gokaygokay commited on
Commit
ef64599
·
1 Parent(s): 0038320

first lora

Browse files
Files changed (3) hide show
  1. README.md +0 -13
  2. flux_lora.py → app.py +108 -108
  3. requirements.txt +22 -18
README.md DELETED
@@ -1,13 +0,0 @@
1
- ---
2
- title: FLUX.1-dev + Captioner
3
- emoji: 🐨
4
- colorFrom: blue
5
- colorTo: indigo
6
- sdk: gradio
7
- sdk_version: 4.37.2
8
- app_file: app.py
9
- pinned: false
10
- license: apache-2.0
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
flux_lora.py → app.py RENAMED
@@ -1,109 +1,109 @@
1
- import spaces
2
- import argparse
3
- import os
4
- import time
5
- from os import path
6
- from safetensors.torch import load_file
7
- from huggingface_hub import hf_hub_download
8
-
9
- cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
10
- os.environ["TRANSFORMERS_CACHE"] = cache_path
11
- os.environ["HF_HUB_CACHE"] = cache_path
12
- os.environ["HF_HOME"] = cache_path
13
-
14
- import gradio as gr
15
- import torch
16
- from diffusers import FluxPipeline
17
-
18
- torch.backends.cuda.matmul.allow_tf32 = True
19
-
20
- class timer:
21
- def __init__(self, method_name="timed process"):
22
- self.method = method_name
23
- def __enter__(self):
24
- self.start = time.time()
25
- print(f"{self.method} starts")
26
- def __exit__(self, exc_type, exc_val, exc_tb):
27
- end = time.time()
28
- print(f"{self.method} took {str(round(end - self.start, 2))}s")
29
-
30
- if not path.exists(cache_path):
31
- os.makedirs(cache_path, exist_ok=True)
32
-
33
- pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
34
- pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
35
- pipe.fuse_lora(lora_scale=0.125)
36
- pipe.to(device="cuda", dtype=torch.bfloat16)
37
-
38
- with gr.Blocks(theme=gr.themes.Soft()) as demo:
39
- gr.Markdown(
40
- """
41
- <div style="text-align: center; max-width: 650px; margin: 0 auto;">
42
- <h1 style="font-size: 2.5rem; font-weight: 700; margin-bottom: 1rem; display: contents;">Hyper-FLUX-8steps-LoRA</h1>
43
- <p style="font-size: 1rem; margin-bottom: 1.5rem;">AutoML team from ByteDance</p>
44
- </div>
45
- """
46
- )
47
-
48
- with gr.Row():
49
- with gr.Column(scale=3):
50
- with gr.Group():
51
- prompt = gr.Textbox(
52
- label="Your Image Description",
53
- placeholder="E.g., A serene landscape with mountains and a lake at sunset",
54
- lines=3
55
- )
56
-
57
- with gr.Accordion("Advanced Settings", open=False):
58
- with gr.Group():
59
- with gr.Row():
60
- height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=1024)
61
- width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=1024)
62
-
63
- with gr.Row():
64
- steps = gr.Slider(label="Inference Steps", minimum=6, maximum=25, step=1, value=8)
65
- scales = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=5.0, step=0.1, value=3.5)
66
-
67
- seed = gr.Number(label="Seed (for reproducibility)", value=3413, precision=0)
68
-
69
- generate_btn = gr.Button("Generate Image", variant="primary", scale=1)
70
-
71
- with gr.Column(scale=4):
72
- output = gr.Image(label="Your Generated Image")
73
-
74
- gr.Markdown(
75
- """
76
- <div style="max-width: 650px; margin: 2rem auto; padding: 1rem; border-radius: 10px; background-color: #f0f0f0;">
77
- <h2 style="font-size: 1.5rem; margin-bottom: 1rem;">How to Use</h2>
78
- <ol style="padding-left: 1.5rem;">
79
- <li>Enter a detailed description of the image you want to create.</li>
80
- <li>Adjust advanced settings if desired (tap to expand).</li>
81
- <li>Tap "Generate Image" and wait for your creation!</li>
82
- </ol>
83
- <p style="margin-top: 1rem; font-style: italic;">Tip: Be specific in your description for best results!</p>
84
- </div>
85
- """
86
- )
87
-
88
- @spaces.GPU
89
- def process_image(height, width, steps, scales, prompt, seed):
90
- global pipe
91
- with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
92
- return pipe(
93
- prompt=[prompt],
94
- generator=torch.Generator().manual_seed(int(seed)),
95
- num_inference_steps=int(steps),
96
- guidance_scale=float(scales),
97
- height=int(height),
98
- width=int(width),
99
- max_sequence_length=256
100
- ).images[0]
101
-
102
- generate_btn.click(
103
- process_image,
104
- inputs=[height, width, steps, scales, prompt, seed],
105
- outputs=output
106
- )
107
-
108
- if __name__ == "__main__":
109
  demo.launch()
 
