = [uv.shape[0].value, uv.shape[1].value, uv.shape[2].value, None]
+ if tex.shape.rank is not None:
+ assert tex.shape.rank == (5 if boundary_mode == 'cube' else 4)
+ out_shape[-1] = tex.shape[-1].value
+
+ # If mipping disabled via max level=0, we may as well use simpler filtering internally.
+ if max_mip_level == 0 and filter_mode in ['linear-mipmap-nearest', 'linear-mipmap-linear']:
+ filter_mode = 'linear'
+
+ # Convert filter mode to internal enumeration.
+ filter_mode_dict = {'nearest': 0, 'linear': 1, 'linear-mipmap-nearest': 2, 'linear-mipmap-linear': 3}
+ filter_mode_enum = filter_mode_dict[filter_mode]
+
+ # Convert boundary mode to internal enumeration.
+ boundary_mode_dict = {'cube': 0, 'wrap': 1, 'clamp': 2, 'zero': 3}
+ boundary_mode_enum = boundary_mode_dict[boundary_mode]
+
+ # Linear-mipmap-linear: Mipmaps enabled, all gradients active.
+ @tf.custom_gradient
+ def func_linear_mipmap_linear(tex, uv, uv_da):
+ out, mip = _get_plugin().texture_fwd_mip(tex, uv, uv_da, filter_mode_enum, boundary_mode_enum, tex_const, max_mip_level)
+ out.set_shape(out_shape)
+ def grad(dy):
+ return _get_plugin().texture_grad_linear_mipmap_linear(tex, uv, dy, uv_da, mip, filter_mode_enum, boundary_mode_enum, max_mip_level)
+ return out, grad
+
+ # Linear-mipmap-nearest: Mipmaps enabled, no gradients to uv_da.
+ @tf.custom_gradient
+ def func_linear_mipmap_nearest(tex, uv):
+ out, mip = _get_plugin().texture_fwd_mip(tex, uv, uv_da, filter_mode_enum, boundary_mode_enum, tex_const, max_mip_level)
+ out.set_shape(out_shape)
+ def grad(dy):
+ return _get_plugin().texture_grad_linear_mipmap_nearest(tex, uv, dy, uv_da, mip, filter_mode_enum, boundary_mode_enum, max_mip_level)
+ return out, grad
+
+ # Linear: Mipmaps disabled, no uv_da, no gradients to uv_da.
+ @tf.custom_gradient
+ def func_linear(tex, uv):
+ out = _get_plugin().texture_fwd(tex, uv, filter_mode_enum, boundary_mode_enum)
+ out.set_shape(out_shape)
+ def grad(dy):
+ return _get_plugin().texture_grad_linear(tex, uv, dy, filter_mode_enum, boundary_mode_enum)
+ return out, grad
+
+ # Nearest: Mipmaps disabled, no uv_da, no gradients to uv_da or uv.
+ @tf.custom_gradient
+ def func_nearest(tex):
+ out = _get_plugin().texture_fwd(tex, uv, filter_mode_enum, boundary_mode_enum)
+ out.set_shape(out_shape)
+ def grad(dy):
+ return _get_plugin().texture_grad_nearest(tex, uv, dy, filter_mode_enum, boundary_mode_enum)
+ return out, grad
+
+ # Choose stub.
+ if filter_mode == 'linear-mipmap-linear':
+ return func_linear_mipmap_linear(tex, uv, uv_da)
+ elif filter_mode == 'linear-mipmap-nearest':
+ return func_linear_mipmap_nearest(tex, uv)
+ elif filter_mode == 'linear':
+ return func_linear(tex, uv)
+ elif filter_mode == 'nearest':
+ return func_nearest(tex)
+
+#----------------------------------------------------------------------------
+# Antialias.
+#----------------------------------------------------------------------------
+
+def antialias(color, rast, pos, tri, tri_const=False, pos_gradient_boost=1.0):
+ assert tri_const is True or tri_const is False
+
+ # Known constant triangles?
+ tri_const = tri_const or _is_constant(tri, np.int32)
+
+ # Convert inputs to tensors.
+ color = tf.convert_to_tensor(color, dtype=tf.float32)
+ rast = tf.convert_to_tensor(rast, dtype=tf.float32)
+ pos = tf.convert_to_tensor(pos, dtype=tf.float32)
+ tri = tf.convert_to_tensor(tri, dtype=tf.int32)
+
+ # Sanitize inputs.
+ tri_const = 1 if tri_const else 0
+
+ @tf.custom_gradient
+ def func(color, pos):
+ color_out, work_buffer = _get_plugin().antialias_fwd(color, rast, pos, tri, tri_const)
+ color_out.set_shape(color.shape)
+ def grad(dy):
+ grad_color, grad_pos = _get_plugin().antialias_grad(color, rast, pos, tri, dy, work_buffer)
+ if pos_gradient_boost != 1.0:
+ grad_pos = grad_pos * pos_gradient_boost
+ return grad_color, grad_pos
+ return color_out, grad
+
+ return func(color, pos)
+
+#----------------------------------------------------------------------------
diff --git a/extensions/nvdiffrast/nvdiffrast/tensorflow/plugin_loader.py b/extensions/nvdiffrast/nvdiffrast/tensorflow/plugin_loader.py
new file mode 100644
index 0000000000000000000000000000000000000000..1347df8a5a276298dbeff81e7b06f62e6765a3ef
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/tensorflow/plugin_loader.py
@@ -0,0 +1,219 @@
+# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
+#
+# NVIDIA CORPORATION and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+import glob
+import os
+import re
+import uuid
+import hashlib
+import tempfile
+import shutil
+import tensorflow as tf
+from tensorflow.python.client import device_lib # pylint: disable=no-name-in-module
+
+#----------------------------------------------------------------------------
+# Global options.
+
+_nvdiffrast_cache_dir = None
+
+def set_cache_dir(path: str) -> None:
+ '''Set CUDA kernel compilation temp dir.
+
+ If `set_cache_dir` is not called, the cache directory will default to
+ one of the below:
+
+ - Value of NVDIFFRAST_CACHE_DIR env var, if set
+ - $HOME/.cache/nvdiffrast if HOME env var is set
+ - $USERPROFILE/.cache/nvdiffrast if USERPROFILE is set.
+
+ Args:
+ path: Where to save CUDA kernel build temporaries
+ '''
+ global _nvdiffrast_cache_dir
+ _nvdiffrast_cache_dir = path
+
+def make_cache_dir_path(*paths: str) -> str:
+ if _nvdiffrast_cache_dir is not None:
+ return os.path.join(_nvdiffrast_cache_dir, *paths)
+ if 'NVDIFFRAST_CACHE_DIR' in os.environ:
+ return os.path.join(os.environ['NVDIFFRAST_CACHE_DIR'], *paths)
+ if 'HOME' in os.environ:
+ return os.path.join(os.environ['HOME'], '.cache', 'nvdiffrast', *paths)
+ if 'USERPROFILE' in os.environ:
+ return os.path.join(os.environ['USERPROFILE'], '.cache', 'nvdiffrast', *paths)
+ return os.path.join(tempfile.gettempdir(), '.cache', 'nvdiffrast', *paths)
+
+cuda_cache_version_tag = 'v1'
+do_not_hash_included_headers = False # Speed up compilation by assuming that headers included by the CUDA code never change. Unsafe!
+verbose = True # Print status messages to stdout.
+
+#----------------------------------------------------------------------------
+# Internal helper funcs.
+
+def _find_compiler_bindir():
+ hostx64_paths = sorted(glob.glob('C:/Program Files/Microsoft Visual Studio/*/Enterprise/VC/Tools/MSVC/*/bin/Hostx64/x64'), reverse=True)
+ if hostx64_paths != []:
+ return hostx64_paths[0]
+ hostx64_paths = sorted(glob.glob('C:/Program Files (x86)/Microsoft Visual Studio/*/Enterprise/VC/Tools/MSVC/*/bin/Hostx64/x64'), reverse=True)
+ if hostx64_paths != []:
+ return hostx64_paths[0]
+ hostx64_paths = sorted(glob.glob('C:/Program Files/Microsoft Visual Studio/*/Professional/VC/Tools/MSVC/*/bin/Hostx64/x64'), reverse=True)
+ if hostx64_paths != []:
+ return hostx64_paths[0]
+ hostx64_paths = sorted(glob.glob('C:/Program Files (x86)/Microsoft Visual Studio/*/Professional/VC/Tools/MSVC/*/bin/Hostx64/x64'), reverse=True)
+ if hostx64_paths != []:
+ return hostx64_paths[0]
+ hostx64_paths = sorted(glob.glob('C:/Program Files/Microsoft Visual Studio/*/BuildTools/VC/Tools/MSVC/*/bin/Hostx64/x64'), reverse=True)
+ if hostx64_paths != []:
+ return hostx64_paths[0]
+ hostx64_paths = sorted(glob.glob('C:/Program Files (x86)/Microsoft Visual Studio/*/BuildTools/VC/Tools/MSVC/*/bin/Hostx64/x64'), reverse=True)
+ if hostx64_paths != []:
+ return hostx64_paths[0]
+ hostx64_paths = sorted(glob.glob('C:/Program Files/Microsoft Visual Studio/*/Community/VC/Tools/MSVC/*/bin/Hostx64/x64'), reverse=True)
+ if hostx64_paths != []:
+ return hostx64_paths[0]
+ hostx64_paths = sorted(glob.glob('C:/Program Files (x86)/Microsoft Visual Studio/*/Community/VC/Tools/MSVC/*/bin/Hostx64/x64'), reverse=True)
+ if hostx64_paths != []:
+ return hostx64_paths[0]
+ vc_bin_dir = 'C:/Program Files (x86)/Microsoft Visual Studio 14.0/vc/bin'
+ if os.path.isdir(vc_bin_dir):
+ return vc_bin_dir
+ return None
+
+def _get_compute_cap(device):
+ caps_str = device.physical_device_desc
+ m = re.search('compute capability: (\\d+).(\\d+)', caps_str)
+ major = m.group(1)
+ minor = m.group(2)
+ return (major, minor)
+
+def _get_cuda_gpu_arch_string():
+ gpus = [x for x in device_lib.list_local_devices() if x.device_type == 'GPU']
+ if len(gpus) == 0:
+ raise RuntimeError('No GPU devices found')
+ (major, minor) = _get_compute_cap(gpus[0])
+ return 'sm_%s%s' % (major, minor)
+
+def _run_cmd(cmd):
+ with os.popen(cmd) as pipe:
+ output = pipe.read()
+ status = pipe.close()
+ if status is not None:
+ raise RuntimeError('NVCC returned an error. See below for full command line and output log:\n\n%s\n\n%s' % (cmd, output))
+
+def _prepare_nvcc_cli(opts):
+ cmd = 'nvcc ' + opts.strip()
+ cmd += ' --disable-warnings'
+ cmd += ' --include-path "%s"' % tf.sysconfig.get_include()
+ cmd += ' --include-path "%s"' % os.path.join(tf.sysconfig.get_include(), 'external', 'protobuf_archive', 'src')
+ cmd += ' --include-path "%s"' % os.path.join(tf.sysconfig.get_include(), 'external', 'com_google_absl')
+ cmd += ' --include-path "%s"' % os.path.join(tf.sysconfig.get_include(), 'external', 'eigen_archive')
+
+ compiler_bindir = _find_compiler_bindir()
+ if compiler_bindir is None:
+ # Require that _find_compiler_bindir succeeds on Windows. Allow
+ # nvcc to use whatever is the default on Linux.
+ if os.name == 'nt':
+ raise RuntimeError('Could not find MSVC/GCC/CLANG installation on this computer. Check compiler_bindir_search_path list in "%s".' % __file__)
+ else:
+ cmd += ' --compiler-bindir "%s"' % compiler_bindir
+ cmd += ' 2>&1'
+ return cmd
+
+#----------------------------------------------------------------------------
+# Main entry point.
+
+_plugin_cache = dict()
+
+def get_plugin(cuda_file, extra_nvcc_options=[]):
+ cuda_file_base = os.path.basename(cuda_file)
+ cuda_file_name, cuda_file_ext = os.path.splitext(cuda_file_base)
+
+ # Already in cache?
+ if cuda_file in _plugin_cache:
+ return _plugin_cache[cuda_file]
+
+ # Setup plugin.
+ if verbose:
+ print('Setting up TensorFlow plugin "%s": ' % cuda_file_base, end='', flush=True)
+ try:
+ # Hash CUDA source.
+ md5 = hashlib.md5()
+ with open(cuda_file, 'rb') as f:
+ md5.update(f.read())
+ md5.update(b'\n')
+
+ # Hash headers included by the CUDA code by running it through the preprocessor.
+ if not do_not_hash_included_headers:
+ if verbose:
+ print('Preprocessing... ', end='', flush=True)
+ with tempfile.TemporaryDirectory() as tmp_dir:
+ tmp_file = os.path.join(tmp_dir, cuda_file_name + '_tmp' + cuda_file_ext)
+ _run_cmd(_prepare_nvcc_cli('"%s" --preprocess -o "%s" --keep --keep-dir "%s"' % (cuda_file, tmp_file, tmp_dir)))
+ with open(tmp_file, 'rb') as f:
+ bad_file_str = ('"' + cuda_file.replace('\\', '/') + '"').encode('utf-8') # __FILE__ in error check macros
+ good_file_str = ('"' + cuda_file_base + '"').encode('utf-8')
+ for ln in f:
+ if not ln.startswith(b'# ') and not ln.startswith(b'#line '): # ignore line number pragmas
+ ln = ln.replace(bad_file_str, good_file_str)
+ md5.update(ln)
+ md5.update(b'\n')
+
+ # Select compiler options.
+ compile_opts = ''
+ if os.name == 'nt':
+ compile_opts += '"%s"' % os.path.join(tf.sysconfig.get_lib(), 'python', '_pywrap_tensorflow_internal.lib')
+ compile_opts += ' --library-path="%s"' % (os.path.dirname(__file__) + r"\..\lib") # Find libraries during compilation.
+ elif os.name == 'posix':
+ compile_opts += '"%s"' % os.path.join(tf.sysconfig.get_lib(), 'python', '_pywrap_tensorflow_internal.so')
+ compile_opts += ' --compiler-options \'-fPIC -D_GLIBCXX_USE_CXX11_ABI=0\''
+ else:
+ assert False # not Windows or Linux, w00t?
+ compile_opts += ' --gpu-architecture=%s' % _get_cuda_gpu_arch_string()
+ compile_opts += ' --use_fast_math'
+ for opt in extra_nvcc_options:
+ compile_opts += ' ' + opt
+ nvcc_cmd = _prepare_nvcc_cli(compile_opts)
+
+ # Hash build configuration.
+ md5.update(('nvcc_cmd: ' + nvcc_cmd).encode('utf-8') + b'\n')
+ md5.update(('tf.VERSION: ' + tf.VERSION).encode('utf-8') + b'\n')
+ md5.update(('cuda_cache_version_tag: ' + cuda_cache_version_tag).encode('utf-8') + b'\n')
+
+ # Compile if not already compiled.
+ bin_file_ext = '.dll' if os.name == 'nt' else '.so'
+ cuda_cache_path = make_cache_dir_path()
+ bin_file = os.path.join(make_cache_dir_path(), cuda_file_name + '_' + md5.hexdigest() + bin_file_ext)
+ if not os.path.isfile(bin_file):
+ if verbose:
+ print('Compiling... ', end='', flush=True)
+ with tempfile.TemporaryDirectory() as tmp_dir:
+ tmp_file = os.path.join(tmp_dir, cuda_file_name + '_tmp' + bin_file_ext)
+ _run_cmd(nvcc_cmd + ' "%s" --shared -o "%s" --keep --keep-dir "%s"' % (cuda_file, tmp_file, tmp_dir))
+ os.makedirs(cuda_cache_path, exist_ok=True)
+ intermediate_file = os.path.join(cuda_cache_path, cuda_file_name + '_' + uuid.uuid4().hex + '_tmp' + bin_file_ext)
+ shutil.copyfile(tmp_file, intermediate_file)
+ os.rename(intermediate_file, bin_file) # atomic
+
+ # Load.
+ if verbose:
+ print('Loading... ', end='', flush=True)
+ plugin = tf.load_op_library(bin_file)
+
+ # Add to cache.
+ _plugin_cache[cuda_file] = plugin
+ if verbose:
+ print('Done.', flush=True)
+ return plugin
+
+ except:
+ if verbose:
+ print('Failed!', flush=True)
+ raise
+
+#----------------------------------------------------------------------------
diff --git a/extensions/nvdiffrast/nvdiffrast/tensorflow/tf_all.cu b/extensions/nvdiffrast/nvdiffrast/tensorflow/tf_all.cu
new file mode 100644
index 0000000000000000000000000000000000000000..21b32399c8a2429faa89e3356a34837d0d7e3138
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/tensorflow/tf_all.cu
@@ -0,0 +1,36 @@
+// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+// TF-specific helpers.
+
+#define OP_CHECK_CUDA_ERROR(CTX, CUDA_CALL) do { cudaError_t err = CUDA_CALL; OP_REQUIRES(CTX, err == cudaSuccess, errors::Internal("Cuda error: ", cudaGetErrorName(err), "[", #CUDA_CALL, ";]")); } while (0)
+#define OP_CHECK_GL_ERROR(CTX, GL_CALL) do { GL_CALL; GLenum err = glGetError(); OP_REQUIRES(CTX, err == GL_NO_ERROR, errors::Internal("OpenGL error: ", getGLErrorString(err), "[", #GL_CALL, ";]")); } while (0)
+
+// Cuda kernels and CPP all together. What an absolute compilation unit.
+
+#define __CUDA_INCLUDE_COMPILER_INTERNAL_HEADERS__
+#include "../common/framework.h"
+#include "../common/glutil.cpp"
+
+#include "../common/common.h"
+#include "../common/common.cpp"
+
+#include "../common/rasterize.h"
+#include "../common/rasterize_gl.cpp"
+#include "../common/rasterize.cu"
+#include "tf_rasterize.cu"
+
+#include "../common/interpolate.cu"
+#include "tf_interpolate.cu"
+
+#include "../common/texture.cpp"
+#include "../common/texture.cu"
+#include "tf_texture.cu"
+
+#include "../common/antialias.cu"
+#include "tf_antialias.cu"
diff --git a/extensions/nvdiffrast/nvdiffrast/tensorflow/tf_antialias.cu b/extensions/nvdiffrast/nvdiffrast/tensorflow/tf_antialias.cu
new file mode 100644
index 0000000000000000000000000000000000000000..a8f1b5930a1c4145bf63f925168e01728c36a28c
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/tensorflow/tf_antialias.cu
@@ -0,0 +1,278 @@
+// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+//------------------------------------------------------------------------
+// Forward TensorFlow op.
+
+struct AntialiasFwdOp : public OpKernel
+{
+ AntialiasKernelParams m_attribs;
+
+ AntialiasFwdOp(OpKernelConstruction* ctx): OpKernel(ctx)
+ {
+ memset(&m_attribs, 0, sizeof(m_attribs));
+ OP_REQUIRES_OK(ctx, ctx->GetAttr("tri_const", &m_attribs.tri_const));
+ }
+
+ void Compute(OpKernelContext* ctx)
+ {
+ AntialiasKernelParams& p = m_attribs;
+ cudaStream_t stream = ctx->eigen_device().stream();
+
+ // Get input.
+ const Tensor& color = ctx->input(0);
+ const Tensor& rasterOut = ctx->input(1);
+ const Tensor& pos = ctx->input(2);
+ const Tensor& tri = ctx->input(3);
+
+ // Instance rendering mode?
+ p.instance_mode = pos.dims() > 2;
+
+ // Extract input dimensions.
+ if (p.instance_mode)
+ p.numVertices = (pos.dims() > 1) ? pos.dim_size(1) : 0;
+ else
+ p.numVertices = (pos.dims() > 0) ? pos.dim_size(0) : 0;
+ p.numTriangles = (tri.dims() > 0) ? tri.dim_size(0) : 0;
+ p.n = (color.dims() > 0) ? color.dim_size(0) : 0;
+ p.height = (color.dims() > 1) ? color.dim_size(1) : 0;
+ p.width = (color.dims() > 2) ? color.dim_size(2) : 0;
+ p.channels = (color.dims() > 3) ? color.dim_size(3) : 0;
+
+ // Sanity checks.
