{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "556cfb74", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/opt/conda/envs/antibody_datasets/lib/python3.13/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", " from .autonotebook import tqdm as notebook_tqdm\n" ] } ], "source": [ "from datasets import load_dataset\n", "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 2, "id": "8b8cea40", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Generating train split: 100%|██████████| 61/61 [00:00<00:00, 176.99 examples/s]\n" ] }, { "ename": "ValueError", "evalue": "Unknown split \"auto_submissions\". Should be one of ['train'].", "output_type": "error", "traceback": [ "\u001b[31m---------------------------------------------------------------------------\u001b[39m", "\u001b[31mValueError\u001b[39m Traceback (most recent call last)", "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[2]\u001b[39m\u001b[32m, line 2\u001b[39m\n\u001b[32m 1\u001b[39m \u001b[38;5;66;03m# access results dataset\u001b[39;00m\n\u001b[32m----> \u001b[39m\u001b[32m2\u001b[39m res = \u001b[43mload_dataset\u001b[49m\u001b[43m(\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mginkgo-datapoints/abdev-bench-results\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msplit\u001b[49m\u001b[43m=\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mauto_submissions\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[32m 3\u001b[39m \u001b[38;5;28mprint\u001b[39m(res)\n", "\u001b[36mFile \u001b[39m\u001b[32m/opt/conda/envs/antibody_datasets/lib/python3.13/site-packages/datasets/load.py:2096\u001b[39m, in \u001b[36mload_dataset\u001b[39m\u001b[34m(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, keep_in_memory, save_infos, revision, token, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs)\u001b[39m\n\u001b[32m 2092\u001b[39m \u001b[38;5;66;03m# Build dataset for splits\u001b[39;00m\n\u001b[32m 2093\u001b[39m keep_in_memory = (\n\u001b[32m 2094\u001b[39m keep_in_memory \u001b[38;5;28;01mif\u001b[39;00m keep_in_memory \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m is_small_dataset(builder_instance.info.dataset_size)\n\u001b[32m 2095\u001b[39m )\n\u001b[32m-> \u001b[39m\u001b[32m2096\u001b[39m ds = \u001b[43mbuilder_instance\u001b[49m\u001b[43m.\u001b[49m\u001b[43mas_dataset\u001b[49m\u001b[43m(\u001b[49m\u001b[43msplit\u001b[49m\u001b[43m=\u001b[49m\u001b[43msplit\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mverification_mode\u001b[49m\u001b[43m=\u001b[49m\u001b[43mverification_mode\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43min_memory\u001b[49m\u001b[43m=\u001b[49m\u001b[43mkeep_in_memory\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 2097\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m save_infos:\n\u001b[32m 2098\u001b[39m builder_instance._save_infos()\n", "\u001b[36mFile \u001b[39m\u001b[32m/opt/conda/envs/antibody_datasets/lib/python3.13/site-packages/datasets/builder.py:1127\u001b[39m, in \u001b[36mDatasetBuilder.as_dataset\u001b[39m\u001b[34m(self, split, run_post_process, verification_mode, in_memory)\u001b[39m\n\u001b[32m 1124\u001b[39m verification_mode = VerificationMode(verification_mode \u001b[38;5;129;01mor\u001b[39;00m VerificationMode.BASIC_CHECKS)\n\u001b[32m 1126\u001b[39m \u001b[38;5;66;03m# Create a dataset for each of the given splits\u001b[39;00m\n\u001b[32m-> \u001b[39m\u001b[32m1127\u001b[39m datasets = \u001b[43mmap_nested\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 1128\u001b[39m \u001b[43m \u001b[49m\u001b[43mpartial\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 1129\u001b[39m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43m_build_single_dataset\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1130\u001b[39m \u001b[43m \u001b[49m\u001b[43mrun_post_process\u001b[49m\u001b[43m=\u001b[49m\u001b[43mrun_post_process\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1131\u001b[39m \u001b[43m \u001b[49m\u001b[43mverification_mode\u001b[49m\u001b[43m=\u001b[49m\u001b[43mverification_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1132\u001b[39m \u001b[43m \u001b[49m\u001b[43min_memory\u001b[49m\u001b[43m=\u001b[49m\u001b[43min_memory\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1133\u001b[39m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1134\u001b[39m \u001b[43m \u001b[49m\u001b[43msplit\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1135\u001b[39m \u001b[43m \u001b[49m\u001b[43mmap_tuple\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[32m 1136\u001b[39m \u001b[43m \u001b[49m\u001b[43mdisable_tqdm\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[32m 1137\u001b[39m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 1138\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(datasets, \u001b[38;5;28mdict\u001b[39m):\n\u001b[32m 1139\u001b[39m datasets = DatasetDict(datasets)\n", "\u001b[36mFile \u001b[39m\u001b[32m/opt/conda/envs/antibody_datasets/lib/python3.13/site-packages/datasets/utils/py_utils.py:494\u001b[39m, in \u001b[36mmap_nested\u001b[39m\u001b[34m(function, data_struct, dict_only, map_list, map_tuple, map_numpy, num_proc, parallel_min_length, batched, batch_size, types, disable_tqdm, desc)\u001b[39m\n\u001b[32m 492\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m batched:\n\u001b[32m 493\u001b[39m data_struct = [data_struct]\n\u001b[32m--> \u001b[39m\u001b[32m494\u001b[39m mapped = \u001b[43mfunction\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata_struct\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 495\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m batched:\n\u001b[32m 496\u001b[39m mapped = mapped[\u001b[32m0\u001b[39m]\n", "\u001b[36mFile \u001b[39m\u001b[32m/opt/conda/envs/antibody_datasets/lib/python3.13/site-packages/datasets/builder.py:1157\u001b[39m, in \u001b[36mDatasetBuilder._build_single_dataset\u001b[39m\u001b[34m(self, split, run_post_process, verification_mode, in_memory)\u001b[39m\n\u001b[32m 1154\u001b[39m split = Split(split)\n\u001b[32m 1156\u001b[39m \u001b[38;5;66;03m# Build base dataset\u001b[39;00m\n\u001b[32m-> \u001b[39m\u001b[32m1157\u001b[39m ds = \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43m_as_dataset\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 1158\u001b[39m \u001b[43m \u001b[49m\u001b[43msplit\u001b[49m\u001b[43m=\u001b[49m\u001b[43msplit\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1159\u001b[39m \u001b[43m \u001b[49m\u001b[43min_memory\u001b[49m\u001b[43m=\u001b[49m\u001b[43min_memory\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1160\u001b[39m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 1161\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m run_post_process:\n\u001b[32m 1162\u001b[39m \u001b[38;5;28;01mfor\u001b[39;00m resource_file_name \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m._post_processing_resources(split).values():\n", "\u001b[36mFile \u001b[39m\u001b[32m/opt/conda/envs/antibody_datasets/lib/python3.13/site-packages/datasets/builder.py:1231\u001b[39m, in \u001b[36mDatasetBuilder._as_dataset\u001b[39m\u001b[34m(self, split, in_memory)\u001b[39m\n\u001b[32m 1229\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m._check_legacy_cache():\n\u001b[32m 1230\u001b[39m dataset_name = \u001b[38;5;28mself\u001b[39m.name\n\u001b[32m-> \u001b[39m\u001b[32m1231\u001b[39m dataset_kwargs = \u001b[43mArrowReader\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcache_dir\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43minfo\u001b[49m\u001b[43m)\u001b[49m\u001b[43m.\u001b[49m\u001b[43mread\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 1232\u001b[39m \u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[43m=\u001b[49m\u001b[43mdataset_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1233\u001b[39m \u001b[43m \u001b[49m\u001b[43minstructions\u001b[49m\u001b[43m=\u001b[49m\u001b[43msplit\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1234\u001b[39m \u001b[43m \u001b[49m\u001b[43msplit_infos\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43minfo\u001b[49m\u001b[43m.