import gradio as gr import torch from TTS.api import TTS import os # Aceptar términos de uso de Coqui TTS os.environ["COQUI_TOS_AGREED"] = "1" # Configurar para usar CPU si no hay GPU disponible device = "cuda" if torch.cuda.is_available() else "cpu" # Inicializar el modelo de TTS con manejo seguro de carga tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2", gpu=torch.cuda.is_available()).to(device) # Función para clonar la voz y generar el archivo de audio def clone(text, audio): output_path = "./output.wav" tts.tts_to_file(text=text, speaker_wav=audio, language="es", file_path=output_path) return output_path # Interfaz de Gradio iface = gr.Interface( fn=clone, inputs=[ gr.Textbox(label='Text'), gr.Audio(type='filepath', label='Voice reference audio file') ], outputs=gr.Audio(type='filepath'), title='cn-speech-esss', description=""" by [Gitgato](gitgato) This space uses the xtts_v2 model. Non-commercial use only. [Coqui Public Model License](https://coqui.ai/cpml) Please ❤️ this Space. Email me. """, theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate"), ) # Lanzar la interfaz iface.launch()