+ OP_REQUIRES(ctx, color.dims() == 4 && color.dim_size(0) > 0 && color.dim_size(1) > 0 && color.dim_size(2) > 0 && color.dim_size(3) > 0, errors::InvalidArgument("color must have shape[>0, >0, >0, >0]"));
+ OP_REQUIRES(ctx, rasterOut.dims() == 4 && rasterOut.dim_size(0) > 0 && rasterOut.dim_size(1) > 0 && rasterOut.dim_size(2) > 0 && rasterOut.dim_size(3) == 4, errors::InvalidArgument("raster_out must have shape[>0, >0, >0, 4]"));
+ OP_REQUIRES(ctx, tri.dims() == 2 && tri.dim_size(0) > 0 && tri.dim_size(1) == 3, errors::InvalidArgument("tri must have shape [>0, 3]"));
+ OP_REQUIRES(ctx, color.dim_size(1) == rasterOut.dim_size(1) && color.dim_size(2) == rasterOut.dim_size(2), errors::InvalidArgument("color and raster_out inputs must have same spatial dimensions"));
+ if (p.instance_mode)
+ {
+ OP_REQUIRES(ctx, pos.dims() == 3 && pos.dim_size(0) > 0 && pos.dim_size(1) > 0 && pos.dim_size(2) == 4, errors::InvalidArgument("pos must have shape [>0, >0, 4] or [>0, 4]"));
+ OP_REQUIRES(ctx, rasterOut.dim_size(0) == p.n && pos.dim_size(0) == p.n, errors::InvalidArgument("minibatch size mismatch between inputs color, raster_out, pos"));
+ }
+ else
+ {
+ OP_REQUIRES(ctx, pos.dims() == 2 && pos.dim_size(0) > 0 && pos.dim_size(1) == 4, errors::InvalidArgument("pos must have shape [>0, >0, 4] or [>0, 4]"));
+ OP_REQUIRES(ctx, rasterOut.dim_size(0) == p.n, errors::InvalidArgument("minibatch size mismatch between inputs color, raster_out"));
+ }
+
+ // Get input pointers.
+ p.color = color.flat().data();
+ p.rasterOut = rasterOut.flat().data();
+ p.tri = tri.flat().data();
+ p.pos = pos.flat().data();
+
+ // Misc parameters.
+ p.xh = .5f * (float)p.width;
+ p.yh = .5f * (float)p.height;
+
+ // Allocate output tensor.
+ Tensor* outputTensor = NULL;
+ TensorShape outputShape;
+ outputShape.AddDim(p.n);
+ outputShape.AddDim(p.height);
+ outputShape.AddDim(p.width);
+ outputShape.AddDim(p.channels);
+ OP_REQUIRES_OK(ctx, ctx->allocate_output(0, outputShape, &outputTensor));
+ p.output = outputTensor->flat().data();
+
+ // Allocate work buffer. One extra int4 for storing counters.
+ Tensor* workTensor = NULL;
+ TensorShape workShape;
+ workShape.AddDim(p.n * p.width * p.height * 8 + 4); // 8 int for a maximum of two work items per pixel.
+ OP_REQUIRES_OK(ctx, ctx->allocate_output(1, workShape, &workTensor));
+ p.workBuffer = (int4*)(workTensor->flat().data());
+
+ // Clear the work counters.
+ OP_CHECK_CUDA_ERROR(ctx, cudaMemsetAsync(p.workBuffer, 0, sizeof(int4), stream));
+
+ // Verify that buffers are aligned to allow float2/float4 operations.
+ OP_REQUIRES(ctx, !((uintptr_t)p.pos & 15), errors::Internal("pos input tensor not aligned to float4"));
+ OP_REQUIRES(ctx, !((uintptr_t)p.rasterOut & 7), errors::Internal("raster_out input tensor not aligned to float2"));
+ OP_REQUIRES(ctx, !((uintptr_t)p.workBuffer & 15), errors::Internal("work_buffer internal tensor not aligned to int4"));
+
+ // Kernel parameters.
+ void* args[] = {&p};
+
+ // (Re-)calculate opposite vertex hash.
+ if (!p.evHash || !p.tri_const)
+ {
+ if (p.allocTriangles < p.numTriangles)
+ {
+ p.allocTriangles = max(p.allocTriangles, 64);
+ while (p.allocTriangles < p.numTriangles)
+ p.allocTriangles <<= 1; // Must be power of two.
+
+ // (Re-)allocate memory for the hash.
+ OP_CHECK_CUDA_ERROR(ctx, cudaFree(p.evHash));
+ OP_CHECK_CUDA_ERROR(ctx, cudaMalloc(&p.evHash, p.allocTriangles * AA_HASH_ELEMENTS_PER_TRIANGLE(p.allocTriangles) * sizeof(uint4)));
+ LOG(INFO) << "Increasing topology hash size to accommodate " << p.allocTriangles << " triangles";
+ }
+
+ // Clear the hash and launch the mesh kernel to populate it.
+ OP_CHECK_CUDA_ERROR(ctx, cudaMemsetAsync(p.evHash, 0, p.allocTriangles * AA_HASH_ELEMENTS_PER_TRIANGLE(p.allocTriangles) * sizeof(uint4), stream));
+ OP_CHECK_CUDA_ERROR(ctx, cudaLaunchKernel((void*)AntialiasFwdMeshKernel, (p.numTriangles - 1) / AA_MESH_KERNEL_THREADS_PER_BLOCK + 1, AA_MESH_KERNEL_THREADS_PER_BLOCK, args, 0, stream));
+ }
+
+ // Copy input to output as a baseline.
+ OP_CHECK_CUDA_ERROR(ctx, cudaMemcpyAsync(p.output, p.color, p.n * p.height * p.width * p.channels * sizeof(float), cudaMemcpyDeviceToDevice, stream));
+
+ // Choose launch parameters for the discontinuity finder kernel and launch.
+ dim3 blockSize(AA_DISCONTINUITY_KERNEL_BLOCK_WIDTH, AA_DISCONTINUITY_KERNEL_BLOCK_HEIGHT, 1);
+ dim3 gridSize = getLaunchGridSize(blockSize, p.width, p.height, p.n);
+ OP_CHECK_CUDA_ERROR(ctx, cudaLaunchKernel((void*)AntialiasFwdDiscontinuityKernel, gridSize, blockSize, args, 0, stream));
+
+ // Determine optimum block size for the persistent analysis kernel.
+ int device = 0;
+ int numCTA = 0;
+ int numSM = 0;
+ OP_CHECK_CUDA_ERROR(ctx, cudaGetDevice(&device));
+ OP_CHECK_CUDA_ERROR(ctx, cudaOccupancyMaxActiveBlocksPerMultiprocessor(&numCTA, (void*)AntialiasFwdAnalysisKernel, AA_ANALYSIS_KERNEL_THREADS_PER_BLOCK, 0));
+ OP_CHECK_CUDA_ERROR(ctx, cudaDeviceGetAttribute(&numSM, cudaDevAttrMultiProcessorCount, device));
+
+ // Launch analysis kernel.
+ OP_CHECK_CUDA_ERROR(ctx, cudaLaunchKernel((void*)AntialiasFwdAnalysisKernel, numCTA * numSM, AA_ANALYSIS_KERNEL_THREADS_PER_BLOCK, args, 0, stream));
+ }
+};
+
+REGISTER_OP("AntialiasFwd")
+ .Input ("color: float")
+ .Input ("raster_out: float")
+ .Input ("pos: float")
+ .Input ("tri: int32")
+ .Output ("output: float")
+ .Output ("work_buffer: int32")
+ .Attr ("tri_const: int");
+
+REGISTER_KERNEL_BUILDER(Name("AntialiasFwd").Device(DEVICE_GPU), AntialiasFwdOp);
+
+//------------------------------------------------------------------------
+// Gradient TensorFlow op.
+
+struct AntialiasGradOp : public OpKernel
+{
+ AntialiasKernelParams m_attribs;
+
+ AntialiasGradOp(OpKernelConstruction* ctx): OpKernel(ctx)
+ {
+ memset(&m_attribs, 0, sizeof(m_attribs));
+ }
+
+ void Compute(OpKernelContext* ctx)
+ {
+ AntialiasKernelParams& p = m_attribs;
+ cudaStream_t stream = ctx->eigen_device().stream();
+
+ // Get input.
+ const Tensor& color = ctx->input(0);
+ const Tensor& rasterOut = ctx->input(1);
+ const Tensor& pos = ctx->input(2);
+ const Tensor& tri = ctx->input(3);
+ const Tensor& dy = ctx->input(4);
+ const Tensor& workBuffer = ctx->input(5);
+
+ // Instance rendering mode?
+ p.instance_mode = pos.dims() > 2;
+
+ // Extract input dimensions.
+ if (p.instance_mode)
+ p.numVertices = (pos.dims() > 1) ? pos.dim_size(1) : 0;
+ else
+ p.numVertices = (pos.dims() > 0) ? pos.dim_size(0) : 0;
+ p.numTriangles = (tri.dims() > 0) ? tri.dim_size(0) : 0;
+ p.n = (color.dims() > 0) ? color.dim_size(0) : 0;
+ p.height = (color.dims() > 1) ? color.dim_size(1) : 0;
+ p.width = (color.dims() > 2) ? color.dim_size(2) : 0;
+ p.channels = (color.dims() > 3) ? color.dim_size(3) : 0;
+
+ // Sanity checks.
+ OP_REQUIRES(ctx, dy.dims() == 4 && dy.dim_size(0) > 0 && dy.dim_size(1) > 0 && dy.dim_size(2) > 0 && dy.dim_size(3) > 0, errors::InvalidArgument("dy must have shape[>0, >0, >0, >0]"));
+ OP_REQUIRES(ctx, color.dims() == 4 && color.dim_size(0) > 0 && color.dim_size(1) > 0 && color.dim_size(2) > 0 && color.dim_size(3) > 0, errors::InvalidArgument("color must have shape[>0, >0, >0, >0]"));
+ OP_REQUIRES(ctx, rasterOut.dims() == 4 && rasterOut.dim_size(0) > 0 && rasterOut.dim_size(1) > 0 && rasterOut.dim_size(2) > 0 && rasterOut.dim_size(3) == 4, errors::InvalidArgument("raster_out must have shape[>0, >0, >0, 4]"));
+ OP_REQUIRES(ctx, tri.dims() == 2 && tri.dim_size(0) > 0 && tri.dim_size(1) == 3, errors::InvalidArgument("tri must have shape [>0, 3]"));
+ OP_REQUIRES(ctx, color.dim_size(1) == rasterOut.dim_size(1) && color.dim_size(2) == rasterOut.dim_size(2), errors::InvalidArgument("color and raster_out inputs must have same spatial dimensions"));
+ OP_REQUIRES(ctx, color.dim_size(1) == dy.dim_size(1) && color.dim_size(2) == dy.dim_size(2) && color.dim_size(3) == dy.dim_size(3), errors::InvalidArgument("color and dy inputs must have same dimensions"));
+ if (p.instance_mode)
+ {
+ OP_REQUIRES(ctx, pos.dims() == 3 && pos.dim_size(0) > 0 && pos.dim_size(1) > 0 && pos.dim_size(2) == 4, errors::InvalidArgument("pos must have shape [>0, >0, 4] or [>0, 4]"));
+ OP_REQUIRES(ctx, rasterOut.dim_size(0) == p.n && pos.dim_size(0) == p.n, errors::InvalidArgument("minibatch size mismatch between inputs color, raster_out, pos"));
+ OP_REQUIRES(ctx, dy.dim_size(0) == p.n && rasterOut.dim_size(0) == p.n && pos.dim_size(0) == p.n, errors::InvalidArgument("minibatch size mismatch between inputs dy, color, raster_out, pos"));
+ }
+ else
+ {
+ OP_REQUIRES(ctx, pos.dims() == 2 && pos.dim_size(0) > 0 && pos.dim_size(1) == 4, errors::InvalidArgument("pos must have shape [>0, >0, 4] or [>0, 4]"));
+ OP_REQUIRES(ctx, rasterOut.dim_size(0) == p.n, errors::InvalidArgument("minibatch size mismatch between inputs color, raster_out"));
+ OP_REQUIRES(ctx, dy.dim_size(0) == p.n && rasterOut.dim_size(0) == p.n, errors::InvalidArgument("minibatch size mismatch between inputs dy, color, raster_out"));
+ }
+
+ // Get input pointers.
+ p.dy = dy.flat().data();
+ p.color = color.flat().data();
+ p.rasterOut = rasterOut.flat().data();
+ p.tri = tri.flat().data();
+ p.pos = pos.flat().data();
+ p.workBuffer = (int4*)(workBuffer.flat().data());
+
+ // Misc parameters.
+ p.xh = .5f * (float)p.width;
+ p.yh = .5f * (float)p.height;
+
+ // Allocate color gradient output tensor.
+ Tensor* gradColor = NULL;
+ TensorShape gradColorShape;
+ gradColorShape.AddDim(p.n);
+ gradColorShape.AddDim(p.height);
+ gradColorShape.AddDim(p.width);
+ gradColorShape.AddDim(p.channels);
+ OP_REQUIRES_OK(ctx, ctx->allocate_output(0, gradColorShape, &gradColor));
+ p.gradColor = gradColor->flat().data();
+
+ // Allocate position gradient output tensor.
+ Tensor* gradPos = NULL;
+ TensorShape gradPosShape;
+ if (p.instance_mode)
+ gradPosShape.AddDim(p.n);
+ gradPosShape.AddDim(p.numVertices);
+ gradPosShape.AddDim(4);
+ OP_REQUIRES_OK(ctx, ctx->allocate_output(1, gradPosShape, &gradPos));
+ p.gradPos = gradPos->flat().data();
+
+ // Initialize all the stuff.
+ OP_CHECK_CUDA_ERROR(ctx, cudaMemsetAsync(&p.workBuffer[0].y, 0, sizeof(int), stream)); // Gradient kernel work counter.
+ OP_CHECK_CUDA_ERROR(ctx, cudaMemcpyAsync(p.gradColor, p.dy, p.n * p.height * p.width * p.channels * sizeof(float), cudaMemcpyDeviceToDevice, stream));
+ OP_CHECK_CUDA_ERROR(ctx, cudaMemsetAsync(p.gradPos, 0, (p.instance_mode ? p.n : 1) * p.numVertices * 4 * sizeof(float), stream));
+
+ // Verify that buffers are aligned to allow float2/float4 operations.
+ OP_REQUIRES(ctx, !((uintptr_t)p.pos & 15), errors::Internal("pos input tensor not aligned to float4"));
+ OP_REQUIRES(ctx, !((uintptr_t)p.workBuffer & 15), errors::Internal("work_buffer internal tensor not aligned to int4"));
+
+ // Launch the gradient kernel.
+ void* args[] = {&p};
+
+ int device = 0;
+ int numCTA = 0;
+ int numSM = 0;
+ OP_CHECK_CUDA_ERROR(ctx, cudaGetDevice(&device));
+ OP_CHECK_CUDA_ERROR(ctx, cudaOccupancyMaxActiveBlocksPerMultiprocessor(&numCTA, (void*)AntialiasGradKernel, AA_GRAD_KERNEL_THREADS_PER_BLOCK, 0));
+ OP_CHECK_CUDA_ERROR(ctx, cudaDeviceGetAttribute(&numSM, cudaDevAttrMultiProcessorCount, device));
+ OP_CHECK_CUDA_ERROR(ctx, cudaLaunchKernel((void*)AntialiasGradKernel, numCTA * numSM, AA_GRAD_KERNEL_THREADS_PER_BLOCK, args, 0, stream));
+ }
+};
+
+REGISTER_OP("AntialiasGrad")
+ .Input ("color: float")
+ .Input ("raster_out: float")
+ .Input ("pos: float")
+ .Input ("tri: int32")
+ .Input ("dy: float")
+ .Input ("work_buffer: int32")
+ .Output ("grad_color: float")
+ .Output ("grad_pos: float");
+
+REGISTER_KERNEL_BUILDER(Name("AntialiasGrad").Device(DEVICE_GPU), AntialiasGradOp);
+
+//------------------------------------------------------------------------
diff --git a/extensions/nvdiffrast/nvdiffrast/tensorflow/tf_interpolate.cu b/extensions/nvdiffrast/nvdiffrast/tensorflow/tf_interpolate.cu
new file mode 100644
index 0000000000000000000000000000000000000000..6b44165cab026937014362893751e5c26be3fac3
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/tensorflow/tf_interpolate.cu
@@ -0,0 +1,301 @@
+// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+//------------------------------------------------------------------------
+// Common op attribute parser.
+
+static __host__ void interpolateParseOpAttributes(OpKernelConstruction* ctx, InterpolateKernelParams& p, bool enableDA)
+{
+ if (enableDA)
+ {
+ OP_REQUIRES_OK(ctx, ctx->GetAttr("diff_attrs_all", &p.diff_attrs_all));
+ if (!p.diff_attrs_all)
+ {
+ std::vector diff_attrs_vec;
+ OP_REQUIRES_OK(ctx, ctx->GetAttr("diff_attrs", &diff_attrs_vec));
+ OP_REQUIRES(ctx, diff_attrs_vec.size() > 0, errors::InvalidArgument("differentiation enabled with empty diff_attrs list"));
+ OP_REQUIRES(ctx, diff_attrs_vec.size() <= IP_MAX_DIFF_ATTRS, errors::InvalidArgument("too many entries in diff_attrs list (increase IP_MAX_DIFF_ATTRS)"));
+ p.numDiffAttr = diff_attrs_vec.size();
+ memcpy(p.diffAttrs, &diff_attrs_vec[0], diff_attrs_vec.size()*sizeof(int));
+ }
+ }
+}
+
+//------------------------------------------------------------------------
+// Forward TensorFlow op.
+
+template
+struct InterpolateFwdOp : public OpKernel
+{
+ InterpolateKernelParams m_attribs;
+
+ InterpolateFwdOp(OpKernelConstruction* ctx): OpKernel(ctx)
+ {
+ memset(&m_attribs, 0, sizeof(m_attribs));
+ interpolateParseOpAttributes(ctx, m_attribs, ENABLE_DA);
+ }
+
+ void Compute(OpKernelContext* ctx)
+ {
+ InterpolateKernelParams& p = m_attribs;
+ cudaStream_t stream = ctx->eigen_device().stream();
+
+ // Get input.
+ const Tensor& attr = ctx->input(0);
+ const Tensor& rast = ctx->input(1);
+ const Tensor& tri = ctx->input(2);
+ const Tensor& rast_db = ctx->input(ENABLE_DA ? 3 : 2);
+
+ // Instance rendering mode?
+ p.instance_mode = attr.dims() > 2;
+
+ // Extract input dimensions.
+ if (p.instance_mode)
+ {
+ p.numVertices = (attr.dims() > 1) ? attr.dim_size(1) : 0;
+ p.numAttr = (attr.dims() > 2) ? attr.dim_size(2) : 0;
+ }
+ else
+ {
+ p.numVertices = (attr.dims() > 0) ? attr.dim_size(0) : 0;
+ p.numAttr = (attr.dims() > 1) ? attr.dim_size(1) : 0;
+ }
+ p.numTriangles = (tri.dims() > 0) ? tri.dim_size(0) : 0;
+ p.height = (rast.dims() > 1) ? rast.dim_size(1) : 0;
+ p.width = (rast.dims() > 2) ? rast.dim_size(2) : 0;
+ p.depth = (rast.dims() > 0) ? rast.dim_size(0) : 0;
+
+ // Sanity checks.
+ OP_REQUIRES(ctx, rast.dims() == 4 && rast.dim_size(0) > 0 && rast.dim_size(1) > 0 && rast.dim_size(2) > 0 && rast.dim_size(3) == 4, errors::InvalidArgument("rast must have shape[>0, >0, >0, 4]"));
+ OP_REQUIRES(ctx, tri.dims() == 2 && tri.dim_size(0) > 0 && tri.dim_size(1) == 3, errors::InvalidArgument("tri must have shape [>0, 3]"));
+ OP_REQUIRES(ctx, (attr.dims() == 2 || attr.dims() == 3) && attr.dim_size(0) > 0 && attr.dim_size(1) > 0 && (attr.dims() == 2 || attr.dim_size(2) > 0), errors::InvalidArgument("attr must have shape [>0, >0, >0] or [>0, >0]"));
+ if (p.instance_mode)
+ OP_REQUIRES(ctx, attr.dim_size(0) == p.depth || attr.dim_size(0) == 1, errors::InvalidArgument("minibatch size mismatch between inputs rast, attr"));
+ if (ENABLE_DA)
+ {
+ OP_REQUIRES(ctx, rast_db.dims() == 4 && rast_db.dim_size(0) > 0 && rast_db.dim_size(1) > 0 && rast_db.dim_size(2) > 0 && rast_db.dim_size(3) == 4, errors::InvalidArgument("rast_db must have shape[>0, >0, >0, 4]"));
+ OP_REQUIRES(ctx, rast_db.dim_size(1) == rast.dim_size(1) && rast_db.dim_size(2) == rast.dim_size(2), errors::InvalidArgument("spatial size mismatch between inputs rast and rast_db"));
+ OP_REQUIRES(ctx, rast_db.dim_size(0) == p.depth, errors::InvalidArgument("minibatch size mismatch between inputs rast, rast_db"));
+ }
+
+ // All diff attrs mode.