\u001b[49m\u001b[43msplits\u001b[49m\u001b[43m.\u001b[49m\u001b[43mvalues\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1235\u001b[39m \u001b[43m \u001b[49m\u001b[43min_memory\u001b[49m\u001b[43m=\u001b[49m\u001b[43min_memory\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1236\u001b[39m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 1237\u001b[39m fingerprint = \u001b[38;5;28mself\u001b[39m._get_dataset_fingerprint(split)\n\u001b[32m 1238\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m Dataset(fingerprint=fingerprint, **dataset_kwargs)\n", "\u001b[36mFile \u001b[39m\u001b[32m/opt/conda/envs/antibody_datasets/lib/python3.13/site-packages/datasets/arrow_reader.py:248\u001b[39m, in \u001b[36mBaseReader.read\u001b[39m\u001b[34m(self, name, instructions, split_infos, in_memory)\u001b[39m\n\u001b[32m 227\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34mread\u001b[39m(\n\u001b[32m 228\u001b[39m \u001b[38;5;28mself\u001b[39m,\n\u001b[32m 229\u001b[39m name,\n\u001b[32m (...)\u001b[39m\u001b[32m 232\u001b[39m in_memory=\u001b[38;5;28;01mFalse\u001b[39;00m,\n\u001b[32m 233\u001b[39m ):\n\u001b[32m 234\u001b[39m \u001b[38;5;250m \u001b[39m\u001b[33;03m\"\"\"Returns Dataset instance(s).\u001b[39;00m\n\u001b[32m 235\u001b[39m \n\u001b[32m 236\u001b[39m \u001b[33;03m Args:\u001b[39;00m\n\u001b[32m (...)\u001b[39m\u001b[32m 245\u001b[39m \u001b[33;03m kwargs to build a single Dataset instance.\u001b[39;00m\n\u001b[32m 246\u001b[39m \u001b[33;03m \"\"\"\u001b[39;00m\n\u001b[32m--> \u001b[39m\u001b[32m248\u001b[39m files = \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mget_file_instructions\u001b[49m\u001b[43m(\u001b[49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minstructions\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msplit_infos\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 249\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m files:\n\u001b[32m 250\u001b[39m msg = \u001b[33mf\u001b[39m\u001b[33m'\u001b[39m\u001b[33mInstruction \u001b[39m\u001b[33m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00minstructions\u001b[38;5;132;01m}\u001b[39;00m\u001b[33m\"\u001b[39m\u001b[33m corresponds to no data!\u001b[39m\u001b[33m'\u001b[39m\n", "\u001b[36mFile \u001b[39m\u001b[32m/opt/conda/envs/antibody_datasets/lib/python3.13/site-packages/datasets/arrow_reader.py:221\u001b[39m, in \u001b[36mBaseReader.get_file_instructions\u001b[39m\u001b[34m(self, name, instruction, split_infos)\u001b[39m\n\u001b[32m 219\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34mget_file_instructions\u001b[39m(\u001b[38;5;28mself\u001b[39m, name, instruction, split_infos):\n\u001b[32m 220\u001b[39m \u001b[38;5;250m \u001b[39m\u001b[33;03m\"\"\"Return list of dict {'filename': str, 'skip': int, 'take': int}\"\"\"\u001b[39;00m\n\u001b[32m--> \u001b[39m\u001b[32m221\u001b[39m file_instructions = \u001b[43mmake_file_instructions\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 222\u001b[39m \u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msplit_infos\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minstruction\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfiletype_suffix\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43m_filetype_suffix\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mprefix_path\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43m_path\u001b[49m\n\u001b[32m 223\u001b[39m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 224\u001b[39m files = file_instructions.file_instructions\n\u001b[32m 225\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m files\n", "\u001b[36mFile \u001b[39m\u001b[32m/opt/conda/envs/antibody_datasets/lib/python3.13/site-packages/datasets/arrow_reader.py:130\u001b[39m, in \u001b[36mmake_file_instructions\u001b[39m\u001b[34m(name, split_infos, instruction, filetype_suffix, prefix_path)\u001b[39m\n\u001b[32m 128\u001b[39m instruction = ReadInstruction.from_spec(instruction)\n\u001b[32m 129\u001b[39m \u001b[38;5;66;03m# Create the absolute instruction (per split)\u001b[39;00m\n\u001b[32m--> \u001b[39m\u001b[32m130\u001b[39m absolute_instructions = \u001b[43minstruction\u001b[49m\u001b[43m.