Commit
·
de75bee
1
Parent(s):
f80e240
Added new metrics (here and to dataset), and loaded results once
Browse files- app.py +19 -19
- data/metrics_all.csv +26 -21
app.py
CHANGED
@@ -57,7 +57,7 @@ def make_submission(
|
|
57 |
return "✅ Your submission has been received! Sit tight and your scores will appear on the leaderboard shortly."
|
58 |
|
59 |
|
60 |
-
def get_leaderboard_table(assay: str | None = None):
|
61 |
# ds = load_dataset(results_repo, split='train', download_mode="force_redownload")
|
62 |
# full_df = pd.DataFrame(ds)
|
63 |
# full_df['full results'] = full_df['result_filename'].apply(lambda x: make_boundary_clickable(x)).astype(str)
|
@@ -69,18 +69,15 @@ def get_leaderboard_table(assay: str | None = None):
|
|
69 |
# to_show['user'] = to_show['user'].apply(lambda x: make_user_clickable(x)).astype(str)
|
70 |
|
71 |
# Previously hosted on HF hub, local for now (Can also pull directly from github backend)
|
72 |
-
column_order = ["model", "property", "spearman", "spearman_abs"]
|
73 |
-
|
74 |
-
df = pd.DataFrame(ds).drop_duplicates(subset=["model", "assay"])
|
75 |
-
df["property"] = df["assay"].map(ASSAY_RENAME)
|
76 |
-
df = df.query("assay.isin(@ASSAY_RENAME.keys())")
|
77 |
if assay is not None:
|
78 |
df = df[df['assay'] == assay]
|
79 |
df = df[column_order]
|
80 |
return df.sort_values(by="spearman_abs", ascending=False)
|
81 |
|
82 |
-
def get_leaderboard_object(assay: str | None = None):
|
83 |
-
df = get_leaderboard_table(assay=assay)
|
84 |
filter_columns = ["model"]
|
85 |
if assay is None:
|
86 |
filter_columns.append("property")
|
@@ -98,28 +95,31 @@ def get_leaderboard_object(assay: str | None = None):
|
|
98 |
def show_output_box(message):
|
99 |
return gr.update(value=message, visible=True)
|
100 |
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
103 |
with gr.Blocks() as demo:
|
104 |
gr.Markdown("""
|
105 |
## Welcome to the Ginkgo Antibody Developability Benchmark Leaderboard!
|
106 |
|
107 |
Participants can submit their model to the leaderboard by
|
108 |
""")
|
|
|
109 |
with gr.Tabs(elem_classes="tab-buttons"):
|
110 |
-
with gr.TabItem("🚀 Leaderboard", elem_id="abdev-benchmark-tab-table"):
|
111 |
-
gr.Markdown("# Antibody Developability Benchmark Leaderboard")
|
112 |
-
|
113 |
-
get_leaderboard_object()
|
114 |
-
# TODO: this is not going to update well, need to fix
|
115 |
-
|
116 |
-
# gr.Markdown("Extra info here")
|
117 |
-
|
118 |
# Procedurally make these 5 tabs
|
119 |
for assay in ASSAY_LIST:
|
120 |
with gr.TabItem(f"{ASSAY_EMOJIS[assay]} {ASSAY_RENAME[assay]}", elem_id=f"abdev-benchmark-tab-table"):
|
121 |
gr.Markdown(f"# {ASSAY_RENAME[assay]} (measured by {assay})")
|
122 |
-
get_leaderboard_object(assay=assay)
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
with gr.TabItem("❔About", elem_id="abdev-benchmark-tab-table"):
|
125 |
gr.Markdown(
|
|
|
57 |
return "✅ Your submission has been received! Sit tight and your scores will appear on the leaderboard shortly."
|
58 |
|
59 |
|
60 |
+
def get_leaderboard_table(df_results: pd.DataFrame, assay: str | None = None):
|
61 |
# ds = load_dataset(results_repo, split='train', download_mode="force_redownload")
|
62 |
# full_df = pd.DataFrame(ds)
|
63 |
# full_df['full results'] = full_df['result_filename'].apply(lambda x: make_boundary_clickable(x)).astype(str)
|
|
|
69 |
# to_show['user'] = to_show['user'].apply(lambda x: make_user_clickable(x)).astype(str)
|
70 |
|
71 |
# Previously hosted on HF hub, local for now (Can also pull directly from github backend)
|
72 |
+
column_order = ["model", "property", "spearman", "spearman_abs"]
|
73 |
+
df = df_results.query("assay.isin(@ASSAY_RENAME.keys())").copy()
|
|
|
|
|
|
|
74 |
if assay is not None:
|
75 |
df = df[df['assay'] == assay]
|
76 |
df = df[column_order]
|
77 |
return df.sort_values(by="spearman_abs", ascending=False)
|
78 |
|
79 |
+
def get_leaderboard_object(df_results: pd.DataFrame, assay: str | None = None):
|
80 |
+
df = get_leaderboard_table(df_results=df_results, assay=assay)
|
81 |
filter_columns = ["model"]
|
82 |
if assay is None:
|
83 |
filter_columns.append("property")
|
|
|
95 |
def show_output_box(message):
|
96 |
return gr.update(value=message, visible=True)
|
97 |
|
98 |
+
def fetch_hf_results():
|
99 |
+
ds = load_dataset(results_repo, split='no_low_spearman', download_mode="force_redownload")
|
100 |
+
df = pd.DataFrame(ds).drop_duplicates(subset=["model", "assay"])
|
101 |
+
df["property"] = df["assay"].map(ASSAY_RENAME)
|
102 |
+
return df
|
103 |
+
|
104 |
with gr.Blocks() as demo:
|
105 |
gr.Markdown("""