+ if (p.diff_attrs_all)
+ p.numDiffAttr = p.numAttr;
+
+ // Get input pointers.
+ p.attr = attr.flat().data();
+ p.rast = rast.flat().data();
+ p.tri = tri.flat().data();
+ p.attrBC = (p.instance_mode && attr.dim_size(0) == 1) ? 1 : 0;
+ p.rastDB = ENABLE_DA ? rast_db.flat().data() : 0;
+
+ // Allocate main output tensor.
+ Tensor* out_tensor = NULL;
+ TensorShape out_shape;
+ out_shape.AddDim(p.depth);
+ out_shape.AddDim(p.height);
+ out_shape.AddDim(p.width);
+ out_shape.AddDim(p.numAttr);
+ OP_REQUIRES_OK(ctx, ctx->allocate_output(0, out_shape, &out_tensor));
+ p.out = out_tensor->flat().data();
+
+ // Allocate pixel differential output tensor.
+ Tensor* out_da_tensor = NULL;
+ out_shape.set_dim(3, p.numDiffAttr * 2);
+ OP_REQUIRES_OK(ctx, ctx->allocate_output(1, out_shape, &out_da_tensor));
+ p.outDA = ENABLE_DA ? out_da_tensor->flat().data() : 0;
+
+ // Verify that buffers are aligned to allow float2/float4 operations.
+ OP_REQUIRES(ctx, !((uintptr_t)p.rast & 15), errors::Internal("rast input tensor not aligned to float4"));
+ OP_REQUIRES(ctx, !((uintptr_t)p.rastDB & 15), errors::Internal("rast_db input tensor not aligned to float4"));
+ if (ENABLE_DA)
+ OP_REQUIRES(ctx, !((uintptr_t)p.outDA & 7), errors::Internal("out_da output tensor not aligned to float2"));
+
+ // Choose launch parameters.
+ dim3 blockSize = getLaunchBlockSize(IP_FWD_MAX_KERNEL_BLOCK_WIDTH, IP_FWD_MAX_KERNEL_BLOCK_HEIGHT, p.width, p.height);
+ dim3 gridSize = getLaunchGridSize(blockSize, p.width, p.height, p.depth);
+
+ // Launch CUDA kernel.
+ void* args[] = {&p};
+ void* func = ENABLE_DA ? (void*)InterpolateFwdKernelDa : (void*)InterpolateFwdKernel;
+ OP_CHECK_CUDA_ERROR(ctx, cudaLaunchKernel(func, gridSize, blockSize, args, 0, stream));
+ }
+};
+
+REGISTER_OP("InterpolateFwd")
+ .Input ("attr: float")
+ .Input ("rast: float")
+ .Input ("tri: int32")
+ .Output ("out: float")
+ .Output ("out_da: float");
+
+REGISTER_OP("InterpolateFwdDa")
+ .Input ("attr: float")
+ .Input ("rast: float")
+ .Input ("tri: int32")
+ .Input ("rast_db: float")
+ .Output ("out: float")
+ .Output ("out_da: float")
+ .Attr ("diff_attrs_all: int")
+ .Attr ("diff_attrs: list(int)");
+
+REGISTER_KERNEL_BUILDER(Name("InterpolateFwd") .Device(DEVICE_GPU), InterpolateFwdOp);
+REGISTER_KERNEL_BUILDER(Name("InterpolateFwdDa").Device(DEVICE_GPU), InterpolateFwdOp);
+
+//------------------------------------------------------------------------
+// Gradient TensorFlow op.
+
+template
+struct InterpolateGradOp : public OpKernel
+{
+ InterpolateKernelParams m_attribs;
+
+ InterpolateGradOp(OpKernelConstruction* ctx): OpKernel(ctx)
+ {
+ memset(&m_attribs, 0, sizeof(m_attribs));
+ interpolateParseOpAttributes(ctx, m_attribs, ENABLE_DA);
+ }
+
+ void Compute(OpKernelContext* ctx)
+ {
+ InterpolateKernelParams& p = m_attribs;
+ cudaStream_t stream = ctx->eigen_device().stream();
+
+ // Get input.
+ const Tensor& attr = ctx->input(0);
+ const Tensor& rast = ctx->input(1);
+ const Tensor& tri = ctx->input(2);
+ const Tensor& dy = ctx->input(3);
+ const Tensor& rast_db = ctx->input(ENABLE_DA ? 4 : 3);
+ const Tensor& dda = ctx->input(ENABLE_DA ? 5 : 3);
+
+ // Instance rendering mode?
+ p.instance_mode = attr.dims() > 2;
+
+ // Extract input dimensions.
+ if (p.instance_mode)
+ {
+ p.numVertices = (attr.dims() > 1) ? attr.dim_size(1) : 0;
+ p.numAttr = (attr.dims() > 2) ? attr.dim_size(2) : 0;
+ }
+ else
+ {
+ p.numVertices = (attr.dims() > 0) ? attr.dim_size(0) : 0;
+ p.numAttr = (attr.dims() > 1) ? attr.dim_size(1) : 0;
+ }
+ p.numTriangles = (tri.dims() > 0) ? tri.dim_size(0) : 0;
+ p.depth = (rast.dims() > 0) ? rast.dim_size(0) : 0;
+ p.height = (rast.dims() > 1) ? rast.dim_size(1) : 0;
+ p.width = (rast.dims() > 2) ? rast.dim_size(2) : 0;
+ int attr_depth = p.instance_mode ? (attr.dims() > 1 ? attr.dim_size(0) : 0) : 1;
+
+ // Sanity checks.
+ OP_REQUIRES(ctx, rast.dims() == 4 && rast.dim_size(0) > 0 && rast.dim_size(1) > 0 && rast.dim_size(2) > 0 && rast.dim_size(3) == 4, errors::InvalidArgument("rast must have shape[>0, >0, >0, 4]"));
+ OP_REQUIRES(ctx, tri.dims() == 2 && tri.dim_size(0) > 0 && tri.dim_size(1) == 3, errors::InvalidArgument("tri must have shape [>0, 3]"));
+ OP_REQUIRES(ctx, (attr.dims() == 2 || attr.dims() == 3) && attr.dim_size(0) > 0 && attr.dim_size(1) > 0 && (attr.dims() == 2 || attr.dim_size(2) > 0), errors::InvalidArgument("attr must have shape [>0, >0, >0] or [>0, >0]"));
+ OP_REQUIRES(ctx, dy.dims() == 4 && dy.dim_size(0) > 0 && dy.dim_size(1) == p.height && dy.dim_size(2) == p.width && dy.dim_size(3) > 0, errors::InvalidArgument("dy must have shape [>0, height, width, >0]"));
+ OP_REQUIRES(ctx, dy.dim_size(3) == p.numAttr, errors::InvalidArgument("argument count mismatch between inputs dy, attr"));
+ OP_REQUIRES(ctx, (attr_depth == p.depth || attr_depth == 1) && dy.dim_size(0) == p.depth, errors::InvalidArgument("minibatch size mismatch between inputs rast, dy, attr"));
+ if (ENABLE_DA)
+ {
+ OP_REQUIRES(ctx, dda.dims() == 4 && dda.dim_size(0) > 0 && dda.dim_size(1) == p.height && dda.dim_size(2) == p.width, errors::InvalidArgument("dda must have shape [>0, height, width, ?]"));
+ OP_REQUIRES(ctx, dda.dim_size(0) == p.depth, errors::InvalidArgument("minibatch size mismatch between rast, dda"));
+ }
+
+ // All diff attrs mode.
+ if (p.diff_attrs_all)
+ p.numDiffAttr = p.numAttr;
+
+ // Get input pointers.
+ p.attr = attr.flat().data();
+ p.rast = rast.flat().data();
+ p.tri = tri.flat().data();
+ p.dy = dy.flat().data();
+ p.rastDB = ENABLE_DA ? rast_db.flat().data() : 0;
+ p.dda = ENABLE_DA ? dda.flat().data() : 0;
+ p.attrBC = (p.instance_mode && attr_depth < p.depth) ? 1 : 0;
+
+ // Allocate attribute gradient output tensor.
+ Tensor* grad_attr_tensor = NULL;
+ TensorShape grad_attr_shape;
+ if (p.instance_mode)
+ grad_attr_shape.AddDim(attr_depth);
+ grad_attr_shape.AddDim(p.numVertices);
+ grad_attr_shape.AddDim(p.numAttr);
+ OP_REQUIRES_OK(ctx, ctx->allocate_output(0, grad_attr_shape, &grad_attr_tensor));
+ p.gradAttr = grad_attr_tensor->flat().data();
+
+ // Allocate bary gradient output tensor.
+ Tensor* grad_rast_tensor = NULL;
+ TensorShape grad_rast_shape;
+ grad_rast_shape.AddDim(p.depth);
+ grad_rast_shape.AddDim(p.height);
+ grad_rast_shape.AddDim(p.width);
+ grad_rast_shape.AddDim(4);
+ OP_REQUIRES_OK(ctx, ctx->allocate_output(1, grad_rast_shape, &grad_rast_tensor));
+ p.gradRaster = grad_rast_tensor->flat().data();
+
+ // Allocate bary pixel diff gradient output tensor.
+ if (ENABLE_DA)
+ {
+ Tensor* grad_rast_db_tensor = NULL;
+ OP_REQUIRES_OK(ctx, ctx->allocate_output(2, grad_rast_shape, &grad_rast_db_tensor));
+ p.gradRasterDB = grad_rast_db_tensor->flat().data();
+ }
+
+ // Clear attribute gradients.
+ cudaMemsetAsync(p.gradAttr, 0, attr_depth * p.numVertices * p.numAttr * sizeof(float), stream);
+
+ // Verify that buffers are aligned to allow float2/float4 operations.
+ OP_REQUIRES(ctx, !((uintptr_t)p.rast & 15), errors::Internal("rast input tensor not aligned to float4"));
+ OP_REQUIRES(ctx, !((uintptr_t)p.gradRaster & 15), errors::Internal("grad_rast output tensor not aligned to float4"));
+ if (ENABLE_DA)
+ {
+ OP_REQUIRES(ctx, !((uintptr_t)p.dda & 7), errors::Internal("dda input tensor not aligned to float2"));
+ OP_REQUIRES(ctx, !((uintptr_t)p.rastDB & 15), errors::Internal("rast_db input tensor not aligned to float4"));
+ OP_REQUIRES(ctx, !((uintptr_t)p.gradRasterDB & 15), errors::Internal("grad_rast_db output tensor not aligned to float4"));
+ }
+
+ // Choose launch parameters.
+ dim3 blockSize = getLaunchBlockSize(IP_GRAD_MAX_KERNEL_BLOCK_WIDTH, IP_GRAD_MAX_KERNEL_BLOCK_HEIGHT, p.width, p.height);
+ dim3 gridSize = getLaunchGridSize(blockSize, p.width, p.height, p.depth);
+
+ // Launch CUDA kernel.
+ void* args[] = {&p};
+ void* func = ENABLE_DA ? (void*)InterpolateGradKernelDa : (void*)InterpolateGradKernel;
+ OP_CHECK_CUDA_ERROR(ctx, cudaLaunchKernel(func, gridSize, blockSize, args, 0, stream));
+ }
+};
+
+REGISTER_OP("InterpolateGrad")
+ .Input ("attr: float")
+ .Input ("rast: float")
+ .Input ("tri: int32")
+ .Input ("dy: float")
+ .Output ("grad_attr: float")
+ .Output ("grad_rast: float")
+ ;
+
+REGISTER_OP("InterpolateGradDa")
+ .Input ("attr: float")
+ .Input ("rast: float")
+ .Input ("tri: int32")
+ .Input ("dy: float")
+ .Input ("rast_db: float")
+ .Input ("dda: float")
+ .Output ("grad_attr: float")
+ .Output ("grad_rast: float")
+ .Output ("grad_rast_db: float")
+ .Attr ("diff_attrs_all: int")
+ .Attr ("diff_attrs: list(int)");
+ ;
+
+REGISTER_KERNEL_BUILDER(Name("InterpolateGrad") .Device(DEVICE_GPU), InterpolateGradOp);
+REGISTER_KERNEL_BUILDER(Name("InterpolateGradDa").Device(DEVICE_GPU), InterpolateGradOp);
+
+//------------------------------------------------------------------------
diff --git a/extensions/nvdiffrast/nvdiffrast/tensorflow/tf_rasterize.cu b/extensions/nvdiffrast/nvdiffrast/tensorflow/tf_rasterize.cu
new file mode 100644
index 0000000000000000000000000000000000000000..de7e1e540e1154705418a348c722698923f4fca4
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/tensorflow/tf_rasterize.cu
@@ -0,0 +1,242 @@
+// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+//------------------------------------------------------------------------
+// Forward TensorFlow op.
+
+struct RasterizeFwdOp : public OpKernel
+{
+ RasterizeGLState m_glState; // OpenGL-related persistent state.
+ int m_tri_const; // 1 if triangle array is known to be constant.
+
+ RasterizeFwdOp(OpKernelConstruction* ctx):
+ OpKernel(ctx)
+ {
+ memset(&m_glState, 0, sizeof(RasterizeGLState));
+ OP_REQUIRES_OK(ctx, ctx->GetAttr("enable_db", &m_glState.enableDB));
+ OP_REQUIRES_OK(ctx, ctx->GetAttr("tri_const", &m_tri_const));
+ }
+
+ void Compute(OpKernelContext* ctx)
+ {
+ cudaStream_t stream = ctx->eigen_device().stream();
+
+ // Check that input shapes are correct.
+ const Tensor& pos = ctx->input(0);
+ const Tensor& tri = ctx->input(1);
+ const Tensor& resolution = ctx->input(2);
+ const Tensor& ranges = ctx->input(3);
+
+ // Determine number of outputs
+ int num_outputs = m_glState.enableDB ? 2 : 1;
+
+ // Determine instance mode and check input dimensions.
+ bool instance_mode = pos.dims() > 2;
+ if (instance_mode)
+ {
+ OP_REQUIRES(ctx, pos.dims() == 3 && pos.dim_size(0) > 0 && pos.dim_size(1) > 0 && pos.dim_size(2) == 4, errors::InvalidArgument("instance mode - pos must have shape [>0, >0, 4]"));
+ OP_REQUIRES(ctx, tri.dims() == 2 && tri.dim_size(0) > 0 && tri.dim_size(1) == 3, errors::InvalidArgument("tri must have shape [>0, 3]"));
+ OP_REQUIRES(ctx, resolution.dims() == 1 && resolution.dim_size(0) == 2, errors::InvalidArgument("resolution must have shape [2]"));
+ }
+ else
+ {
+ OP_REQUIRES(ctx, pos.dims() == 2 && pos.dim_size(0) > 0 && pos.dim_size(1) == 4, errors::InvalidArgument("range mode - pos must have shape [>0, 4]"));
+ OP_REQUIRES(ctx, tri.dims() == 2 && tri.dim_size(0) > 0 && tri.dim_size(1) == 3, errors::InvalidArgument("tri must have shape [>0, 3]"));
+ OP_REQUIRES(ctx, resolution.dims() == 1 && resolution.dim_size(0) == 2, errors::InvalidArgument("resolution must have shape [2]"));
+ OP_REQUIRES(ctx, ranges.dims() == 2 && ranges.dim_size(0) > 0 && ranges.dim_size(1) == 2, errors::InvalidArgument("range mode - ranges must have shape [>0, 2]"));
+ }
+
+ // Get output shape.
+ const int32_t* res_in = resolution.flat().data(); // This is in CPU memory.
+ int height = res_in[0];
+ int width = res_in[1];
+ int depth = instance_mode ? pos.dim_size(0) : ranges.dim_size(0);
+ OP_REQUIRES(ctx, height > 0 && width > 0, errors::InvalidArgument("resolution must be [>0, >0]"));
+
+ // Get position and triangle buffer sizes in int32/float32.
+ int posCount = 4 * pos.dim_size(0) * (instance_mode ? pos.dim_size(1) : 1);
+ int triCount = 3 * tri.dim_size(0);
+
+ // Init context and GL?
+ bool initCtx = !m_glState.glFBO;
+ if (initCtx)
+ {
+ const DeviceBase::GpuDeviceInfo* g = ctx->device()->tensorflow_gpu_device_info();
+ int cudaDeviceIdx = g ? g->gpu_id : -1;
+ rasterizeInitGLContext(ctx, m_glState, cudaDeviceIdx); // In common/rasterize.cpp
+ }
+ else
+ setGLContext(m_glState.glctx); // (Re-)Activate GL context.
+
+ // Resize all buffers.
+ bool changes = false;
+ rasterizeResizeBuffers(ctx, m_glState, changes, posCount, triCount, width, height, depth); // In common/rasterize_gl.cpp
+ if (changes)
+ {
+#ifdef _WIN32
+ // Workaround for occasional blank first frame on Windows.
+ releaseGLContext();
+ setGLContext(m_glState.glctx);
+#endif
+ }
+
+ // Copy input data to GL and render.
+ const float* posPtr = pos.flat().data();
+ const int32_t* rangesPtr = instance_mode ? 0 : ranges.flat().data(); // This is in CPU memory.
+ const int32_t* triPtr = (initCtx || !m_tri_const) ? tri.flat().data() : NULL; // Copy triangles only if needed.
+ int vtxPerInstance = instance_mode ? pos.dim_size(1) : 0;
+ rasterizeRender(ctx, m_glState, stream, posPtr, posCount, vtxPerInstance, triPtr, triCount, rangesPtr, width, height, depth, -1);
+
+ // Allocate output tensors.
+ TensorShape output_shape;
+ output_shape.AddDim(depth);
+ output_shape.AddDim(height);
+ output_shape.AddDim(width);
+ output_shape.AddDim(4);
+ float* outputPtr[2];
+ for (int i=0; i < 2; i++)
+ {
+ if (i >= num_outputs)
+ output_shape.set_dim(3, 0); // Zero channels for unwanted out_db tensor.
+ Tensor* output_tensor = NULL;
+ OP_REQUIRES_OK(ctx, ctx->allocate_output(i, output_shape, &output_tensor));
+ if (i < num_outputs)
+ outputPtr[i] = output_tensor->flat().data();
+ }
+
+ // Copy rasterized results into CUDA buffers.
+ rasterizeCopyResults(ctx, m_glState, stream, outputPtr, width, height, depth);
+
+ // Done. Release GL context.
+ releaseGLContext();
+ }
+};
+
+REGISTER_OP("RasterizeFwd")
+ .Input ("pos: float")
+ .Input ("tri: int32")
+ .Input ("resolution: int32")
+ .Input ("ranges: int32")
+ .Output ("out: float")
+ .Output ("out_db: float")
+ .Attr ("enable_db: int")
+ .Attr ("tri_const: int");
+
+REGISTER_KERNEL_BUILDER(Name("RasterizeFwd").Device(DEVICE_GPU).HostMemory("resolution").HostMemory("ranges"), RasterizeFwdOp);
+
+//------------------------------------------------------------------------
+// Gradient TensorFlow op.
+
+template
+struct RasterizeGradOp : public OpKernel
+{
+ RasterizeGradParams m_attribs;
+
+ RasterizeGradOp(OpKernelConstruction* ctx): OpKernel(ctx)
+ {
+ memset(&m_attribs, 0, sizeof(m_attribs));
+ }
+
+ void Compute(OpKernelContext* ctx)
+ {
+ RasterizeGradParams& p = m_attribs;
+ cudaStream_t stream = ctx->eigen_device().stream();
+
+ // Input tensors.
+ const Tensor& pos = ctx->input(0);
+ const Tensor& tri = ctx->input(1);
+ const Tensor& out = ctx->input(2);
+ const Tensor& dy = ctx->input(3);
+ const Tensor& ddb = ctx->input(ENABLE_DB ? 4 : 3);
+
+ // Determine instance mode.
+ p.instance_mode = (pos.dims() > 2) ? 1 : 0;
+
+ // Shape is taken from the rasterizer output tensor.
+ OP_REQUIRES(ctx, out.dims() == 4, errors::InvalidArgument("out must be rank-4"));
+ p.depth = out.dim_size(0);
+ p.height = out.dim_size(1);
+ p.width = out.dim_size(2);
+ OP_REQUIRES(ctx, p.depth > 0 && p.height > 0 && p.width > 0, errors::InvalidArgument("resolution must be [>0, >0, >0]"));
+
+ // Check other shapes.