\u001b[49m\u001b[43mto_absolute\u001b[49m\u001b[43m(\u001b[49m\u001b[43mname2len\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 132\u001b[39m \u001b[38;5;66;03m# For each split, return the files instruction (skip/take)\u001b[39;00m\n\u001b[32m 133\u001b[39m file_instructions = []\n", "\u001b[36mFile \u001b[39m\u001b[32m/opt/conda/envs/antibody_datasets/lib/python3.13/site-packages/datasets/arrow_reader.py:620\u001b[39m, in \u001b[36mReadInstruction.to_absolute\u001b[39m\u001b[34m(self, name2len)\u001b[39m\n\u001b[32m 608\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34mto_absolute\u001b[39m(\u001b[38;5;28mself\u001b[39m, name2len):\n\u001b[32m 609\u001b[39m \u001b[38;5;250m \u001b[39m\u001b[33;03m\"\"\"Translate instruction into a list of absolute instructions.\u001b[39;00m\n\u001b[32m 610\u001b[39m \n\u001b[32m 611\u001b[39m \u001b[33;03m Those absolute instructions are then to be added together.\u001b[39;00m\n\u001b[32m (...)\u001b[39m\u001b[32m 618\u001b[39m \u001b[33;03m list of _AbsoluteInstruction instances (corresponds to the + in spec).\u001b[39;00m\n\u001b[32m 619\u001b[39m \u001b[33;03m \"\"\"\u001b[39;00m\n\u001b[32m--> \u001b[39m\u001b[32m620\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m [\u001b[43m_rel_to_abs_instr\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrel_instr\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mname2len\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;28;01mfor\u001b[39;00m rel_instr \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m._relative_instructions]\n", "\u001b[36mFile \u001b[39m\u001b[32m/opt/conda/envs/antibody_datasets/lib/python3.13/site-packages/datasets/arrow_reader.py:437\u001b[39m, in \u001b[36m_rel_to_abs_instr\u001b[39m\u001b[34m(rel_instr, name2len)\u001b[39m\n\u001b[32m 435\u001b[39m split = rel_instr.splitname\n\u001b[32m 436\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m split \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m name2len:\n\u001b[32m--> \u001b[39m\u001b[32m437\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[33mf\u001b[39m\u001b[33m'\u001b[39m\u001b[33mUnknown split \u001b[39m\u001b[33m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00msplit\u001b[38;5;132;01m}\u001b[39;00m\u001b[33m\"\u001b[39m\u001b[33m. Should be one of \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mlist\u001b[39m(name2len)\u001b[38;5;132;01m}\u001b[39;00m\u001b[33m.\u001b[39m\u001b[33m'\u001b[39m)\n\u001b[32m 438\u001b[39m num_examples = name2len[split]\n\u001b[32m 439\u001b[39m from_ = rel_instr.from_\n", "\u001b[31mValueError\u001b[39m: Unknown split \"auto_submissions\". Should be one of ['train']." ] } ], "source": [ "# access results dataset\n", "res = load_dataset(\"ginkgo-datapoints/abdev-bench-results\", split=\"auto_submissions\")\n", "print(res)" ] }, { "cell_type": "code", "execution_count": 4, "id": "2b136f33", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | submission_id | \n", "spearman | \n", "top_10_recall | \n", "dataset | \n", "assay | \n", "model | \n", "user | \n", "submission_time | \n", "
---|---|---|---|---|---|---|---|---|
0 | \n", "empty | \n", "0.000000 | \n", "0.000000 | \n", "GDPa1 | \n", "empty | \n", "empty | \n", "anonymous | \n", "NaN | \n", "
1 | \n", "08a9b21d-a06f-4c44-a2c2-2d7a03c558c3 | \n", "0.121806 | \n", "0.125000 | \n", "GDPa1 | \n", "Tm2 | \n", "anonymoussubmissions | \n", "anonymoussubmissions | \n", "2025-08-13T13:51:50.519786 | \n", "