1
+ import spaces
2
+ import argparse
3
+ import os
4
+ import time
5
+ from os import path
6
+ from safetensors.torch import load_file
7
+ from huggingface_hub import hf_hub_download
8
+
9
+ cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
10
+ os.environ["TRANSFORMERS_CACHE"] = cache_path
11
+ os.environ["HF_HUB_CACHE"] = cache_path
12
+ os.environ["HF_HOME"] = cache_path
13
+
14
+ import gradio as gr
15
+ import torch
16
+ from diffusers import FluxPipeline
17
+
18
+ torch.backends.cuda.matmul.allow_tf32 = True
19
+
20
+ class timer:
21
+ def __init__(self, method_name="timed process"):
22
+ self.method = method_name
23
+ def __enter__(self):
24
+ self.start = time.time()
25
+ print(f"{self.method} starts")
26
+ def __exit__(self, exc_type, exc_val, exc_tb):
27
+ end = time.time()
28
+ print(f"{self.method} took {str(round(end - self.start, 2))}s")
29
+
30
+ if not path.exists(cache_path):
31
+ os.makedirs(cache_path, exist_ok=True)
32
+
33
+ pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
34
+ pipe.load_lora_weights(hf_hub_download("gokaygokay/Flux-Game-Assets-LoRA-v2", "game_asst.safetensors"))
35
+ pipe.fuse_lora(lora_scale=1)
36
+ pipe.to(device="cuda", dtype=torch.bfloat16)
37
+
38
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
39
+ gr.Markdown(
40
+ """
41
+ <div style="text-align: center; max-width: 650px; margin: 0 auto;">
42
+ <h1 style="font-size: 2.5rem; font-weight: 700; margin-bottom: 1rem; display: contents;">Hyper-FLUX-8steps-LoRA</h1>
43
+ <p style="font-size: 1rem; margin-bottom: 1.5rem;">AutoML team from ByteDance</p>
44
+ </div>
45
+ """
46
+ )
47
+
48
+ with gr.Row():
49
+ with gr.Column(scale=3):
50
+ with gr.Group():
51
+ prompt = gr.Textbox(
52
+ label="Your Image Description",
53
+ placeholder="E.g., A serene landscape with mountains and a lake at sunset",
54
+ lines=3
55
+ )
56
+
57
+ with gr.Accordion("Advanced Settings", open=False):
58
+ with gr.Group():
59
+ with gr.Row():
60
+ height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=1024)
61
+ width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=1024)
62
+
63
+ with gr.Row():
64
+ steps = gr.Slider(label="Inference Steps", minimum=10, maximum=50, step=1, value=28)
65
+ scales = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=5.0, step=0.1, value=3.5)
66
+
67
+ seed = gr.Number(label="Seed (for reproducibility)", value=3413, precision=0)
68
+
69
+ generate_btn = gr.Button("Generate Image", variant="primary", scale=1)
70
+
71
+ with gr.Column(scale=4):
72
+ output = gr.Image(label="Your Generated Image")
73
+
74
+ gr.Markdown(
75
+ """
76
+ <div style="max-width: 650px; margin: 2rem auto; padding: 1rem; border-radius: 10px; background-color: #f0f0f0;">
77
+ <h2 style="font-size: 1.5rem; margin-bottom: 1rem;">How to Use</h2>
78
+ <ol style="padding-left: 1.5rem;">
79
+ <li>Enter a detailed description of the image you want to create.</li>
80
+ <li>Adjust advanced settings if desired (tap to expand).</li>
81
+ <li>Tap "Generate Image" and wait for your creation!</li>
82
+ </ol>
83
+ <p style="margin-top: 1rem; font-style: italic;">Tip: Be specific in your description for best results!</p>
84
+ </div>
85
+ """
86
+ )
87
+
88
+ @spaces.GPU
89
+ def process_image(height, width, steps, scales, prompt, seed):
90
+ global pipe
91
+ with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
92
+ return pipe(
93
+ prompt=[prompt],
94
+ generator=torch.Generator().manual_seed(int(seed)),
95
+ num_inference_steps=int(steps),
96
+ guidance_scale=float(scales),
97
+ height=int(height),
98
+ width=int(width),
99
+ max_sequence_length=256
100
+ ).images[0]
101
+
102
+ generate_btn.click(
103
+ process_image,
104
+ inputs=[height, width, steps, scales, prompt, seed],
105
+ outputs=output
106
+ )
107
+
108
+ if __name__ == "__main__":
109
  demo.launch()
requirements.txt CHANGED
@@ -1,19 +1,23 @@
1
- torch>=2.1.2
2
- torchvision>=0.16.2
3
- einops>=0.7.0
4
- jaxtyping>=0.2.31
5
- omegaconf>=2.3.0
6
- transformers>=4.43.3
7
- slangtorch>=1.2.2
8
- open_clip_torch>=2.24.0
9
- trimesh>=4.4.1
10
- numpy>=1.26.4
11
- huggingface-hub>=0.23.4
12
- rembg[gpu]>=2.0.57
13
- gradio-litmodel3d>=0.0.1
14
  accelerate
15
- diffusers>=0.30.0
16
- invisible_watermark
17
- xformers
18
- sentencepiece
19
- peft
 
 
 
 
 
 
 
 
 
1
+ torch==2.1.0
2
+ torchvision==0.16.0
3
+ torchaudio==2.1.0
4
+ pytorch-lightning==2.1.2
5
+ einops
6
+ omegaconf
7
+ deepspeed
8
+ torchmetrics
9
+ webdataset
 
 
 
 
10
  accelerate
11
+ tensorboard
12
+ PyMCubes
13
+ trimesh
14
+ rembg
15
+ transformers==4.34.1
16
+ diffusers==0.19.3
17
+ bitsandbytes
18
+ imageio[ffmpeg]
19
+ xatlas
20
+ plyfile
21
+ xformers==0.0.22.post7
22
+ git+https://github.com/NVlabs/nvdiffrast/
23
+ huggingface-hub