+ if (p.instance_mode)
+ OP_REQUIRES(ctx, pos.dims() == 3 && pos.dim_size(0) == p.depth && pos.dim_size(1) > 0 && pos.dim_size(2) == 4, errors::InvalidArgument("pos must have shape [depth, >0, 4]"));
+ else
+ OP_REQUIRES(ctx, pos.dims() == 2 && pos.dim_size(0) > 0 && pos.dim_size(1) == 4, errors::InvalidArgument("pos must have shape [>0, 4]"));
+ OP_REQUIRES(ctx, tri.dims() == 2 && tri.dim_size(0) > 0 && tri.dim_size(1) == 3, errors::InvalidArgument("tri must have shape [>0, 3]"));
+ OP_REQUIRES(ctx, out.dims() == 4 && out.dim_size(0) == p.depth && out.dim_size(1) == p.height && out.dim_size(2) == p.width && out.dim_size(3) == 4, errors::InvalidArgument("out must have shape [depth, height, width, 4]"));
+ OP_REQUIRES(ctx, dy.dims() == 4 && dy.dim_size(0) == p.depth && dy.dim_size(1) == p.height && dy.dim_size(2) == p.width && dy.dim_size(3) == 4, errors::InvalidArgument("dy must have shape [depth, height, width, 4]"));
+ if (ENABLE_DB)
+ OP_REQUIRES(ctx, ddb.dims() == 4 && ddb.dim_size(0) == p.depth && ddb.dim_size(1) == p.height && ddb.dim_size(2) == p.width && ddb.dim_size(3) == 4, errors::InvalidArgument("ddb must have shape [depth, height, width, 4]"));
+
+ // Populate parameters.
+ p.numTriangles = tri.dim_size(0);
+ p.numVertices = p.instance_mode ? pos.dim_size(1) : pos.dim_size(0);
+ p.pos = pos.flat().data();
+ p.tri = tri.flat().data();
+ p.out = out.flat().data();
+ p.dy = dy.flat().data();
+ p.ddb = ENABLE_DB ? ddb.flat().data() : 0;
+
+ // Set up pixel position to clip space x, y transform.
+ p.xs = 2.f / (float)p.width;
+ p.xo = 1.f / (float)p.width - 1.f;
+ p.ys = 2.f / (float)p.height;
+ p.yo = 1.f / (float)p.height - 1.f;
+
+ // Allocate output tensor for position gradients.
+ Tensor* grad_tensor = NULL;
+ TensorShape grad_shape;
+ if (p.instance_mode)
+ grad_shape.AddDim(p.depth);
+ grad_shape.AddDim(p.numVertices);
+ grad_shape.AddDim(4);
+ OP_REQUIRES_OK(ctx, ctx->allocate_output(0, grad_shape, &grad_tensor));
+ p.grad = grad_tensor->flat().data();
+
+ // Clear the output buffers.
+ size_t gradBytes = (p.instance_mode ? p.depth : 1) * p.numVertices * 4 * sizeof(float);
+ cudaMemsetAsync(p.grad, 0, gradBytes, stream);
+
+ // Verify that buffers are aligned to allow float2/float4 operations.
+ OP_REQUIRES(ctx, !((uintptr_t)p.pos & 15), errors::Internal("pos input tensor not aligned to float4"));
+ OP_REQUIRES(ctx, !((uintptr_t)p.dy & 7), errors::Internal("dy input tensor not aligned to float2"));
+ if (ENABLE_DB)
+ OP_REQUIRES(ctx, !((uintptr_t)p.ddb & 15), errors::Internal("ddb input tensor not aligned to float4"));
+
+ // Choose launch parameters.
+ dim3 blockSize = getLaunchBlockSize(RAST_GRAD_MAX_KERNEL_BLOCK_WIDTH, RAST_GRAD_MAX_KERNEL_BLOCK_HEIGHT, p.width, p.height);
+ dim3 gridSize = getLaunchGridSize(blockSize, p.width, p.height, p.depth);
+
+ // Launch CUDA kernel.
+ void* args[] = {&p};
+ void* func = ENABLE_DB ? (void*)RasterizeGradKernelDb : (void*)RasterizeGradKernel;
+ OP_CHECK_CUDA_ERROR(ctx, cudaLaunchKernel(func, gridSize, blockSize, args, 0, stream));
+ }
+};
+
+REGISTER_OP("RasterizeGrad")
+ .Input ("pos: float")
+ .Input ("tri: int32")
+ .Input ("out: float")
+ .Input ("dy: float")
+ .Output ("grad: float");
+
+REGISTER_OP("RasterizeGradDb")
+ .Input ("pos: float")
+ .Input ("tri: int32")
+ .Input ("out: float")
+ .Input ("dy: float")
+ .Input ("ddb: float")
+ .Output ("grad: float");
+
+REGISTER_KERNEL_BUILDER(Name("RasterizeGrad") .Device(DEVICE_GPU), RasterizeGradOp);
+REGISTER_KERNEL_BUILDER(Name("RasterizeGradDb").Device(DEVICE_GPU), RasterizeGradOp);
+
+//------------------------------------------------------------------------
diff --git a/extensions/nvdiffrast/nvdiffrast/tensorflow/tf_texture.cu b/extensions/nvdiffrast/nvdiffrast/tensorflow/tf_texture.cu
new file mode 100644
index 0000000000000000000000000000000000000000..a43db1e20e2edc34f535afa548b166d823fe087f
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/tensorflow/tf_texture.cu
@@ -0,0 +1,525 @@
+// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+//------------------------------------------------------------------------
+// Common op attribute parser.
+
+static __host__ void parseOpAttributes(OpKernelConstruction* ctx, TextureKernelParams& p)
+{
+ // Mip and filter modes.
+ OP_REQUIRES_OK(ctx, ctx->GetAttr("filter_mode", &p.filterMode));
+ OP_REQUIRES(ctx, p.filterMode >= 0 && p.filterMode < TEX_MODE_COUNT, errors::InvalidArgument("filter_mode unsupported"));
+ p.enableMip = (p.filterMode == TEX_MODE_LINEAR_MIPMAP_NEAREST || p.filterMode == TEX_MODE_LINEAR_MIPMAP_LINEAR);
+
+ // Mip level clamp.
+ if (p.enableMip)
+ {
+ OP_REQUIRES_OK(ctx, ctx->GetAttr("max_mip_level", &p.mipLevelLimit));
+ OP_REQUIRES(ctx, p.mipLevelLimit >= -1, errors::InvalidArgument("invalid max_mip_level"));
+ ctx->GetAttr("tex_const", &p.texConst); // Only available in forward op.
+ }
+
+ // Boundary mode.
+ OP_REQUIRES_OK(ctx, ctx->GetAttr("boundary_mode", &p.boundaryMode));
+ OP_REQUIRES(ctx, p.boundaryMode >= 0 && p.boundaryMode < TEX_BOUNDARY_MODE_COUNT, errors::InvalidArgument("boundary_mode unsupported"));
+}
+
+//------------------------------------------------------------------------
+// Forward TensorFlow op.
+
+struct TextureFwdOp : public OpKernel
+{
+ TextureKernelParams m_attribs;
+ PersistentTensor m_persistentMipTensor; // Used if texture is constant and mips are enabled.
+ bool m_persistentMipTensorInitialized;
+
+ TextureFwdOp(OpKernelConstruction* ctx): OpKernel(ctx)
+ {
+ memset(&m_attribs, 0, sizeof(m_attribs));
+ m_persistentMipTensorInitialized = false;
+ parseOpAttributes(ctx, m_attribs);
+ }
+
+ void Compute(OpKernelContext* ctx)
+ {
+ TextureKernelParams& p = m_attribs;
+ cudaStream_t stream = ctx->eigen_device().stream();
+ bool cube_mode = (p.boundaryMode == TEX_BOUNDARY_MODE_CUBE);
+
+ // Get input.
+ const Tensor& tex = ctx->input(0);
+ const Tensor& uv = ctx->input(1);
+ const Tensor& uv_da = ctx->input(p.enableMip ? 2 : 1);
+
+ // Extract input dimensions.
+ p.n = (uv.dims() > 0) ? uv.dim_size(0) : 0;
+ p.imgHeight = (uv.dims() > 1) ? uv.dim_size(1) : 0;
+ p.imgWidth = (uv.dims() > 2) ? uv.dim_size(2) : 0;
+ p.texDepth = (tex.dims() > 0) ? tex.dim_size(0) : 0;
+ if (!cube_mode)
+ {
+ p.texHeight = (tex.dims() > 1) ? tex.dim_size(1) : 0;
+ p.texWidth = (tex.dims() > 2) ? tex.dim_size(2) : 0;
+ p.channels = (tex.dims() > 3) ? tex.dim_size(3) : 0;
+ }
+ else
+ {
+ p.texHeight = (tex.dims() > 2) ? tex.dim_size(2) : 0;
+ p.texWidth = (tex.dims() > 3) ? tex.dim_size(3) : 0;
+ p.channels = (tex.dims() > 4) ? tex.dim_size(4) : 0;
+ }
+
+ // Sanity checks.
+ if (!cube_mode)
+ {
+ OP_REQUIRES(ctx, tex.dims() == 4 && tex.dim_size(0) > 0 && tex.dim_size(1) > 0 && tex.dim_size(2) > 0 && tex.dim_size(3) > 0, errors::InvalidArgument("tex must have shape[>0, >0, >0, >0]"));
+ OP_REQUIRES(ctx, uv.dims() == 4 && uv.dim_size(0) > 0 && uv.dim_size(1) > 0 && uv.dim_size(2) > 0 && uv.dim_size(3) == 2, errors::InvalidArgument("uv must have shape [>0, >0, >0, 2]"));
+ }
+ else
+ {
+ OP_REQUIRES(ctx, tex.dims() == 5 && tex.dim_size(0) > 0 && tex.dim_size(1) == 6 && tex.dim_size(2) > 0 && tex.dim_size(3) > 0 && tex.dim_size(4) > 0, errors::InvalidArgument("tex must have shape[>0, 6, >0, >0, >0] in cube map mode"));
+ OP_REQUIRES(ctx, uv.dims() == 4 && uv.dim_size(0) > 0 && uv.dim_size(1) > 0 && uv.dim_size(2) > 0 && uv.dim_size(3) == 3, errors::InvalidArgument("uv must have shape [>0, >0, >0, 3] in cube map mode"));
+ OP_REQUIRES(ctx, tex.dim_size(2) == tex.dim_size(3), errors::InvalidArgument("texture shape must be square in cube map mode"));
+ }
+ OP_REQUIRES(ctx, tex.dim_size(0) == 1 || tex.dim_size(0) == p.n, errors::InvalidArgument("minibatch size mismatch between inputs tex, uv"));
+ OP_REQUIRES(ctx, p.texWidth <= (1 << TEX_MAX_MIP_LEVEL) && p.texHeight <= (1 << TEX_MAX_MIP_LEVEL), errors::InvalidArgument("texture size too large"));
+ if (p.enableMip)
+ {
+ if (!cube_mode)
+ OP_REQUIRES(ctx, uv_da.dims() == 4 && uv_da.dim_size(0) == p.n && uv_da.dim_size(1) == p.imgHeight && uv_da.dim_size(2) == p.imgWidth && uv_da.dim_size(3) == 4, errors::InvalidArgument("uv_da must have shape [minibatch_size, height, width, 4]"));
+ else
+ OP_REQUIRES(ctx, uv_da.dims() == 4 && uv_da.dim_size(0) == p.n && uv_da.dim_size(1) == p.imgHeight && uv_da.dim_size(2) == p.imgWidth && uv_da.dim_size(3) == 6, errors::InvalidArgument("uv_da must have shape [minibatch_size, height, width, 6] in cube map mode"));
+ }
+
+ // Get input pointers.
+ p.tex[0] = tex.flat().data();
+ p.uv = uv.flat().data();
+ p.uvDA = p.enableMip ? uv_da.flat().data() : 0;
+
+ // Allocate output tensor.
+ Tensor* out_tensor = NULL;
+ TensorShape out_shape;
+ out_shape.AddDim(p.n);
+ out_shape.AddDim(p.imgHeight);
+ out_shape.AddDim(p.imgWidth);
+ out_shape.AddDim(p.channels);
+ OP_REQUIRES_OK(ctx, ctx->allocate_output(0, out_shape, &out_tensor));
+ p.out = out_tensor->flat().data();
+
+ // Choose kernel variants based on channel count.
+ void* args[] = {&p};
+ int channel_div_idx = 0;
+ if (!(p.channels & 3))
+ channel_div_idx = 2; // Channel count divisible by 4.
+ else if (!(p.channels & 1))
+ channel_div_idx = 1; // Channel count divisible by 2.
+
+ // Mip-related setup.
+ float* pmip = 0;
+ if (p.enableMip)
+ {
+ // Generate mip offsets.
+ int mipOffsets[TEX_MAX_MIP_LEVEL];
+ int mipTotal = calculateMipInfo(ctx, p, mipOffsets);
+
+ // Mip output tensor.
+ Tensor* mip_tensor = NULL;
+ TensorShape mip_shape;
+ mip_shape.AddDim(mipTotal);
+
+ // If texture is constant, calculate mip stack only once.
+ bool computeMip = true;
+ if (p.texConst)
+ {
+ // First execution?
+ if (!m_persistentMipTensorInitialized)
+ {
+ // Allocate a persistent mip tensor.
+ OP_REQUIRES_OK(ctx, ctx->allocate_persistent(DT_FLOAT, mip_shape, &m_persistentMipTensor, &mip_tensor));
+ m_persistentMipTensorInitialized = true;
+ }
+ else
+ {
+ // Reuse the persistent tensor, do not recompute mip levels.
+ mip_tensor = m_persistentMipTensor.AccessTensor(ctx);
+ computeMip = false;
+ }
+
+ // Set as output tensor as well.
+ ctx->set_output(1, *mip_tensor);
+ }
+ else
+ {
+ // Allocate an output tensor as usual.
+ OP_REQUIRES_OK(ctx, ctx->allocate_output(1, mip_shape, &mip_tensor));
+ }
+
+ pmip = mip_tensor->flat().data(); // Pointer to data.
+ for (int i=1; i <= p.mipLevelMax; i++)
+ p.tex[i] = pmip + mipOffsets[i]; // Pointers to mip levels.
+
+ // Build mip levels if needed.
+ if (computeMip)
+ {
+ for (int i=1; i <= p.mipLevelMax; i++)
+ {
+ int2 ms = mipLevelSize(p, i);
+ int3 sz = make_int3(ms.x, ms.y, p.texDepth);
+ dim3 blockSize = getLaunchBlockSize(TEX_FWD_MAX_MIP_KERNEL_BLOCK_WIDTH, TEX_FWD_MAX_MIP_KERNEL_BLOCK_HEIGHT, sz.x, sz.y);
+ dim3 gridSize = getLaunchGridSize(blockSize, sz.x, sz.y, sz.z * (cube_mode ? 6 : 1));
+ p.mipLevelOut = i;
+
+ void* build_func_tbl[3] = { (void*)MipBuildKernel1, (void*)MipBuildKernel2, (void*)MipBuildKernel4 };
+ OP_CHECK_CUDA_ERROR(ctx, cudaLaunchKernel(build_func_tbl[channel_div_idx], gridSize, blockSize, args, 0, stream));
+ }
+ }
+ }
+
+ // Verify that buffers are aligned to allow float2/float4 operations. Unused pointers are zero so always aligned.
+ if (!cube_mode)
+ OP_REQUIRES(ctx, !((uintptr_t)p.uv & 7), errors::Internal("uv input tensor not aligned to float2"));
+ if ((p.channels & 3) == 0)
+ {
+ OP_REQUIRES(ctx, !((uintptr_t)p.tex[0] & 15), errors::Internal("tex input tensor not aligned to float4"));
+ OP_REQUIRES(ctx, !((uintptr_t)p.out & 15), errors::Internal("out output tensor not aligned to float4"));
+ OP_REQUIRES(ctx, !((uintptr_t)pmip & 15), errors::Internal("mip output tensor not aligned to float4"));
+ }
+ if ((p.channels & 1) == 0)
+ {
+ OP_REQUIRES(ctx, !((uintptr_t)p.tex[0] & 7), errors::Internal("tex input tensor not aligned to float2"));
+ OP_REQUIRES(ctx, !((uintptr_t)p.out & 7), errors::Internal("out output tensor not aligned to float2"));
+ OP_REQUIRES(ctx, !((uintptr_t)pmip & 7), errors::Internal("mip output tensor not aligned to float2"));
+ }
+ if (!cube_mode)
+ OP_REQUIRES(ctx, !((uintptr_t)p.uvDA & 15), errors::Internal("uv_da input tensor not aligned to float4"));
+ else
+ OP_REQUIRES(ctx, !((uintptr_t)p.uvDA & 7), errors::Internal("uv_da input tensor not aligned to float2"));
+
+ // Choose launch parameters for texture lookup kernel.
+ dim3 blockSize = getLaunchBlockSize(TEX_FWD_MAX_KERNEL_BLOCK_WIDTH, TEX_FWD_MAX_KERNEL_BLOCK_HEIGHT, p.imgWidth, p.imgHeight);
+ dim3 gridSize = getLaunchGridSize(blockSize, p.imgWidth, p.imgHeight, p.n);
+
+ // Choose kernel based on filter mode, cube mode, and datatype.
+ void* func_tbl[TEX_MODE_COUNT * 3 * 2] = {
+ (void*)TextureFwdKernelNearest1,
+ (void*)TextureFwdKernelNearest2,
+ (void*)TextureFwdKernelNearest4,
+ (void*)TextureFwdKernelLinear1,
+ (void*)TextureFwdKernelLinear2,
+ (void*)TextureFwdKernelLinear4,
+ (void*)TextureFwdKernelLinearMipmapNearest1,
+ (void*)TextureFwdKernelLinearMipmapNearest2,
+ (void*)TextureFwdKernelLinearMipmapNearest4,
+ (void*)TextureFwdKernelLinearMipmapLinear1,
+ (void*)TextureFwdKernelLinearMipmapLinear2,
+ (void*)TextureFwdKernelLinearMipmapLinear4,
+ (void*)TextureFwdKernelCubeNearest1,
+ (void*)TextureFwdKernelCubeNearest2,
+ (void*)TextureFwdKernelCubeNearest4,
+ (void*)TextureFwdKernelCubeLinear1,
+ (void*)TextureFwdKernelCubeLinear2,
+ (void*)TextureFwdKernelCubeLinear4,
+ (void*)TextureFwdKernelCubeLinearMipmapNearest1,
+ (void*)TextureFwdKernelCubeLinearMipmapNearest2,
+ (void*)TextureFwdKernelCubeLinearMipmapNearest4,
+ (void*)TextureFwdKernelCubeLinearMipmapLinear1,
+ (void*)TextureFwdKernelCubeLinearMipmapLinear2,
+ (void*)TextureFwdKernelCubeLinearMipmapLinear4,
+ };
+
+ // Function index.
+ int func_idx = p.filterMode;
+ if (cube_mode)
+ func_idx += TEX_MODE_COUNT;
+ func_idx = func_idx * 3 + channel_div_idx;
+
+ // Launch kernel.
+ OP_CHECK_CUDA_ERROR(ctx, cudaLaunchKernel(func_tbl[func_idx], gridSize, blockSize, args, 0, stream));
+ }
+};
+
+REGISTER_OP("TextureFwd")
+ .Input ("tex: float")
+ .Input ("uv: float")
+ .Output ("out: float")
+ .Attr ("filter_mode: int")
+ .Attr ("boundary_mode: int");
+
+REGISTER_OP("TextureFwdMip")
+ .Input ("tex: float")
+ .Input ("uv: float")
+ .Input ("uv_da: float")
+ .Output ("out: float")
+ .Output ("mip: float")
+ .Attr ("filter_mode: int")
+ .Attr ("boundary_mode: int")
+ .Attr ("tex_const: int")
+ .Attr ("max_mip_level: int");
+
+REGISTER_KERNEL_BUILDER(Name("TextureFwd") .Device(DEVICE_GPU), TextureFwdOp);
+REGISTER_KERNEL_BUILDER(Name("TextureFwdMip").Device(DEVICE_GPU), TextureFwdOp);
+
+//------------------------------------------------------------------------
+// Gradient TensorFlow op.
+
+struct TextureGradOp : public OpKernel
+{
+ TextureKernelParams m_attribs;
+
+ TextureGradOp(OpKernelConstruction* ctx): OpKernel(ctx)
+ {
+ memset(&m_attribs, 0, sizeof(m_attribs));
+ parseOpAttributes(ctx, m_attribs);
+ }
+
+ void Compute(OpKernelContext* ctx)
+ {
+ TextureKernelParams& p = m_attribs;
+ cudaStream_t stream = ctx->eigen_device().stream();
+ bool cube_mode = (p.boundaryMode == TEX_BOUNDARY_MODE_CUBE);
+
+ // Get input.