2 | \n", "08a9b21d-a06f-4c44-a2c2-2d7a03c558c3 | \n", "0.187877 | \n", "0.083333 | \n", "GDPa1 | \n", "Titer | \n", "anonymoussubmissions | \n", "anonymoussubmissions | \n", "2025-08-13T13:51:50.519786 | \n", "
3 | \n", "134c9dfb-3b27-48ac-8f5d-c8663d8bebed | \n", "0.121806 | \n", "0.125000 | \n", "GDPa1 | \n", "Tm2 | \n", "anonymoussubmissions | \n", "anonymoussubmissions | \n", "2025-08-13T13:44:10.148599 | \n", "
4 | \n", "134c9dfb-3b27-48ac-8f5d-c8663d8bebed | \n", "0.187877 | \n", "0.083333 | \n", "GDPa1 | \n", "Titer | \n", "anonymoussubmissions | \n", "anonymoussubmissions | \n", "2025-08-13T13:44:10.148599 | \n", "
5 | \n", "3763ce44-0ec5-4eec-80a8-361b2bfe4ee0 | \n", "0.121806 | \n", "0.125000 | \n", "GDPa1 | \n", "Tm2 | \n", "test | \n", "test | \n", "2025-08-13T13:46:15.853105 | \n", "
6 | \n", "3763ce44-0ec5-4eec-80a8-361b2bfe4ee0 | \n", "0.187877 | \n", "0.083333 | \n", "GDPa1 | \n", "Titer | \n", "test | \n", "test | \n", "2025-08-13T13:46:15.853105 | \n", "
7 | \n", "378b4d52-4d96-40b6-b554-b8f5d8bc5fbd | \n", "0.121806 | \n", "0.125000 | \n", "GDPa1 | \n", "Tm2 | \n", "test | \n", "test | \n", "2025-08-07T19:10:24.934110 | \n", "
8 | \n", "378b4d52-4d96-40b6-b554-b8f5d8bc5fbd | \n", "0.187877 | \n", "0.083333 | \n", "GDPa1 | \n", "Titer | \n", "test | \n", "test | \n", "2025-08-07T19:10:24.934110 | \n", "
9 | \n", "56b4ab17-560e-474b-93f1-ff81fa14fb10 | \n", "0.121806 | \n", "0.125000 | \n", "GDPa1 | \n", "Tm2 | \n", "test | \n", "test | \n", "2025-08-12T17:49:22.380229 | \n", "
10 | \n", "56b4ab17-560e-474b-93f1-ff81fa14fb10 | \n", "0.187877 | \n", "0.083333 | \n", "GDPa1 | \n", "Titer | \n", "test | \n", "test | \n", "2025-08-12T17:49:22.380229 | \n", "
11 | \n", "7cdcae41-c32a-430a-8a39-be3f00fd315d | \n", "0.121806 | \n", "0.125000 | \n", "GDPa1 | \n", "Tm2 | \n", "asdfasdfasdfas | \n", "asdfasdfasdfas | \n", "2025-08-12T17:53:35.204680 | \n", "
12 | \n", "7cdcae41-c32a-430a-8a39-be3f00fd315d | \n", "0.187877 | \n", "0.083333 | \n", "GDPa1 | \n", "Titer | \n", "asdfasdfasdfas | \n", "asdfasdfasdfas | \n", "2025-08-12T17:53:35.204680 | \n", "
13 | \n", "afe237b4-97cf-4e81-a4c1-f4d6fa76aa04 | \n", "0.121806 | \n", "0.125000 | \n", "GDPa1 | \n", "Tm2 | \n", "anonymoussubmissions | \n", "anonymoussubmissions | \n", "2025-08-13T13:43:46.042660 | \n", "
14 | \n", "afe237b4-97cf-4e81-a4c1-f4d6fa76aa04 | \n", "0.187877 | \n", "0.083333 | \n", "GDPa1 | \n", "Titer | \n", "anonymoussubmissions | \n", "anonymoussubmissions | \n", "2025-08-13T13:43:46.042660 | \n", "
15 | \n", "b84d6c6c-36d3-42d4-84ad-a91a3758199d | \n", "0.121806 | \n", "0.125000 | \n", "GDPa1 | \n", "Tm2 | \n", "test | \n", "test | \n", "2025-08-13T13:41:41.024660 | \n", "
16 | \n", "b84d6c6c-36d3-42d4-84ad-a91a3758199d | \n", "0.187877 | \n", "0.083333 | \n", "GDPa1 | \n", "Titer | \n", "test | \n", "test | \n", "2025-08-13T13:41:41.024660 | \n", "
17 | \n", "d2804c50-33a8-4465-8e27-20762adda13e | \n", "0.358522 | \n", "0.208333 | \n", "GDPa1 | \n", "HIC | \n", "notmyusername_test | \n", "notmyusername_test | \n", "2025-07-24T20:56:08.953098 | \n", "
18 | \n", "d2804c50-33a8-4465-8e27-20762adda13e | \n", "0.358522 | \n", "0.208333 | \n", "GDPa1 | \n", "HIC | \n", "notmyusername_test | \n", "notmyusername_test | \n", "2025-07-24T20:56:08.953098 | \n", "
19 | \n", "d82e3ef6-e54c-4854-b8b7-bee28f04791e | \n", "0.121806 | \n", "0.125000 | \n", "GDPa1 | \n", "Tm2 | \n", "test | \n", "test | \n", "2025-08-12T17:47:17.935587 | \n", "
20 | \n", "d82e3ef6-e54c-4854-b8b7-bee28f04791e | \n", "0.187877 | \n", "0.083333 | \n", "GDPa1 | \n", "Titer | \n", "test | \n", "test | \n", "2025-08-12T17:47:17.935587 | \n", "
21 | \n", "fa4d1c11-770d-40a8-b846-12e219b4b87a | \n", "0.121806 | \n", "0.125000 | \n", "GDPa1 | \n", "Tm2 | \n", "test | \n", "test | \n", "2025-08-12T17:49:20.145092 | \n", "
22 | \n", "fa4d1c11-770d-40a8-b846-12e219b4b87a | \n", "0.187877 | \n", "0.083333 | \n", "GDPa1 | \n", "Titer | \n", "test | \n", "test | \n", "2025-08-12T17:49:20.145092 | \n", "