|
106 |
## Welcome to the Ginkgo Antibody Developability Benchmark Leaderboard!
|
107 |
|
108 |
Participants can submit their model to the leaderboard by
|
109 |
""")
|
110 |
+
df = fetch_hf_results()
|
111 |
with gr.Tabs(elem_classes="tab-buttons"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
# Procedurally make these 5 tabs
|
113 |
for assay in ASSAY_LIST:
|
114 |
with gr.TabItem(f"{ASSAY_EMOJIS[assay]} {ASSAY_RENAME[assay]}", elem_id=f"abdev-benchmark-tab-table"):
|
115 |
gr.Markdown(f"# {ASSAY_RENAME[assay]} (measured by {assay})")
|
116 |
+
get_leaderboard_object(df_results=df, assay=assay)
|
117 |
+
|
118 |
+
with gr.TabItem("🚀 Overall", elem_id="abdev-benchmark-tab-table"):
|
119 |
+
gr.Markdown("# Antibody Developability Benchmark Leaderboard over all properties")
|
120 |
+
|
121 |
+
get_leaderboard_object(df_results=df)
|
122 |
+
# TODO: this is not going to update well, need to fix
|
123 |
|
124 |
with gr.TabItem("❔About", elem_id="abdev-benchmark-tab-table"):
|
125 |
gr.Markdown(
|
data/metrics_all.csv
CHANGED
@@ -1,21 +1,26 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
0.
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
assay,model,spearman,spearman_cross_val,top_10_recall,top_10_recall_cross_val
|
2 |
+
HIC,Aggrescan3D - aggrescan_average_score,0.422834774225429,,0.3333333333333333,
|
3 |
+
AC-SINS_pH7.4,TAP - linear regression,0.4019194824087021,0.3401456689218918,0.375,0.2799999999999999
|
4 |
+
HIC,TAP - linear regression,0.3622075317102941,0.2222991438172065,0.4166666666666667,0.43
|
5 |
+
AC-SINS_pH7.4,TAP - PNC,0.358762795727933,,0.2916666666666667,
|
6 |
+
HIC,Aggrescan3D - aggrescan_90_score,0.3585224061081473,,0.2083333333333333,
|
7 |
+
PR_CHO,Saprot_VH - solubility_probability,0.3365516014806938,,0.0833333333333333,
|
8 |
+
AC-SINS_pH7.4,TAP - SFvCSP,0.3203773185543964,,0.2083333333333333,
|
9 |
+
HIC,Aggrescan3D - aggrescan_max_score,0.3044160918625593,,0.2083333333333333,
|
10 |
+
PR_CHO,TAP - linear regression,0.260631929274264,0.1560705020744792,0.8333333333333334,0.47
|
11 |
+
HIC,TAP - SFvCSP,0.2450651623577951,,0.2083333333333333,
|
12 |
+
PR_CHO,TAP - SFvCSP,0.2381972244142228,,0.0,
|
13 |
+
Tm2,Saprot_VH - stability_score,0.1924791603648384,,0.1666666666666666,
|
14 |
+
HIC,TAP - CDR Length,0.1923458958277369,,0.0833333333333333,
|
15 |
+
Titer,AntiFold,0.1878766623808878,,0.0833333333333333,
|
16 |
+
HIC,DeepViscosity,0.18059398754127,,0.0416666666666666,
|
17 |
+
AC-SINS_pH7.4,TAP - PPC,0.1691412287169806,,0.0833333333333333,
|
18 |
+
Titer,TAP - linear regression,0.1682403605307924,0.1129210260701206,0.3333333333333333,0.38
|
19 |
+
PR_CHO,TAP - PNC,0.151234196032203,,0.0416666666666666,
|
20 |
+
AC-SINS_pH7.4,TAP - CDR Length,0.1501689804134715,,0.0,
|
21 |
+
Titer,TAP - PPC,0.1423756688786398,,0.0833333333333333,
|
22 |
+
PR_CHO,Aggrescan3D - aggrescan_max_score,0.1406309504998865,,0.0833333333333333,
|
23 |
+
Tm2,AntiFold,0.1218057192943458,,0.125,
|
24 |
+
HIC,hic_model_name,0.1144051722170351,0.1511895582680471,0.1666666666666666,0.05
|
25 |
+
Tm2,TAP - linear regression,0.0844935706523633,-0.1153965363405958,0.6666666666666666,0.64
|
26 |
+
HIC,Aggrescan3D - aggrescan_cdrh3_average_score,0.0747719620306879,,0.25,
|