+ const Tensor& tex = ctx->input(0);
+ const Tensor& uv = ctx->input(1);
+ const Tensor& dy = ctx->input(2);
+ const Tensor& uv_da = ctx->input(p.enableMip ? 3 : 2);
+ const Tensor& mip = ctx->input(p.enableMip ? 4 : 2);
+
+ // Extract input dimensions.
+ p.n = (uv.dims() > 0) ? uv.dim_size(0) : 0;
+ p.imgHeight = (uv.dims() > 1) ? uv.dim_size(1) : 0;
+ p.imgWidth = (uv.dims() > 2) ? uv.dim_size(2) : 0;
+ p.texDepth = (tex.dims() > 0) ? tex.dim_size(0) : 0;
+ if (!cube_mode)
+ {
+ p.texHeight = (tex.dims() > 1) ? tex.dim_size(1) : 0;
+ p.texWidth = (tex.dims() > 2) ? tex.dim_size(2) : 0;
+ p.channels = (tex.dims() > 3) ? tex.dim_size(3) : 0;
+ }
+ else
+ {
+ p.texHeight = (tex.dims() > 2) ? tex.dim_size(2) : 0;
+ p.texWidth = (tex.dims() > 3) ? tex.dim_size(3) : 0;
+ p.channels = (tex.dims() > 4) ? tex.dim_size(4) : 0;
+ }
+
+ // Sanity checks.
+ if (!cube_mode)
+ {
+ OP_REQUIRES(ctx, tex.dims() == 4 && tex.dim_size(0) > 0 && tex.dim_size(1) > 0 && tex.dim_size(2) > 0 && tex.dim_size(3) > 0, errors::InvalidArgument("tex must have shape[>0, >0, >0, >0]"));
+ OP_REQUIRES(ctx, uv.dims() == 4 && uv.dim_size(0) > 0 && uv.dim_size(1) > 0 && uv.dim_size(2) > 0 && uv.dim_size(3) == 2, errors::InvalidArgument("uv must have shape [>0, >0, >0, 2]"));
+ }
+ else
+ {
+ OP_REQUIRES(ctx, tex.dims() == 5 && tex.dim_size(0) > 0 && tex.dim_size(1) == 6 && tex.dim_size(2) > 0 && tex.dim_size(3) > 0 && tex.dim_size(4) > 0, errors::InvalidArgument("tex must have shape[>0, 6, >0, >0, >0] in cube map mode"));
+ OP_REQUIRES(ctx, uv.dims() == 4 && uv.dim_size(0) > 0 && uv.dim_size(1) > 0 && uv.dim_size(2) > 0 && uv.dim_size(3) == 3, errors::InvalidArgument("uv must have shape [>0, >0, >0, 3] in cube map mode"));
+ OP_REQUIRES(ctx, tex.dim_size(2) == tex.dim_size(3), errors::InvalidArgument("texture shape must be square in cube map mode"));
+ }
+ OP_REQUIRES(ctx, tex.dim_size(0) == 1 || tex.dim_size(0) == p.n, errors::InvalidArgument("minibatch size mismatch between inputs tex, uv"));
+ OP_REQUIRES(ctx, dy.dims() == 4 && dy.dim_size(0) == p.n && dy.dim_size(1) == p.imgHeight && dy.dim_size(2) == p.imgWidth && dy.dim_size(3) == p.channels, errors::InvalidArgument("dy must have shape [minibatch_size, height, width, channels]"));
+ if (p.enableMip)
+ {
+ if (!cube_mode)
+ OP_REQUIRES(ctx, uv_da.dims() == 4 && uv_da.dim_size(0) == p.n && uv_da.dim_size(1) == p.imgHeight && uv_da.dim_size(2) == p.imgWidth && uv_da.dim_size(3) == 4, errors::InvalidArgument("uv_da must have shape [minibatch_size, height, width, 4]"));
+ else
+ OP_REQUIRES(ctx, uv_da.dims() == 4 && uv_da.dim_size(0) == p.n && uv_da.dim_size(1) == p.imgHeight && uv_da.dim_size(2) == p.imgWidth && uv_da.dim_size(3) == 6, errors::InvalidArgument("uv_da must have shape [minibatch_size, height, width, 6] in cube map mode"));
+ }
+
+ // Get input pointers.
+ p.tex[0] = tex.flat().data();
+ p.uv = uv.flat().data();
+ p.dy = dy.flat().data();
+ p.uvDA = p.enableMip ? uv_da.flat().data() : 0;
+ float* pmip = p.enableMip ? (float*)mip.flat().data() : 0;
+
+ // Allocate output tensor for tex gradient.
+ Tensor* grad_tex_tensor = NULL;
+ TensorShape grad_tex_shape;
+ grad_tex_shape.AddDim(p.texDepth);
+ if (cube_mode)
+ grad_tex_shape.AddDim(6);
+ grad_tex_shape.AddDim(p.texHeight);
+ grad_tex_shape.AddDim(p.texWidth);
+ grad_tex_shape.AddDim(p.channels);
+ OP_REQUIRES_OK(ctx, ctx->allocate_output(0, grad_tex_shape, &grad_tex_tensor));
+ p.gradTex[0] = grad_tex_tensor->flat().data();
+
+ // Allocate output tensor for uv gradient.
+ if (p.filterMode != TEX_MODE_NEAREST)
+ {
+ TensorShape grad_uv_shape;
+ Tensor* grad_uv_tensor = NULL;
+ grad_uv_shape.AddDim(p.n);
+ grad_uv_shape.AddDim(p.imgHeight);
+ grad_uv_shape.AddDim(p.imgWidth);
+ grad_uv_shape.AddDim(uv.dim_size(3));
+ OP_REQUIRES_OK(ctx, ctx->allocate_output(1, grad_uv_shape, &grad_uv_tensor));
+ p.gradUV = grad_uv_tensor->flat().data();
+
+ // Allocate output tensor for uv_da gradient.
+ if (p.filterMode == TEX_MODE_LINEAR_MIPMAP_LINEAR)
+ {
+ Tensor* grad_uv_da_tensor = NULL;
+ grad_uv_shape.set_dim(3, uv_da.dim_size(3));
+ OP_REQUIRES_OK(ctx, ctx->allocate_output(2, grad_uv_shape, &grad_uv_da_tensor));
+ p.gradUVDA = grad_uv_da_tensor->flat().data();
+ }
+ }
+
+ // Choose kernel variants based on channel count.
+ int channel_div_idx = 0;
+ if (!(p.channels & 3))
+ channel_div_idx = 2; // Channel count divisible by 4.
+ else if (!(p.channels & 1))
+ channel_div_idx = 1; // Channel count divisible by 2.
+
+ // Mip-related setup.
+ Tensor grad_mip_tensor;
+ float* pgradMip = 0;
+ if (p.enableMip)
+ {
+ // Generate mip offsets.
+ int mipOffsets[TEX_MAX_MIP_LEVEL];
+ int mipTotal = calculateMipInfo(ctx, p, mipOffsets);
+
+ // Get space for temporary mip gradients.
+ TensorShape grad_mip_shape;
+ grad_mip_shape.AddDim(mipTotal);
+ ctx->allocate_temp(DT_FLOAT, grad_mip_shape, &grad_mip_tensor);
+ pgradMip = grad_mip_tensor.flat().data();
+ for (int i=1; i <= p.mipLevelMax; i++)
+ {
+ p.tex[i] = pmip + mipOffsets[i]; // Pointers to mip levels.
+ p.gradTex[i] = pgradMip + mipOffsets[i]; // Pointers to mip gradients.
+ }
+
+ // Clear mip gradients.
+ OP_CHECK_CUDA_ERROR(ctx, cudaMemsetAsync(pgradMip, 0, mipTotal * sizeof(float), stream));
+ }
+
+ // Initialize texture gradients to zero.
+ int texBytes = p.texHeight * p.texWidth * p.texDepth * p.channels * sizeof(float);
+ if (cube_mode)
+ texBytes *= 6;
+ OP_CHECK_CUDA_ERROR(ctx, cudaMemsetAsync(p.gradTex[0], 0, texBytes, stream));
+
+ // Verify that buffers are aligned to allow float2/float4 operations. Unused pointers are zero so always aligned.
+ if (!cube_mode)
+ {
+ OP_REQUIRES(ctx, !((uintptr_t)p.uv & 7), errors::Internal("uv input tensor not aligned to float2"));
+ OP_REQUIRES(ctx, !((uintptr_t)p.gradUV & 7), errors::Internal("grad_uv output tensor not aligned to float2"));
+ OP_REQUIRES(ctx, !((uintptr_t)p.uvDA & 15), errors::Internal("uv_da input tensor not aligned to float4"));
+ OP_REQUIRES(ctx, !((uintptr_t)p.gradUVDA & 15), errors::Internal("grad_uv_da output tensor not aligned to float4"));
+ }
+ else
+ {
+ OP_REQUIRES(ctx, !((uintptr_t)p.uvDA & 7), errors::Internal("uv_da input tensor not aligned to float2"));
+ OP_REQUIRES(ctx, !((uintptr_t)p.gradUVDA & 7), errors::Internal("grad_uv_da output tensor not aligned to float2"));
+ }
+ if ((p.channels & 3) == 0)
+ {
+ OP_REQUIRES(ctx, !((uintptr_t)p.tex[0] & 15), errors::Internal("tex input tensor not aligned to float4"));
+ OP_REQUIRES(ctx, !((uintptr_t)p.gradTex[0] & 15), errors::Internal("grad_tex output tensor not aligned to float4"));
+ OP_REQUIRES(ctx, !((uintptr_t)p.dy & 15), errors::Internal("dy input tensor not aligned to float4"));
+ OP_REQUIRES(ctx, !((uintptr_t)pmip & 15), errors::Internal("mip input tensor not aligned to float4"));
+ OP_REQUIRES(ctx, !((uintptr_t)pgradMip & 15), errors::Internal("internal mip gradient tensor not aligned to float4"));
+ }
+ if ((p.channels & 1) == 0)
+ {
+ OP_REQUIRES(ctx, !((uintptr_t)p.tex[0] & 7), errors::Internal("tex input tensor not aligned to float2"));
+ OP_REQUIRES(ctx, !((uintptr_t)p.gradTex[0] & 7), errors::Internal("grad_tex output tensor not aligned to float2"));
+ OP_REQUIRES(ctx, !((uintptr_t)p.dy & 7), errors::Internal("dy output tensor not aligned to float2"));
+ OP_REQUIRES(ctx, !((uintptr_t)pmip & 7), errors::Internal("mip input tensor not aligned to float2"));
+ OP_REQUIRES(ctx, !((uintptr_t)pgradMip & 7), errors::Internal("internal mip gradient tensor not aligned to float2"));
+ }
+
+ // Choose launch parameters for main gradient kernel.
+ void* args[] = {&p};
+ dim3 blockSize = getLaunchBlockSize(TEX_GRAD_MAX_KERNEL_BLOCK_WIDTH, TEX_GRAD_MAX_KERNEL_BLOCK_HEIGHT, p.imgWidth, p.imgHeight);
+ dim3 gridSize = getLaunchGridSize(blockSize, p.imgWidth, p.imgHeight, p.n);
+
+ void* func_tbl[TEX_MODE_COUNT * 2] = {
+ (void*)TextureGradKernelNearest,
+ (void*)TextureGradKernelLinear,
+ (void*)TextureGradKernelLinearMipmapNearest,
+ (void*)TextureGradKernelLinearMipmapLinear,
+ (void*)TextureGradKernelCubeNearest,
+ (void*)TextureGradKernelCubeLinear,
+ (void*)TextureGradKernelCubeLinearMipmapNearest,
+ (void*)TextureGradKernelCubeLinearMipmapLinear,
+ };
+
+ // Function index.
+ int func_idx = p.filterMode;
+ if (cube_mode)
+ func_idx += TEX_MODE_COUNT;
+
+ // Launch main gradient kernel.
+ OP_CHECK_CUDA_ERROR(ctx, cudaLaunchKernel(func_tbl[func_idx], gridSize, blockSize, args, 0, stream));
+
+ // Launch kernel to pull gradients from mip levels.
+ if (p.enableMip)
+ {
+ dim3 blockSize = getLaunchBlockSize(TEX_GRAD_MAX_MIP_KERNEL_BLOCK_WIDTH, TEX_GRAD_MAX_MIP_KERNEL_BLOCK_HEIGHT, p.texWidth, p.texHeight);
+ dim3 gridSize = getLaunchGridSize(blockSize, p.texWidth, p.texHeight, p.texDepth * (cube_mode ? 6 : 1));
+ int sharedBytes = blockSize.x * blockSize.y * p.channels * sizeof(float);
+
+ void* mip_grad_func_tbl[3] = { (void*)MipGradKernel1, (void*)MipGradKernel2, (void*)MipGradKernel4 };
+ OP_CHECK_CUDA_ERROR(ctx, cudaLaunchKernel(mip_grad_func_tbl[channel_div_idx], gridSize, blockSize, args, sharedBytes, stream));
+ }
+ }
+};
+
+REGISTER_OP("TextureGradNearest")
+ .Input ("tex: float")
+ .Input ("uv: float")
+ .Input ("dy: float")
+ .Output ("grad_tex: float")
+ .Attr ("filter_mode: int")
+ .Attr ("boundary_mode: int");
+
+REGISTER_OP("TextureGradLinear")
+ .Input ("tex: float")
+ .Input ("uv: float")
+ .Input ("dy: float")
+ .Output ("grad_tex: float")
+ .Output ("grad_uv: float")
+ .Attr ("filter_mode: int")
+ .Attr ("boundary_mode: int");
+
+REGISTER_OP("TextureGradLinearMipmapNearest")
+ .Input ("tex: float")
+ .Input ("uv: float")
+ .Input ("dy: float")
+ .Input ("uv_da: float")
+ .Input ("mip: float")
+ .Output ("grad_tex: float")
+ .Output ("grad_uv: float")
+ .Attr ("filter_mode: int")
+ .Attr ("boundary_mode: int")
+ .Attr ("max_mip_level: int");
+
+REGISTER_OP("TextureGradLinearMipmapLinear")
+ .Input ("tex: float")
+ .Input ("uv: float")
+ .Input ("dy: float")
+ .Input ("uv_da: float")
+ .Input ("mip: float")
+ .Output ("grad_tex: float")
+ .Output ("grad_uv: float")
+ .Output ("grad_uv_da: float")
+ .Attr ("filter_mode: int")
+ .Attr ("boundary_mode: int")
+ .Attr ("max_mip_level: int");
+
+REGISTER_KERNEL_BUILDER(Name("TextureGradNearest") .Device(DEVICE_GPU), TextureGradOp);
+REGISTER_KERNEL_BUILDER(Name("TextureGradLinear") .Device(DEVICE_GPU), TextureGradOp);
+REGISTER_KERNEL_BUILDER(Name("TextureGradLinearMipmapNearest").Device(DEVICE_GPU), TextureGradOp);
+REGISTER_KERNEL_BUILDER(Name("TextureGradLinearMipmapLinear") .Device(DEVICE_GPU), TextureGradOp);
+
+//------------------------------------------------------------------------
diff --git a/extensions/nvdiffrast/nvdiffrast/torch/__init__.py b/extensions/nvdiffrast/nvdiffrast/torch/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..c12ddfffee1da1f71a5cb34bbb79455f180263c5
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/torch/__init__.py
@@ -0,0 +1,10 @@
+# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
+#
+# NVIDIA CORPORATION and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+from .ops import RasterizeCudaContext, RasterizeGLContext, get_log_level, set_log_level, rasterize, DepthPeeler, interpolate, texture, texture_construct_mip, antialias, antialias_construct_topology_hash
+__all__ = ["RasterizeCudaContext", "RasterizeGLContext", "get_log_level", "set_log_level", "rasterize", "DepthPeeler", "interpolate", "texture", "texture_construct_mip", "antialias", "antialias_construct_topology_hash"]
diff --git a/extensions/nvdiffrast/nvdiffrast/torch/ops.py b/extensions/nvdiffrast/nvdiffrast/torch/ops.py
new file mode 100644
index 0000000000000000000000000000000000000000..5514bbb5254e5cd99f7ae3870069c7e4e81ec2dd
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/torch/ops.py
@@ -0,0 +1,734 @@
+# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
+#
+# NVIDIA CORPORATION and its licensors retain all intellectual property
+# and proprietary rights in and to this software, related documentation
+# and any modifications thereto. Any use, reproduction, disclosure or
+# distribution of this software and related documentation without an express
+# license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+import importlib
+import logging
+import numpy as np
+import os
+import torch
+import torch.utils.cpp_extension
+from . import _C
+
+#----------------------------------------------------------------------------
+# C++/Cuda plugin compiler/loader.
+
+_cached_plugin = {}
+def _get_plugin(gl=False):
+ assert isinstance(gl, bool)
+
+ # Modified with precompiled torch CUDA extension
+ if not gl:
+ return _C
+
+ # Return cached plugin if already loaded.
+ if _cached_plugin.get(gl, None) is not None:
+ return _cached_plugin[gl]
+
+ # Make sure we can find the necessary compiler and libary binaries.
+ if os.name == 'nt':
+ lib_dir = os.path.dirname(__file__) + r"\..\lib"
+ def find_cl_path():
+ import glob
+ def get_sort_key(x):
+ # Primary criterion is VS version, secondary is edition, third is internal MSVC version.
+ x = x.split('\\')[3:]
+ x[1] = {'BuildTools': '~0', 'Community': '~1', 'Pro': '~2', 'Professional': '~3', 'Enterprise': '~4'}.get(x[1], x[1])
+ return x
+ vs_relative_path = r"\Microsoft Visual Studio\*\*\VC\Tools\MSVC\*\bin\Hostx64\x64"
+ paths = glob.glob(r"C:\Program Files" + vs_relative_path)
+ paths += glob.glob(r"C:\Program Files (x86)" + vs_relative_path)
+ if paths:
+ return sorted(paths, key=get_sort_key)[-1]
+
+ # If cl.exe is not on path, try to find it.
+ if os.system("where cl.exe >nul 2>nul") != 0:
+ cl_path = find_cl_path()
+ if cl_path is None:
+ raise RuntimeError("Could not locate a supported Microsoft Visual C++ installation")
+ os.environ['PATH'] += ';' + cl_path
+
+ # Compiler options.
+ common_opts = ['-DNVDR_TORCH']
+ cc_opts = []
+ if os.name == 'nt':
+ cc_opts += ['/wd4067', '/wd4624'] # Disable warnings in torch headers.
+
+ # Linker options for the GL-interfacing plugin.
+ ldflags = []
+ if gl:
+ if os.name == 'posix':
+ ldflags = ['-lGL', '-lEGL']
+ elif os.name == 'nt':
+ libs = ['gdi32', 'opengl32', 'user32', 'setgpu']
+ ldflags = ['/LIBPATH:' + lib_dir] + ['/DEFAULTLIB:' + x for x in libs]
+
+ # List of source files.
+ if gl:
+ source_files = [
+ '../common/common.cpp',
+ '../common/glutil.cpp',
+ '../common/rasterize_gl.cpp',
+ 'torch_bindings_gl.cpp',
+ 'torch_rasterize_gl.cpp',
+ ]
+ else:
+ source_files = [
+ '../common/cudaraster/impl/Buffer.cpp',
+ '../common/cudaraster/impl/CudaRaster.cpp',
+ '../common/cudaraster/impl/RasterImpl.cu',
+ '../common/cudaraster/impl/RasterImpl.cpp',
+ '../common/common.cpp',
+ '../common/rasterize.cu',
+ '../common/interpolate.cu',
+ '../common/texture.cu',
+ '../common/texture.cpp',
+ '../common/antialias.cu',
+ 'torch_bindings.cpp',
+ 'torch_rasterize.cpp',
+ 'torch_interpolate.cpp',
+ 'torch_texture.cpp',
+ 'torch_antialias.cpp',
+ ]
+
+ # Some containers set this to contain old architectures that won't compile. We only need the one installed in the machine.
+ os.environ['TORCH_CUDA_ARCH_LIST'] = ''
+
+ # On Linux, show a warning if GLEW is being forcibly loaded when compiling the GL plugin.
+ if gl and (os.name == 'posix') and ('libGLEW' in os.environ.get('LD_PRELOAD', '')):
+ logging.getLogger('nvdiffrast').warning("Warning: libGLEW is being loaded via LD_PRELOAD, and will probably conflict with the OpenGL plugin")
+
+ # Try to detect if a stray lock file is left in cache directory and show a warning. This sometimes happens on Windows if the build is interrupted at just the right moment.
+ plugin_name = 'nvdiffrast_plugin' + ('_gl' if gl else '')
+ try:
+ lock_fn = os.path.join(torch.utils.cpp_extension._get_build_directory(plugin_name, False), 'lock')
+ if os.path.exists(lock_fn):
+ logging.getLogger('nvdiffrast').warning("Lock file exists in build directory: '%s'" % lock_fn)
+ except:
+ pass
+
+ # Speed up compilation on Windows.
+ if os.name == 'nt':
+ # Skip telemetry sending step in vcvarsall.bat
+ os.environ['VSCMD_SKIP_SENDTELEMETRY'] = '1'
+
+ # Opportunistically patch distutils to cache MSVC environments.
+ try:
+ import distutils._msvccompiler
+ import functools
+ if not hasattr(distutils._msvccompiler._get_vc_env, '__wrapped__'):
+ distutils._msvccompiler._get_vc_env = functools.lru_cache()(distutils._msvccompiler._get_vc_env)
+ except:
+ pass
+
+ # Compile and load.
+ source_paths = [os.path.join(os.path.dirname(__file__), fn) for fn in source_files]
+ torch.utils.cpp_extension.load(name=plugin_name, sources=source_paths, extra_cflags=common_opts+cc_opts, extra_cuda_cflags=common_opts+['-lineinfo'], extra_ldflags=ldflags, with_cuda=True, verbose=False)
+
+ # Import, cache, and return the compiled module.
+ _cached_plugin[gl] = importlib.import_module(plugin_name)
+ return _cached_plugin[gl]
+
+#----------------------------------------------------------------------------
+# Log level.
+#----------------------------------------------------------------------------
+
+def get_log_level():
+ '''Get current log level.
+
+ Returns:
+ Current log level in nvdiffrast. See `set_log_level()` for possible values.
+ '''
+ return _get_plugin().get_log_level()
+
+def set_log_level(level):
+ '''Set log level.
+
+ Log levels follow the convention on the C++ side of Torch:
+ 0 = Info,
+ 1 = Warning,
+ 2 = Error,
+ 3 = Fatal.
+ The default log level is 1.
+
+ Args:
+ level: New log level as integer. Internal nvdiffrast messages of this
+ severity or higher will be printed, while messages of lower
+ severity will be silent.
+ '''
+ _get_plugin().set_log_level(level)
+
+#----------------------------------------------------------------------------
+# CudaRaster state wrapper.
+#----------------------------------------------------------------------------
+
+class RasterizeCudaContext:
+ def __init__(self, device=None):
+ '''Create a new Cuda rasterizer context.
+
+ The context is deleted and internal storage is released when the object is
+ destroyed.
+
+ Args:
+ device (Optional): Cuda device on which the context is created. Type can be
+ `torch.device`, string (e.g., `'cuda:1'`), or int. If not
+ specified, context will be created on currently active Cuda
+ device.
+ Returns:
+ The newly created Cuda rasterizer context.
+ '''
+ if device is None:
+ cuda_device_idx = torch.cuda.current_device()
+ else:
+ with torch.cuda.device(device):
+ cuda_device_idx = torch.cuda.current_device()
+ self.cpp_wrapper = _get_plugin().RasterizeCRStateWrapper(cuda_device_idx)
+ self.output_db = True
+ self.active_depth_peeler = None
+
+#----------------------------------------------------------------------------
+# GL state wrapper.
+#----------------------------------------------------------------------------
+
+class RasterizeGLContext:
+ def __init__(self, output_db=True, mode='automatic', device=None):
+ '''Create a new OpenGL rasterizer context.
+
+ Creating an OpenGL context is a slow operation so you should usually reuse the same
+ context in all calls to `rasterize()` on the same CPU thread. The OpenGL context
+ is deleted when the object is destroyed.
+
+ Side note: When using the OpenGL context in a rasterization operation, the
+ context's internal framebuffer object is automatically enlarged to accommodate the
+ rasterization operation's output shape, but it is never shrunk in size until the
+ context is destroyed. Thus, if you need to rasterize, say, deep low-resolution
+ tensors and also shallow high-resolution tensors, you can conserve GPU memory by
+ creating two separate OpenGL contexts for these tasks. In this scenario, using the
+ same OpenGL context for both tasks would end up reserving GPU memory for a deep,
+ high-resolution output tensor.
+
+ Args:
+ output_db (bool): Compute and output image-space derivates of barycentrics.
+ mode: OpenGL context handling mode. Valid values are 'manual' and 'automatic'.
+ device (Optional): Cuda device on which the context is created. Type can be
+ `torch.device`, string (e.g., `'cuda:1'`), or int. If not
+ specified, context will be created on currently active Cuda
+ device.
+ Returns:
+ The newly created OpenGL rasterizer context.
+ '''
+ assert output_db is True or output_db is False
+ assert mode in ['automatic', 'manual']
+ self.output_db = output_db
+ self.mode = mode
+ if device is None:
+ cuda_device_idx = torch.cuda.current_device()
+ else:
+ with torch.cuda.device(device):
+ cuda_device_idx = torch.cuda.current_device()
+ self.cpp_wrapper = _get_plugin(gl=True).RasterizeGLStateWrapper(output_db, mode == 'automatic', cuda_device_idx)
+ self.active_depth_peeler = None # For error checking only.
+
+ def set_context(self):
+ '''Set (activate) OpenGL context in the current CPU thread.
+ Only available if context was created in manual mode.
+ '''
+ assert self.mode == 'manual'
+ self.cpp_wrapper.set_context()
+
+ def release_context(self):
+ '''Release (deactivate) currently active OpenGL context.
+ Only available if context was created in manual mode.
+ '''
+ assert self.mode == 'manual'
+ self.cpp_wrapper.release_context()
+
+#----------------------------------------------------------------------------
+# Rasterize.
+#----------------------------------------------------------------------------
+
+class _rasterize_func(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, raster_ctx, pos, tri, resolution, ranges, grad_db, peeling_idx):
+ if isinstance(raster_ctx, RasterizeGLContext):
+ out, out_db = _get_plugin(gl=True).rasterize_fwd_gl(raster_ctx.cpp_wrapper, pos, tri, resolution, ranges, peeling_idx)
+ else:
+ out, out_db = _get_plugin().rasterize_fwd_cuda(raster_ctx.cpp_wrapper, pos, tri, resolution, ranges, peeling_idx)
+ ctx.save_for_backward(pos, tri, out)
+ ctx.saved_grad_db = grad_db
+ return out, out_db
+
+ @staticmethod
+ def backward(ctx, dy, ddb):
+ pos, tri, out = ctx.saved_tensors
+ if ctx.saved_grad_db:
+ g_pos = _get_plugin().rasterize_grad_db(pos, tri, out, dy, ddb)
+ else:
+ g_pos = _get_plugin().rasterize_grad(pos, tri, out, dy)
+ return None, g_pos, None, None, None, None, None
+
+# Op wrapper.
+def rasterize(glctx, pos, tri, resolution, ranges=None, grad_db=True):
+ '''Rasterize triangles.
+
+ All input tensors must be contiguous and reside in GPU memory except for
+ the `ranges` tensor that, if specified, has to reside in CPU memory. The
+ output tensors will be contiguous and reside in GPU memory.
+
+ Args:
+ glctx: Rasterizer context of type `RasterizeGLContext` or `RasterizeCudaContext`.
+ pos: Vertex position tensor with dtype `torch.float32`. To enable range
+ mode, this tensor should have a 2D shape [num_vertices, 4]. To enable
+ instanced mode, use a 3D shape [minibatch_size, num_vertices, 4].
+ tri: Triangle tensor with shape [num_triangles, 3] and dtype `torch.int32`.
+ resolution: Output resolution as integer tuple (height, width).
+ ranges: In range mode, tensor with shape [minibatch_size, 2] and dtype
+ `torch.int32`, specifying start indices and counts into `tri`.
+ Ignored in instanced mode.
+ grad_db: Propagate gradients of image-space derivatives of barycentrics
+ into `pos` in backward pass. Ignored if using an OpenGL context that
+ was not configured to output image-space derivatives.
+
+ Returns:
+ A tuple of two tensors. The first output tensor has shape [minibatch_size,
+ height, width, 4] and contains the main rasterizer output in order (u, v, z/w,
+ triangle_id). If the OpenGL context was configured to output image-space
+ derivatives of barycentrics, the second output tensor will also have shape
+ [minibatch_size, height, width, 4] and contain said derivatives in order
+ (du/dX, du/dY, dv/dX, dv/dY). Otherwise it will be an empty tensor with shape
+ [minibatch_size, height, width, 0].
+ '''
+ assert isinstance(glctx, (RasterizeGLContext, RasterizeCudaContext))
+ assert grad_db is True or grad_db is False
+ grad_db = grad_db and glctx.output_db
+
+ # Sanitize inputs.
+ assert isinstance(pos, torch.Tensor) and isinstance(tri, torch.Tensor)
+ resolution = tuple(resolution)
+ if ranges is None:
+ ranges = torch.empty(size=(0, 2), dtype=torch.int32, device='cpu')
+ else:
+ assert isinstance(ranges, torch.Tensor)
+
+ # Check that context is not currently reserved for depth peeling.
+ if glctx.active_depth_peeler is not None:
+ return RuntimeError("Cannot call rasterize() during depth peeling operation, use rasterize_next_layer() instead")
+
+ # Instantiate the function.
+ return _rasterize_func.apply(glctx, pos, tri, resolution, ranges, grad_db, -1)
+
+#----------------------------------------------------------------------------
+# Depth peeler context manager for rasterizing multiple depth layers.
+#----------------------------------------------------------------------------
+
+class DepthPeeler:
+ def __init__(self, glctx, pos, tri, resolution, ranges=None, grad_db=True):
+ '''Create a depth peeler object for rasterizing multiple depth layers.
+
+ Arguments are the same as in `rasterize()`.
+
+ Returns:
+ The newly created depth peeler.
+ '''
+ assert isinstance(glctx, (RasterizeGLContext, RasterizeCudaContext))
+ assert grad_db is True or grad_db is False
+ grad_db = grad_db and glctx.output_db
+
+ # Sanitize inputs as usual.
+ assert isinstance(pos, torch.Tensor) and isinstance(tri, torch.Tensor)
+ resolution = tuple(resolution)
+ if ranges is None:
+ ranges = torch.empty(size=(0, 2), dtype=torch.int32, device='cpu')
+ else:
+ assert isinstance(ranges, torch.Tensor)
+
+ # Store all the parameters.
+ self.raster_ctx = glctx
+ self.pos = pos
+ self.tri = tri
+ self.resolution = resolution
+ self.ranges = ranges
+ self.grad_db = grad_db
+ self.peeling_idx = None
+
+ def __enter__(self):
+ if self.raster_ctx is None:
+ raise RuntimeError("Cannot re-enter a terminated depth peeling operation")
+ if self.raster_ctx.active_depth_peeler is not None:
+ raise RuntimeError("Cannot have multiple depth peelers active simultaneously in a rasterization context")
+ self.raster_ctx.active_depth_peeler = self
+ self.peeling_idx = 0
+ return self
+
+ def __exit__(self, *args):
+ assert self.raster_ctx.active_depth_peeler is self
+ self.raster_ctx.active_depth_peeler = None
+ self.raster_ctx = None # Remove all references to input tensor so they're not left dangling.
+ self.pos = None
+ self.tri = None
+ self.resolution = None
+ self.ranges = None
+ self.grad_db = None
+ self.peeling_idx = None
+ return None
+
+ def rasterize_next_layer(self):
+ '''Rasterize next depth layer.
+
+ Operation is equivalent to `rasterize()` except that previously reported
+ surface points are culled away.
+
+ Returns:
+ A tuple of two tensors as in `rasterize()`.
+ '''
+ assert self.raster_ctx.active_depth_peeler is self
+ assert self.peeling_idx >= 0
+ result = _rasterize_func.apply(self.raster_ctx, self.pos, self.tri, self.resolution, self.ranges, self.grad_db, self.peeling_idx)
+ self.peeling_idx += 1
+ return result
+
+#----------------------------------------------------------------------------
+# Interpolate.
+#----------------------------------------------------------------------------
+
+# Output pixel differentials for at least some attributes.
+class _interpolate_func_da(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, attr, rast, tri, rast_db, diff_attrs_all, diff_attrs_list):
+ out, out_da = _get_plugin().interpolate_fwd_da(attr, rast, tri, rast_db, diff_attrs_all, diff_attrs_list)
+ ctx.save_for_backward(attr, rast, tri, rast_db)
+ ctx.saved_misc = diff_attrs_all, diff_attrs_list
+ return out, out_da
+
+ @staticmethod
+ def backward(ctx, dy, dda):
+ attr, rast, tri, rast_db = ctx.saved_tensors
+ diff_attrs_all, diff_attrs_list = ctx.saved_misc
+ g_attr, g_rast, g_rast_db = _get_plugin().interpolate_grad_da(attr, rast, tri, dy, rast_db, dda, diff_attrs_all, diff_attrs_list)
+ return g_attr, g_rast, None, g_rast_db, None, None
+
+# No pixel differential for any attribute.
+class _interpolate_func(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, attr, rast, tri):
+ out, out_da = _get_plugin().interpolate_fwd(attr, rast, tri)
+ ctx.save_for_backward(attr, rast, tri)
+ return out, out_da
+
+ @staticmethod
+ def backward(ctx, dy, _):
+ attr, rast, tri = ctx.saved_tensors
+ g_attr, g_rast = _get_plugin().interpolate_grad(attr, rast, tri, dy)
+ return g_attr, g_rast, None
+
+# Op wrapper.
+def interpolate(attr, rast, tri, rast_db=None, diff_attrs=None):
+ """Interpolate vertex attributes.
+
+ All input tensors must be contiguous and reside in GPU memory. The output tensors
+ will be contiguous and reside in GPU memory.
+
+ Args:
+ attr: Attribute tensor with dtype `torch.float32`.
+ Shape is [num_vertices, num_attributes] in range mode, or
+ [minibatch_size, num_vertices, num_attributes] in instanced mode.
+ Broadcasting is supported along the minibatch axis.
+ rast: Main output tensor from `rasterize()`.
+ tri: Triangle tensor with shape [num_triangles, 3] and dtype `torch.int32`.
+ rast_db: (Optional) Tensor containing image-space derivatives of barycentrics,
+ i.e., the second output tensor from `rasterize()`. Enables computing
+ image-space derivatives of attributes.
+ diff_attrs: (Optional) List of attribute indices for which image-space
+ derivatives are to be computed. Special value 'all' is equivalent
+ to list [0, 1, ..., num_attributes - 1].
+
+ Returns:
+ A tuple of two tensors. The first output tensor contains interpolated
+ attributes and has shape [minibatch_size, height, width, num_attributes].
+ If `rast_db` and `diff_attrs` were specified, the second output tensor contains
+ the image-space derivatives of the selected attributes and has shape
+ [minibatch_size, height, width, 2 * len(diff_attrs)]. The derivatives of the
+ first selected attribute A will be on channels 0 and 1 as (dA/dX, dA/dY), etc.
+ Otherwise, the second output tensor will be an empty tensor with shape
+ [minibatch_size, height, width, 0].
+ """
+ # Sanitize the list of pixel differential attributes.
+ if diff_attrs is None:
+ diff_attrs = []
+ elif diff_attrs != 'all':
+ diff_attrs = np.asarray(diff_attrs, np.int32)
+ assert len(diff_attrs.shape) == 1
+ diff_attrs = diff_attrs.tolist()
+
+ diff_attrs_all = int(diff_attrs == 'all')
+ diff_attrs_list = [] if diff_attrs_all else diff_attrs
+
+ # Check inputs.
+ assert all(isinstance(x, torch.Tensor) for x in (attr, rast, tri))
+ if diff_attrs:
+ assert isinstance(rast_db, torch.Tensor)
+
+ # Choose stub.
+ if diff_attrs:
+ return _interpolate_func_da.apply(attr, rast, tri, rast_db, diff_attrs_all, diff_attrs_list)
+ else:
+ return _interpolate_func.apply(attr, rast, tri)
+
+#----------------------------------------------------------------------------
+# Texture
+#----------------------------------------------------------------------------
+
+# Linear-mipmap-linear and linear-mipmap-nearest: Mipmaps enabled.
+class _texture_func_mip(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, filter_mode, tex, uv, uv_da, mip_level_bias, mip_wrapper, filter_mode_enum, boundary_mode_enum, *mip_stack):
+ empty = torch.tensor([])
+ if uv_da is None:
+ uv_da = empty
+ if mip_level_bias is None:
+ mip_level_bias = empty
+ if mip_wrapper is None:
+ mip_wrapper = _get_plugin().TextureMipWrapper()
+ out = _get_plugin().texture_fwd_mip(tex, uv, uv_da, mip_level_bias, mip_wrapper, mip_stack, filter_mode_enum, boundary_mode_enum)
+ ctx.save_for_backward(tex, uv, uv_da, mip_level_bias, *mip_stack)
+ ctx.saved_misc = filter_mode, mip_wrapper, filter_mode_enum, boundary_mode_enum
+ return out
+
+ @staticmethod
+ def backward(ctx, dy):
+ tex, uv, uv_da, mip_level_bias, *mip_stack = ctx.saved_tensors
+ filter_mode, mip_wrapper, filter_mode_enum, boundary_mode_enum = ctx.saved_misc
+ if filter_mode == 'linear-mipmap-linear':
+ g_tex, g_uv, g_uv_da, g_mip_level_bias, g_mip_stack = _get_plugin().texture_grad_linear_mipmap_linear(tex, uv, dy, uv_da, mip_level_bias, mip_wrapper, mip_stack, filter_mode_enum, boundary_mode_enum)
+ return (None, g_tex, g_uv, g_uv_da, g_mip_level_bias, None, None, None) + tuple(g_mip_stack)
+ else: # linear-mipmap-nearest
+ g_tex, g_uv, g_mip_stack = _get_plugin().texture_grad_linear_mipmap_nearest(tex, uv, dy, uv_da, mip_level_bias, mip_wrapper, mip_stack, filter_mode_enum, boundary_mode_enum)
+ return (None, g_tex, g_uv, None, None, None, None, None) + tuple(g_mip_stack)
+
+# Linear and nearest: Mipmaps disabled.
+class _texture_func(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, filter_mode, tex, uv, filter_mode_enum, boundary_mode_enum):
+ out = _get_plugin().texture_fwd(tex, uv, filter_mode_enum, boundary_mode_enum)
+ ctx.save_for_backward(tex, uv)
+ ctx.saved_misc = filter_mode, filter_mode_enum, boundary_mode_enum
+ return out
+
+ @staticmethod
+ def backward(ctx, dy):
+ tex, uv = ctx.saved_tensors
+ filter_mode, filter_mode_enum, boundary_mode_enum = ctx.saved_misc
+ if filter_mode == 'linear':
+ g_tex, g_uv = _get_plugin().texture_grad_linear(tex, uv, dy, filter_mode_enum, boundary_mode_enum)
+ return None, g_tex, g_uv, None, None
+ else: # nearest
+ g_tex = _get_plugin().texture_grad_nearest(tex, uv, dy, filter_mode_enum, boundary_mode_enum)
+ return None, g_tex, None, None, None
+
+# Op wrapper.
+def texture(tex, uv, uv_da=None, mip_level_bias=None, mip=None, filter_mode='auto', boundary_mode='wrap', max_mip_level=None):
+ """Perform texture sampling.
+
+ All input tensors must be contiguous and reside in GPU memory. The output tensor
+ will be contiguous and reside in GPU memory.
+
+ Args:
+ tex: Texture tensor with dtype `torch.float32`. For 2D textures, must have shape
+ [minibatch_size, tex_height, tex_width, tex_channels]. For cube map textures,
+ must have shape [minibatch_size, 6, tex_height, tex_width, tex_channels] where
+ tex_width and tex_height are equal. Note that `boundary_mode` must also be set
+ to 'cube' to enable cube map mode. Broadcasting is supported along the minibatch axis.
+ uv: Tensor containing per-pixel texture coordinates. When sampling a 2D texture,
+ must have shape [minibatch_size, height, width, 2]. When sampling a cube map
+ texture, must have shape [minibatch_size, height, width, 3].
+ uv_da: (Optional) Tensor containing image-space derivatives of texture coordinates.
+ Must have same shape as `uv` except for the last dimension that is to be twice
+ as long.
+ mip_level_bias: (Optional) Per-pixel bias for mip level selection. If `uv_da` is omitted,
+ determines mip level directly. Must have shape [minibatch_size, height, width].
+ mip: (Optional) Preconstructed mipmap stack from a `texture_construct_mip()` call, or a list
+ of tensors specifying a custom mipmap stack. When specifying a custom mipmap stack,
+ the tensors in the list must follow the same format as `tex` except for width and
+ height that must follow the usual rules for mipmap sizes. The base level texture
+ is still supplied in `tex` and must not be included in the list. Gradients of a
+ custom mipmap stack are not automatically propagated to base texture but the mipmap
+ tensors will receive gradients of their own. If a mipmap stack is not specified
+ but the chosen filter mode requires it, the mipmap stack is constructed internally
+ and discarded afterwards.
+ filter_mode: Texture filtering mode to be used. Valid values are 'auto', 'nearest',
+ 'linear', 'linear-mipmap-nearest', and 'linear-mipmap-linear'. Mode 'auto'
+ selects 'linear' if neither `uv_da` or `mip_level_bias` is specified, and
+ 'linear-mipmap-linear' when at least one of them is specified, these being
+ the highest-quality modes possible depending on the availability of the
+ image-space derivatives of the texture coordinates or direct mip level information.
+ boundary_mode: Valid values are 'wrap', 'clamp', 'zero', and 'cube'. If `tex` defines a
+ cube map, this must be set to 'cube'. The default mode 'wrap' takes fractional
+ part of texture coordinates. Mode 'clamp' clamps texture coordinates to the
+ centers of the boundary texels. Mode 'zero' virtually extends the texture with
+ all-zero values in all directions.
+ max_mip_level: If specified, limits the number of mipmaps constructed and used in mipmap-based
+ filter modes.
+
+ Returns:
+ A tensor containing the results of the texture sampling with shape
+ [minibatch_size, height, width, tex_channels]. Cube map fetches with invalid uv coordinates
+ (e.g., zero vectors) output all zeros and do not propagate gradients.
+ """
+
+ # Default filter mode.
+ if filter_mode == 'auto':
+ filter_mode = 'linear-mipmap-linear' if (uv_da is not None or mip_level_bias is not None) else 'linear'
+
+ # Sanitize inputs.
+ if max_mip_level is None:
+ max_mip_level = -1
+ else:
+ max_mip_level = int(max_mip_level)
+ assert max_mip_level >= 0
+
+ # Check inputs.
+ assert isinstance(tex, torch.Tensor) and isinstance(uv, torch.Tensor)
+ if 'mipmap' in filter_mode:
+ assert isinstance(uv_da, torch.Tensor) or isinstance(mip_level_bias, torch.Tensor)
+
+ # If mipping disabled via max level=0, we may as well use simpler filtering internally.
+ if max_mip_level == 0 and filter_mode in ['linear-mipmap-nearest', 'linear-mipmap-linear']:
+ filter_mode = 'linear'
+
+ # Convert filter mode to internal enumeration.
+ filter_mode_dict = {'nearest': 0, 'linear': 1, 'linear-mipmap-nearest': 2, 'linear-mipmap-linear': 3}
+ filter_mode_enum = filter_mode_dict[filter_mode]
+
+ # Convert boundary mode to internal enumeration.
+ boundary_mode_dict = {'cube': 0, 'wrap': 1, 'clamp': 2, 'zero': 3}
+ boundary_mode_enum = boundary_mode_dict[boundary_mode]
+
+ # Construct a mipmap if necessary.
+ if 'mipmap' in filter_mode:
+ mip_wrapper, mip_stack = None, []
+ if mip is not None:
+ assert isinstance(mip, (_get_plugin().TextureMipWrapper, list))
+ if isinstance(mip, list):
+ assert all(isinstance(x, torch.Tensor) for x in mip)
+ mip_stack = mip
+ else:
+ mip_wrapper = mip
+ else:
+ mip_wrapper = _get_plugin().texture_construct_mip(tex, max_mip_level, boundary_mode == 'cube')
+
+ # Choose stub.
+ if filter_mode == 'linear-mipmap-linear' or filter_mode == 'linear-mipmap-nearest':
+ return _texture_func_mip.apply(filter_mode, tex, uv, uv_da, mip_level_bias, mip_wrapper, filter_mode_enum, boundary_mode_enum, *mip_stack)
+ else:
+ return _texture_func.apply(filter_mode, tex, uv, filter_mode_enum, boundary_mode_enum)
+
+# Mipmap precalculation for cases where the texture stays constant.
+def texture_construct_mip(tex, max_mip_level=None, cube_mode=False):
+ """Construct a mipmap stack for a texture.
+
+ This function can be used for constructing a mipmap stack for a texture that is known to remain
+ constant. This avoids reconstructing it every time `texture()` is called.
+
+ Args:
+ tex: Texture tensor with the same constraints as in `texture()`.
+ max_mip_level: If specified, limits the number of mipmaps constructed.
+ cube_mode: Must be set to True if `tex` specifies a cube map texture.
+
+ Returns:
+ An opaque object containing the mipmap stack. This can be supplied in a call to `texture()`
+ in the `mip` argument.
+ """
+
+ assert isinstance(tex, torch.Tensor)
+ assert cube_mode is True or cube_mode is False
+ if max_mip_level is None:
+ max_mip_level = -1
+ else:
+ max_mip_level = int(max_mip_level)
+ assert max_mip_level >= 0
+ return _get_plugin().texture_construct_mip(tex, max_mip_level, cube_mode)
+
+#----------------------------------------------------------------------------
+# Antialias.
+#----------------------------------------------------------------------------
+
+class _antialias_func(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, color, rast, pos, tri, topology_hash, pos_gradient_boost):
+ out, work_buffer = _get_plugin().antialias_fwd(color, rast, pos, tri, topology_hash)
+ ctx.save_for_backward(color, rast, pos, tri)
+ ctx.saved_misc = pos_gradient_boost, work_buffer
+ return out
+
+ @staticmethod
+ def backward(ctx, dy):
+ color, rast, pos, tri = ctx.saved_tensors
+ pos_gradient_boost, work_buffer = ctx.saved_misc
+ g_color, g_pos = _get_plugin().antialias_grad(color, rast, pos, tri, dy, work_buffer)
+ if pos_gradient_boost != 1.0:
+ g_pos = g_pos * pos_gradient_boost
+ return g_color, None, g_pos, None, None, None
+
+# Op wrapper.
+def antialias(color, rast, pos, tri, topology_hash=None, pos_gradient_boost=1.0):
+ """Perform antialiasing.
+
+ All input tensors must be contiguous and reside in GPU memory. The output tensor
+ will be contiguous and reside in GPU memory.
+
+ Note that silhouette edge determination is based on vertex indices in the triangle
+ tensor. For it to work properly, a vertex belonging to multiple triangles must be
+ referred to using the same vertex index in each triangle. Otherwise, nvdiffrast will always
+ classify the adjacent edges as silhouette edges, which leads to bad performance and
+ potentially incorrect gradients. If you are unsure whether your data is good, check
+ which pixels are modified by the antialias operation and compare to the example in the
+ documentation.
+
+ Args:
+ color: Input image to antialias with shape [minibatch_size, height, width, num_channels].
+ rast: Main output tensor from `rasterize()`.
+ pos: Vertex position tensor used in the rasterization operation.
+ tri: Triangle tensor used in the rasterization operation.
+ topology_hash: (Optional) Preconstructed topology hash for the triangle tensor. If not
+ specified, the topology hash is constructed internally and discarded afterwards.
+ pos_gradient_boost: (Optional) Multiplier for gradients propagated to `pos`.
+
+ Returns:
+ A tensor containing the antialiased image with the same shape as `color` input tensor.
+ """
+
+ # Check inputs.
+ assert all(isinstance(x, torch.Tensor) for x in (color, rast, pos, tri))
+
+ # Construct topology hash unless provided by user.
+ if topology_hash is not None:
+ assert isinstance(topology_hash, _get_plugin().TopologyHashWrapper)
+ else:
+ topology_hash = _get_plugin().antialias_construct_topology_hash(tri)
+
+ # Instantiate the function.
+ return _antialias_func.apply(color, rast, pos, tri, topology_hash, pos_gradient_boost)
+
+# Topology hash precalculation for cases where the triangle array stays constant.
+def antialias_construct_topology_hash(tri):
+ """Construct a topology hash for a triangle tensor.
+
+ This function can be used for constructing a topology hash for a triangle tensor that is
+ known to remain constant. This avoids reconstructing it every time `antialias()` is called.
+
+ Args:
+ tri: Triangle tensor with shape [num_triangles, 3]. Must be contiguous and reside in
+ GPU memory.
+
+ Returns:
+ An opaque object containing the topology hash. This can be supplied in a call to
+ `antialias()` in the `topology_hash` argument.
+ """
+ assert isinstance(tri, torch.Tensor)
+ return _get_plugin().antialias_construct_topology_hash(tri)
+
+#----------------------------------------------------------------------------
diff --git a/extensions/nvdiffrast/nvdiffrast/torch/torch_antialias.cpp b/extensions/nvdiffrast/nvdiffrast/torch/torch_antialias.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..9e52f957daa2d7bffe6e6ec52e1435bbf1ea2f55
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/torch/torch_antialias.cpp
@@ -0,0 +1,243 @@
+// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#include "torch_common.inl"
+#include "torch_types.h"
+#include "../common/common.h"
+#include "../common/antialias.h"
+
+//------------------------------------------------------------------------
+// Kernel prototypes.
+
+void AntialiasFwdMeshKernel (const AntialiasKernelParams p);
+void AntialiasFwdDiscontinuityKernel(const AntialiasKernelParams p);
+void AntialiasFwdAnalysisKernel (const AntialiasKernelParams p);
+void AntialiasGradKernel (const AntialiasKernelParams p);
+
+//------------------------------------------------------------------------
+// Topology hash construction.
+
+TopologyHashWrapper antialias_construct_topology_hash(torch::Tensor tri)
+{
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(tri));
+ cudaStream_t stream = at::cuda::getCurrentCUDAStream();
+ AntialiasKernelParams p = {}; // Initialize all fields to zero.
+
+ // Check inputs.
+ NVDR_CHECK_DEVICE(tri);
+ NVDR_CHECK_CONTIGUOUS(tri);
+ NVDR_CHECK_I32(tri);
+ NVDR_CHECK(tri.sizes().size() == 2 && tri.size(0) > 0 && tri.size(1) == 3, "tri must have shape [>0, 3]");
+
+ // Fill in kernel parameters.
+ p.numTriangles = tri.size(0);
+ p.numVertices = 0x7fffffff; // Let's not require vertex positions just to enable an error check.
+ p.tri = tri.data_ptr();
+
+ // Kernel parameters.
+ p.allocTriangles = 64;
+ while (p.allocTriangles < p.numTriangles)
+ p.allocTriangles <<= 1; // Must be power of two.
+
+ // Construct the hash tensor and get pointer.
+ torch::TensorOptions opts = torch::TensorOptions().dtype(torch::kInt32).device(torch::kCUDA);
+ torch::Tensor ev_hash = torch::zeros({(uint64_t)p.allocTriangles * AA_HASH_ELEMENTS_PER_TRIANGLE(p.allocTriangles) * 4}, opts);
+ p.evHash = (uint4*)(ev_hash.data_ptr());
+
+ // Check alignment.
+ NVDR_CHECK(!((uintptr_t)p.evHash & 15), "ev_hash internal tensor not aligned to int4");
+
+ // Populate the hash.
+ void* args[] = {&p};
+ NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((void*)AntialiasFwdMeshKernel, (p.numTriangles - 1) / AA_MESH_KERNEL_THREADS_PER_BLOCK + 1, AA_MESH_KERNEL_THREADS_PER_BLOCK, args, 0, stream));
+
+ // Return.
+ TopologyHashWrapper hash_wrap;
+ hash_wrap.ev_hash = ev_hash;
+ return hash_wrap;
+}
+
+//------------------------------------------------------------------------
+// Forward op.
+
+std::tuple antialias_fwd(torch::Tensor color, torch::Tensor rast, torch::Tensor pos, torch::Tensor tri, TopologyHashWrapper topology_hash_wrap)
+{
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(color));
+ cudaStream_t stream = at::cuda::getCurrentCUDAStream();
+ AntialiasKernelParams p = {}; // Initialize all fields to zero.
+ p.instance_mode = (pos.sizes().size() > 2) ? 1 : 0;
+ torch::Tensor& topology_hash = topology_hash_wrap.ev_hash; // Unwrap.
+
+ // Check inputs.
+ NVDR_CHECK_DEVICE(color, rast, pos, tri, topology_hash);
+ NVDR_CHECK_CONTIGUOUS(color, rast, pos, tri, topology_hash);
+ NVDR_CHECK_F32(color, rast, pos);
+ NVDR_CHECK_I32(tri, topology_hash);
+
+ // Sanity checks.
+ NVDR_CHECK(color.sizes().size() == 4 && color.size(0) > 0 && color.size(1) > 0 && color.size(2) > 0 && color.size(3) > 0, "color must have shape[>0, >0, >0, >0]");
+ NVDR_CHECK(rast.sizes().size() == 4 && rast.size(0) > 0 && rast.size(1) > 0 && rast.size(2) > 0 && rast.size(3) == 4, "rast must have shape[>0, >0, >0, 4]");
+ NVDR_CHECK(tri.sizes().size() == 2 && tri.size(0) > 0 && tri.size(1) == 3, "tri must have shape [>0, 3]");
+ NVDR_CHECK(color.size(1) == rast.size(1) && color.size(2) == rast.size(2), "color and rast inputs must have same spatial dimensions");
+ if (p.instance_mode)
+ {
+ NVDR_CHECK(pos.sizes().size() == 3 && pos.size(0) > 0 && pos.size(1) > 0 && pos.size(2) == 4, "pos must have shape [>0, >0, 4] or [>0, 4]");
+ NVDR_CHECK(rast.size(0) == color.size(0) && pos.size(0) == color.size(0), "minibatch size mismatch between inputs color, rast, pos");
+ }
+ else
+ {
+ NVDR_CHECK(pos.sizes().size() == 2 && pos.size(0) > 0 && pos.size(1) == 4, "pos must have shape [>0, >0, 4] or [>0, 4]");
+ NVDR_CHECK(rast.size(0) == color.size(0), "minibatch size mismatch between inputs color, rast");
+ }
+
+ // Extract input dimensions.
+ p.numVertices = pos.size(p.instance_mode ? 1 : 0);
+ p.numTriangles = tri.size(0);
+ p.n = color.size(0);
+ p.height = color.size(1);
+ p.width = color.size(2);
+ p.channels = color.size(3);
+
+ // Get input pointers.
+ p.color = color.data_ptr();
+ p.rasterOut = rast.data_ptr();
+ p.tri = tri.data_ptr();
+ p.pos = pos.data_ptr();
+ p.evHash = (uint4*)(topology_hash.data_ptr());
+
+ // Misc parameters.
+ p.xh = .5f * (float)p.width;
+ p.yh = .5f * (float)p.height;
+
+ // Determine hash allocation size.
+ p.allocTriangles = 64;
+ while (p.allocTriangles < p.numTriangles)
+ p.allocTriangles <<= 1; // Must be power of two.
+
+ // Allocate output tensors.
+ torch::Tensor out = color.detach().clone(); // Use color as base.
+ torch::TensorOptions opts = torch::TensorOptions().dtype(torch::kFloat32).device(torch::kCUDA);
+ torch::Tensor work_buffer = torch::empty({p.n * p.width * p.height * 8 + 4}, opts); // 8 int for a maximum of two work items per pixel.
+ p.output = out.data_ptr();
+ p.workBuffer = (int4*)(work_buffer.data_ptr());
+
+ // Clear the work counters.
+ NVDR_CHECK_CUDA_ERROR(cudaMemsetAsync(p.workBuffer, 0, sizeof(int4), stream));
+
+ // Verify that buffers are aligned to allow float2/float4 operations.
+ NVDR_CHECK(!((uintptr_t)p.pos & 15), "pos input tensor not aligned to float4");
+ NVDR_CHECK(!((uintptr_t)p.rasterOut & 7), "raster_out input tensor not aligned to float2");
+ NVDR_CHECK(!((uintptr_t)p.workBuffer & 15), "work_buffer internal tensor not aligned to int4");
+ NVDR_CHECK(!((uintptr_t)p.evHash & 15), "topology_hash internal tensor not aligned to int4");
+
+ // Choose launch parameters for the discontinuity finder kernel and launch.
+ void* args[] = {&p};
+ dim3 blockSize(AA_DISCONTINUITY_KERNEL_BLOCK_WIDTH, AA_DISCONTINUITY_KERNEL_BLOCK_HEIGHT, 1);
+ dim3 gridSize = getLaunchGridSize(blockSize, p.width, p.height, p.n);
+ NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((void*)AntialiasFwdDiscontinuityKernel, gridSize, blockSize, args, 0, stream));
+
+ // Determine optimum block size for the persistent analysis kernel and launch.
+ int device = 0;
+ int numCTA = 0;
+ int numSM = 0;
+ NVDR_CHECK_CUDA_ERROR(cudaGetDevice(&device));
+ NVDR_CHECK_CUDA_ERROR(cudaOccupancyMaxActiveBlocksPerMultiprocessor(&numCTA, (void*)AntialiasFwdAnalysisKernel, AA_ANALYSIS_KERNEL_THREADS_PER_BLOCK, 0));
+ NVDR_CHECK_CUDA_ERROR(cudaDeviceGetAttribute(&numSM, cudaDevAttrMultiProcessorCount, device));
+ NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((void*)AntialiasFwdAnalysisKernel, numCTA * numSM, AA_ANALYSIS_KERNEL_THREADS_PER_BLOCK, args, 0, stream));
+
+ // Return results.
+ return std::tuple(out, work_buffer);
+}
+
+//------------------------------------------------------------------------
+// Gradient op.
+
+std::tuple antialias_grad(torch::Tensor color, torch::Tensor rast, torch::Tensor pos, torch::Tensor tri, torch::Tensor dy, torch::Tensor work_buffer)
+{
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(color));
+ cudaStream_t stream = at::cuda::getCurrentCUDAStream();
+ AntialiasKernelParams p = {}; // Initialize all fields to zero.
+ p.instance_mode = (pos.sizes().size() > 2) ? 1 : 0;
+
+ // Check inputs.
+ NVDR_CHECK_DEVICE(color, rast, pos, tri, dy, work_buffer);
+ NVDR_CHECK_CONTIGUOUS(color, rast, pos, tri, work_buffer);
+ NVDR_CHECK_F32(color, rast, pos, dy, work_buffer);
+ NVDR_CHECK_I32(tri);
+
+ // Sanity checks.
+ NVDR_CHECK(dy.sizes().size() == 4 && dy.size(0) > 0 && dy.size(1) > 0 && dy.size(2) > 0 && dy.size(3) > 0, "dy must have shape[>0, >0, >0, >0]");
+ NVDR_CHECK(color.sizes().size() == 4 && color.size(0) > 0 && color.size(1) > 0 && color.size(2) > 0 && color.size(3) > 0, "color must have shape[>0, >0, >0, >0]");
+ NVDR_CHECK(rast.sizes().size() == 4 && rast.size(0) > 0 && rast.size(1) > 0 && rast.size(2) > 0 && rast.size(3) == 4, "raster_out must have shape[>0, >0, >0, 4]");
+ NVDR_CHECK(tri.sizes().size() == 2 && tri.size(0) > 0 && tri.size(1) == 3, "tri must have shape [>0, 3]");
+ NVDR_CHECK(color.size(1) == rast.size(1) && color.size(2) == rast.size(2), "color and raster_out inputs must have same spatial dimensions");
+ NVDR_CHECK(color.size(1) == dy.size(1) && color.size(2) == dy.size(2) && color.size(3) == dy.size(3), "color and dy inputs must have same dimensions");
+ if (p.instance_mode)
+ {
+ NVDR_CHECK(pos.sizes().size() == 3 && pos.size(0) > 0 && pos.size(1) > 0 && pos.size(2) == 4, "pos must have shape [>0, >0, 4] or [>0, 4]");
+ NVDR_CHECK(rast.size(0) == color.size(0) && pos.size(0) == color.size(0), "minibatch size mismatch between inputs color, raster_out, pos");
+ NVDR_CHECK(dy.size(0) == color.size(0) && rast.size(0) == color.size(0) && pos.size(0) ==color.size(0), "minibatch size mismatch between inputs dy, color, raster_out, pos");
+ }
+ else
+ {
+ NVDR_CHECK(pos.sizes().size() == 2 && pos.size(0) > 0 && pos.size(1) == 4, "pos must have shape [>0, >0, 4] or [>0, 4]");
+ NVDR_CHECK(rast.size(0) == color.size(0), "minibatch size mismatch between inputs color, raster_out");
+ NVDR_CHECK(dy.size(0) == color.size(0) && rast.size(0) == color.size(0), "minibatch size mismatch between inputs dy, color, raster_out");
+ }
+
+ // Extract input dimensions.
+ p.numVertices = pos.size(p.instance_mode ? 1 : 0);
+ p.numTriangles = tri.size(0);
+ p.n = color.size(0);
+ p.height = color.size(1);
+ p.width = color.size(2);
+ p.channels = color.size(3);
+
+ // Ensure dy is contiguous.
+ torch::Tensor dy_ = dy.contiguous();
+
+ // Get input pointers.
+ p.color = color.data_ptr();
+ p.rasterOut = rast.data_ptr();
+ p.tri = tri.data_ptr();
+ p.pos = pos.data_ptr();
+ p.dy = dy_.data_ptr();
+ p.workBuffer = (int4*)(work_buffer.data_ptr());
+
+ // Misc parameters.
+ p.xh = .5f * (float)p.width;
+ p.yh = .5f * (float)p.height;
+
+ // Allocate output tensors.
+ torch::Tensor grad_color = dy_.detach().clone(); // Use dy as base.
+ torch::Tensor grad_pos = torch::zeros_like(pos);
+ p.gradColor = grad_color.data_ptr();
+ p.gradPos = grad_pos.data_ptr();
+
+ // Clear gradient kernel work counter.
+ NVDR_CHECK_CUDA_ERROR(cudaMemsetAsync(&p.workBuffer[0].y, 0, sizeof(int), stream));
+
+ // Verify that buffers are aligned to allow float2/float4 operations.
+ NVDR_CHECK(!((uintptr_t)p.pos & 15), "pos input tensor not aligned to float4");
+ NVDR_CHECK(!((uintptr_t)p.workBuffer & 15), "work_buffer internal tensor not aligned to int4");
+
+ // Determine optimum block size for the gradient kernel and launch.
+ void* args[] = {&p};
+ int device = 0;
+ int numCTA = 0;
+ int numSM = 0;
+ NVDR_CHECK_CUDA_ERROR(cudaGetDevice(&device));
+ NVDR_CHECK_CUDA_ERROR(cudaOccupancyMaxActiveBlocksPerMultiprocessor(&numCTA, (void*)AntialiasGradKernel, AA_GRAD_KERNEL_THREADS_PER_BLOCK, 0));
+ NVDR_CHECK_CUDA_ERROR(cudaDeviceGetAttribute(&numSM, cudaDevAttrMultiProcessorCount, device));
+ NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((void*)AntialiasGradKernel, numCTA * numSM, AA_GRAD_KERNEL_THREADS_PER_BLOCK, args, 0, stream));
+
+ // Return results.
+ return std::tuple(grad_color, grad_pos);
+}
+
+//------------------------------------------------------------------------
diff --git a/extensions/nvdiffrast/nvdiffrast/torch/torch_bindings.cpp b/extensions/nvdiffrast/nvdiffrast/torch/torch_bindings.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..431b68c629504510e474d92909395c4d3d06c34c
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/torch/torch_bindings.cpp
@@ -0,0 +1,73 @@
+// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#include "torch_common.inl"
+#include "torch_types.h"
+#include
+
+//------------------------------------------------------------------------
+// Op prototypes. Return type macros for readability.
+
+#define OP_RETURN_T torch::Tensor
+#define OP_RETURN_TT std::tuple
+#define OP_RETURN_TTT std::tuple
+#define OP_RETURN_TTTT std::tuple
+#define OP_RETURN_TTV std::tuple >
+#define OP_RETURN_TTTTV std::tuple >
+
+OP_RETURN_TT rasterize_fwd_cuda (RasterizeCRStateWrapper& stateWrapper, torch::Tensor pos, torch::Tensor tri, std::tuple resolution, torch::Tensor ranges, int peeling_idx);
+OP_RETURN_T rasterize_grad (torch::Tensor pos, torch::Tensor tri, torch::Tensor out, torch::Tensor dy);
+OP_RETURN_T rasterize_grad_db (torch::Tensor pos, torch::Tensor tri, torch::Tensor out, torch::Tensor dy, torch::Tensor ddb);
+OP_RETURN_TT interpolate_fwd (torch::Tensor attr, torch::Tensor rast, torch::Tensor tri);
+OP_RETURN_TT interpolate_fwd_da (torch::Tensor attr, torch::Tensor rast, torch::Tensor tri, torch::Tensor rast_db, bool diff_attrs_all, std::vector& diff_attrs_vec);
+OP_RETURN_TT interpolate_grad (torch::Tensor attr, torch::Tensor rast, torch::Tensor tri, torch::Tensor dy);
+OP_RETURN_TTT interpolate_grad_da (torch::Tensor attr, torch::Tensor rast, torch::Tensor tri, torch::Tensor dy, torch::Tensor rast_db, torch::Tensor dda, bool diff_attrs_all, std::vector& diff_attrs_vec);
+TextureMipWrapper texture_construct_mip (torch::Tensor tex, int max_mip_level, bool cube_mode);
+OP_RETURN_T texture_fwd (torch::Tensor tex, torch::Tensor uv, int filter_mode, int boundary_mode);
+OP_RETURN_T texture_fwd_mip (torch::Tensor tex, torch::Tensor uv, torch::Tensor uv_da, torch::Tensor mip_level_bias, TextureMipWrapper mip_wrapper, std::vector mip_stack, int filter_mode, int boundary_mode);
+OP_RETURN_T texture_grad_nearest (torch::Tensor tex, torch::Tensor uv, torch::Tensor dy, int filter_mode, int boundary_mode);
+OP_RETURN_TT texture_grad_linear (torch::Tensor tex, torch::Tensor uv, torch::Tensor dy, int filter_mode, int boundary_mode);
+OP_RETURN_TTV texture_grad_linear_mipmap_nearest (torch::Tensor tex, torch::Tensor uv, torch::Tensor dy, torch::Tensor uv_da, torch::Tensor mip_level_bias, TextureMipWrapper mip_wrapper, std::vector mip_stack, int filter_mode, int boundary_mode);
+OP_RETURN_TTTTV texture_grad_linear_mipmap_linear (torch::Tensor tex, torch::Tensor uv, torch::Tensor dy, torch::Tensor uv_da, torch::Tensor mip_level_bias, TextureMipWrapper mip_wrapper, std::vector mip_stack, int filter_mode, int boundary_mode);
+TopologyHashWrapper antialias_construct_topology_hash (torch::Tensor tri);
+OP_RETURN_TT antialias_fwd (torch::Tensor color, torch::Tensor rast, torch::Tensor pos, torch::Tensor tri, TopologyHashWrapper topology_hash);
+OP_RETURN_TT antialias_grad (torch::Tensor color, torch::Tensor rast, torch::Tensor pos, torch::Tensor tri, torch::Tensor dy, torch::Tensor work_buffer);
+
+//------------------------------------------------------------------------
+
+PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
+ // State classes.
+ pybind11::class_(m, "RasterizeCRStateWrapper").def(pybind11::init());
+ pybind11::class_(m, "TextureMipWrapper").def(pybind11::init<>());
+ pybind11::class_(m, "TopologyHashWrapper");
+
+ // Plumbing to torch/c10 logging system.
+ m.def("get_log_level", [](void) { return FLAGS_caffe2_log_level; }, "get log level");
+ m.def("set_log_level", [](int level){ FLAGS_caffe2_log_level = level; }, "set log level");
+
+ // Ops.
+ m.def("rasterize_fwd_cuda", &rasterize_fwd_cuda, "rasterize forward op (cuda)");
+ m.def("rasterize_grad", &rasterize_grad, "rasterize gradient op ignoring db gradients");
+ m.def("rasterize_grad_db", &rasterize_grad_db, "rasterize gradient op with db gradients");
+ m.def("interpolate_fwd", &interpolate_fwd, "interpolate forward op with attribute derivatives");
+ m.def("interpolate_fwd_da", &interpolate_fwd_da, "interpolate forward op without attribute derivatives");
+ m.def("interpolate_grad", &interpolate_grad, "interpolate gradient op with attribute derivatives");
+ m.def("interpolate_grad_da", &interpolate_grad_da, "interpolate gradient op without attribute derivatives");
+ m.def("texture_construct_mip", &texture_construct_mip, "texture mipmap construction");
+ m.def("texture_fwd", &texture_fwd, "texture forward op without mipmapping");
+ m.def("texture_fwd_mip", &texture_fwd_mip, "texture forward op with mipmapping");
+ m.def("texture_grad_nearest", &texture_grad_nearest, "texture gradient op in nearest mode");
+ m.def("texture_grad_linear", &texture_grad_linear, "texture gradient op in linear mode");
+ m.def("texture_grad_linear_mipmap_nearest", &texture_grad_linear_mipmap_nearest, "texture gradient op in linear-mipmap-nearest mode");
+ m.def("texture_grad_linear_mipmap_linear", &texture_grad_linear_mipmap_linear, "texture gradient op in linear-mipmap-linear mode");
+ m.def("antialias_construct_topology_hash", &antialias_construct_topology_hash, "antialias topology hash construction");
+ m.def("antialias_fwd", &antialias_fwd, "antialias forward op");
+ m.def("antialias_grad", &antialias_grad, "antialias gradient op");
+}
+
+//------------------------------------------------------------------------
diff --git a/extensions/nvdiffrast/nvdiffrast/torch/torch_bindings_gl.cpp b/extensions/nvdiffrast/nvdiffrast/torch/torch_bindings_gl.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..f403d73cf3149531ccedd277e6b8b26afa5cdda4
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/torch/torch_bindings_gl.cpp
@@ -0,0 +1,30 @@
+// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#include "torch_common.inl"
+#include "torch_types.h"
+#include
+
+//------------------------------------------------------------------------
+// Op prototypes.
+
+std::tuple rasterize_fwd_gl(RasterizeGLStateWrapper& stateWrapper, torch::Tensor pos, torch::Tensor tri, std::tuple resolution, torch::Tensor ranges, int peeling_idx);
+
+//------------------------------------------------------------------------
+
+PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
+ // State classes.
+ pybind11::class_(m, "RasterizeGLStateWrapper").def(pybind11::init())
+ .def("set_context", &RasterizeGLStateWrapper::setContext)
+ .def("release_context", &RasterizeGLStateWrapper::releaseContext);
+
+ // Ops.
+ m.def("rasterize_fwd_gl", &rasterize_fwd_gl, "rasterize forward op (opengl)");
+}
+
+//------------------------------------------------------------------------
diff --git a/extensions/nvdiffrast/nvdiffrast/torch/torch_common.inl b/extensions/nvdiffrast/nvdiffrast/torch/torch_common.inl
new file mode 100644
index 0000000000000000000000000000000000000000..3809ecef8b091fa911d1fdf89c5b84dc1038e9a1
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/torch/torch_common.inl
@@ -0,0 +1,29 @@
+// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#pragma once
+#include "../common/framework.h"
+
+//------------------------------------------------------------------------
+// Input check helpers.
+//------------------------------------------------------------------------
+
+#ifdef _MSC_VER
+#define __func__ __FUNCTION__
+#endif
+
+#define NVDR_CHECK_DEVICE(...) do { TORCH_CHECK(at::cuda::check_device({__VA_ARGS__}), __func__, "(): Inputs " #__VA_ARGS__ " must reside on the same GPU device") } while(0)
+#define NVDR_CHECK_CPU(...) do { nvdr_check_cpu({__VA_ARGS__}, __func__, "(): Inputs " #__VA_ARGS__ " must reside on CPU"); } while(0)
+#define NVDR_CHECK_CONTIGUOUS(...) do { nvdr_check_contiguous({__VA_ARGS__}, __func__, "(): Inputs " #__VA_ARGS__ " must be contiguous tensors"); } while(0)
+#define NVDR_CHECK_F32(...) do { nvdr_check_f32({__VA_ARGS__}, __func__, "(): Inputs " #__VA_ARGS__ " must be float32 tensors"); } while(0)
+#define NVDR_CHECK_I32(...) do { nvdr_check_i32({__VA_ARGS__}, __func__, "(): Inputs " #__VA_ARGS__ " must be int32 tensors"); } while(0)
+inline void nvdr_check_cpu(at::ArrayRef ts, const char* func, const char* err_msg) { for (const at::Tensor& t : ts) TORCH_CHECK(t.device().type() == c10::DeviceType::CPU, func, err_msg); }
+inline void nvdr_check_contiguous(at::ArrayRef ts, const char* func, const char* err_msg) { for (const at::Tensor& t : ts) TORCH_CHECK(t.is_contiguous(), func, err_msg); }
+inline void nvdr_check_f32(at::ArrayRef ts, const char* func, const char* err_msg) { for (const at::Tensor& t : ts) TORCH_CHECK(t.dtype() == torch::kFloat32, func, err_msg); }
+inline void nvdr_check_i32(at::ArrayRef ts, const char* func, const char* err_msg) { for (const at::Tensor& t : ts) TORCH_CHECK(t.dtype() == torch::kInt32, func, err_msg); }
+//------------------------------------------------------------------------
diff --git a/extensions/nvdiffrast/nvdiffrast/torch/torch_interpolate.cpp b/extensions/nvdiffrast/nvdiffrast/torch/torch_interpolate.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..c3f303a2ec9ae02a1db81d326966415efca6568e
--- /dev/null
+++ b/extensions/nvdiffrast/nvdiffrast/torch/torch_interpolate.cpp
@@ -0,0 +1,250 @@
+// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
+//
+// NVIDIA CORPORATION and its licensors retain all intellectual property
+// and proprietary rights in and to this software, related documentation
+// and any modifications thereto. Any use, reproduction, disclosure or
+// distribution of this software and related documentation without an express
+// license agreement from NVIDIA CORPORATION is strictly prohibited.
+
+#include "torch_common.inl"
+#include "../common/common.h"
+#include "../common/interpolate.h"
+
+//------------------------------------------------------------------------
+// Kernel prototypes.
+
+void InterpolateFwdKernel (const InterpolateKernelParams p);
+void InterpolateFwdKernelDa (const InterpolateKernelParams p);
+void InterpolateGradKernel (const InterpolateKernelParams p);
+void InterpolateGradKernelDa(const InterpolateKernelParams p);
+
+//------------------------------------------------------------------------
+// Helper
+
+static void set_diff_attrs(InterpolateKernelParams& p, bool diff_attrs_all, std::vector& diff_attrs_vec)
+{
+ if (diff_attrs_all)
+ {
+ p.numDiffAttr = p.numAttr;
+ p.diff_attrs_all = 1;
+ }
+ else
+ {
+ NVDR_CHECK(diff_attrs_vec.size() <= IP_MAX_DIFF_ATTRS, "too many entries in diff_attrs list (increase IP_MAX_DIFF_ATTRS)");
+ p.numDiffAttr = diff_attrs_vec.size();
+ memcpy(p.diffAttrs, &diff_attrs_vec[0], diff_attrs_vec.size()*sizeof(int));
+ }
+}
+
+//------------------------------------------------------------------------
+// Forward op.
+
+std::tuple interpolate_fwd_da(torch::Tensor attr, torch::Tensor rast, torch::Tensor tri, torch::Tensor rast_db, bool diff_attrs_all, std::vector& diff_attrs_vec)
+{
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(attr));
+ cudaStream_t stream = at::cuda::getCurrentCUDAStream();
+ InterpolateKernelParams p = {}; // Initialize all fields to zero.
+ bool enable_da = (rast_db.defined()) && (diff_attrs_all || !diff_attrs_vec.empty());
+ p.instance_mode = (attr.sizes().size() > 2) ? 1 : 0;
+
+ // Check inputs.
+ if (enable_da)
+ {
+ NVDR_CHECK_DEVICE(attr, rast, tri, rast_db);
+ NVDR_CHECK_CONTIGUOUS(attr, rast, tri, rast_db);
+ NVDR_CHECK_F32(attr, rast, rast_db);
+ NVDR_CHECK_I32(tri);
+ }
+ else
+ {
+ NVDR_CHECK_DEVICE(attr, rast, tri);
+ NVDR_CHECK_CONTIGUOUS(attr, rast, tri);
+ NVDR_CHECK_F32(attr, rast);
+ NVDR_CHECK_I32(tri);
+ }
+
+ // Sanity checks.
+ NVDR_CHECK(rast.sizes().size() == 4 && rast.size(0) > 0 && rast.size(1) > 0 && rast.size(2) > 0 && rast.size(3) == 4, "rast must have shape[>0, >0, >0, 4]");
+ NVDR_CHECK( tri.sizes().size() == 2 && tri.size(0) > 0 && tri.size(1) == 3, "tri must have shape [>0, 3]");
+ NVDR_CHECK((attr.sizes().size() == 2 || attr.sizes().size() == 3) && attr.size(0) > 0 && attr.size(1) > 0 && (attr.sizes().size() == 2 || attr.size(2) > 0), "attr must have shape [>0, >0, >0] or [>0, >0]");
+ if (p.instance_mode)
+ NVDR_CHECK(attr.size(0) == rast.size(0) || attr.size(0) == 1, "minibatch size mismatch between inputs rast, attr");
+ if (enable_da)
+ {
+ NVDR_CHECK(rast_db.sizes().size() == 4 && rast_db.size(0) > 0 && rast_db.size(1) > 0 && rast_db.size(2) > 0 && rast_db.size(3) == 4, "rast_db must have shape[>0, >0, >0, 4]");
+ NVDR_CHECK(rast_db.size(1) == rast.size(1) && rast_db.size(2) == rast.size(2), "spatial size mismatch between inputs rast and rast_db");
+ NVDR_CHECK(rast_db.size(0) == rast.size(0), "minibatch size mismatch between inputs rast, rast_db");
+ }
+
+ // Extract input dimensions.
+ p.numVertices = attr.size(p.instance_mode ? 1 : 0);
+ p.numAttr = attr.size(p.instance_mode ? 2 : 1);
+ p.numTriangles = tri.size(0);
+ p.height = rast.size(1);
+ p.width = rast.size(2);
+ p.depth = rast.size(0);
+
+ // Set attribute pixel differential info if enabled, otherwise leave as zero.
+ if (enable_da)
+ set_diff_attrs(p, diff_attrs_all, diff_attrs_vec);
+ else
+ p.numDiffAttr = 0;
+
+ // Get input pointers.
+ p.attr = attr.data_ptr();
+ p.rast = rast.data_ptr();
+ p.tri = tri.data_ptr();
+ p.rastDB = enable_da ? rast_db.data_ptr() : NULL;
+ p.attrBC = (p.instance_mode && attr.size(0) == 1) ? 1 : 0;
+
+ // Allocate output tensors.
+ torch::TensorOptions opts = torch::TensorOptions().dtype(torch::kFloat32).device(torch::kCUDA);
+ torch::Tensor out = torch::empty({p.depth, p.height, p.width, p.numAttr}, opts);
+ torch::Tensor out_da = torch::empty({p.depth, p.height, p.width, p.numDiffAttr * 2}, opts);
+
+ p.out = out.data_ptr();
+ p.outDA = enable_da ? out_da.data_ptr() : NULL;
+
+ // Verify that buffers are aligned to allow float2/float4 operations.
+ NVDR_CHECK(!((uintptr_t)p.rast & 15), "rast input tensor not aligned to float4");
+ NVDR_CHECK(!((uintptr_t)p.rastDB & 15), "rast_db input tensor not aligned to float4");
+ NVDR_CHECK(!((uintptr_t)p.outDA & 7), "out_da output tensor not aligned to float2");
+
+ // Choose launch parameters.
+ dim3 blockSize = getLaunchBlockSize(IP_FWD_MAX_KERNEL_BLOCK_WIDTH, IP_FWD_MAX_KERNEL_BLOCK_HEIGHT, p.width, p.height);
+ dim3 gridSize = getLaunchGridSize(blockSize, p.width, p.height, p.depth);
+
+ // Launch CUDA kernel.
+ void* args[] = {&p};
+ void* func = enable_da ? (void*)InterpolateFwdKernelDa : (void*)InterpolateFwdKernel;
+ NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel(func, gridSize, blockSize, args, 0, stream));
+
+ // Return results.
+ return std::tuple(out, out_da);
+}
+
+// Version without derivatives.
+std::tuple interpolate_fwd(torch::Tensor attr, torch::Tensor rast, torch::Tensor tri)
+{
+ std::vector empty_vec;
+ torch::Tensor empty_tensor;
+ return interpolate_fwd_da(attr, rast, tri, empty_tensor, false, empty_vec);
+}
+
+//------------------------------------------------------------------------
+// Gradient op.
+
+std::tuple interpolate_grad_da(torch::Tensor attr, torch::Tensor rast, torch::Tensor tri, torch::Tensor dy, torch::Tensor rast_db, torch::Tensor dda, bool diff_attrs_all, std::vector