linoyts HF staff commited on
Commit
376b097
·
verified ·
1 Parent(s): 3f860d6

Upload 4 files

Browse files
ledits/__init__.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import TYPE_CHECKING
2
+
3
+ from diffusers.utils import (
4
+ DIFFUSERS_SLOW_IMPORT,
5
+ OptionalDependencyNotAvailable,
6
+ _LazyModule,
7
+ get_objects_from_module,
8
+ is_torch_available,
9
+ is_transformers_available,
10
+ )
11
+
12
+
13
+ _dummy_objects = {}
14
+ _import_structure = {}
15
+
16
+ try:
17
+ if not (is_transformers_available() and is_torch_available()):
18
+ raise OptionalDependencyNotAvailable()
19
+ except OptionalDependencyNotAvailable:
20
+ from diffusers.utils import dummy_torch_and_transformers_objects # noqa F403
21
+
22
+ _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
23
+ else:
24
+ _import_structure["pipeline_leditspp_stable_diffusion"] = ["LEditsPPPipelineStableDiffusion"]
25
+ _import_structure["pipeline_leditspp_stable_diffusion_xl"] = ["LEditsPPPipelineStableDiffusionXL"]
26
+
27
+ _import_structure["pipeline_output"] = ["LEditsPPDiffusionPipelineOutput", "LEditsPPDiffusionPipelineOutput"]
28
+
29
+ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
30
+ try:
31
+ if not (is_transformers_available() and is_torch_available()):
32
+ raise OptionalDependencyNotAvailable()
33
+
34
+ except OptionalDependencyNotAvailable:
35
+ from diffusers.utils.dummy_torch_and_transformers_objects import *
36
+ else:
37
+ from .pipeline_leditspp_stable_diffusion import (
38
+ LEditsPPDiffusionPipelineOutput,
39
+ LEditsPPInversionPipelineOutput,
40
+ LEditsPPPipelineStableDiffusion,
41
+ )
42
+ from .pipeline_leditspp_stable_diffusion_xl import LEditsPPPipelineStableDiffusionXL
43
+
44
+ else:
45
+ import sys
46
+
47
+ sys.modules[__name__] = _LazyModule(
48
+ __name__,
49
+ globals()["__file__"],
50
+ _import_structure,
51
+ module_spec=__spec__,
52
+ )
53
+
54
+ for name, value in _dummy_objects.items():
55
+ setattr(sys.modules[__name__], name, value)
ledits/pipeline_leditspp_stable_diffusion.py ADDED
@@ -0,0 +1,1499 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import inspect
2
+ import math
3
+ from itertools import repeat
4
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
5
+
6
+ import torch
7
+ import torch.nn.functional as F
8
+ from packaging import version
9
+ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
10
+
11
+ from diffusers.configuration_utils import FrozenDict
12
+ from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
13
+ from diffusers.loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
14
+ from diffusers.models import AutoencoderKL, UNet2DConditionModel
15
+ from diffusers.models.attention_processor import Attention, AttnProcessor
16
+ from diffusers.models.lora import adjust_lora_scale_text_encoder
17
+ from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
18
+ from diffusers.schedulers import DDIMScheduler, DPMSolverMultistepScheduler
19
+ from diffusers.utils import (
20
+ USE_PEFT_BACKEND,
21
+ deprecate,
22
+ logging,
23
+ replace_example_docstring,
24
+ scale_lora_layers,
25
+ unscale_lora_layers,
26
+ )
27
+ from diffusers.utils.torch_utils import randn_tensor
28
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline
29
+ from .pipeline_output import LEditsPPDiffusionPipelineOutput, LEditsPPInversionPipelineOutput
30
+
31
+
32
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
33
+
34
+ EXAMPLE_DOC_STRING = """
35
+ Examples:
36
+ ```py
37
+ >>> import PIL
38
+ >>> import requests
39
+ >>> import torch
40
+ >>> from io import BytesIO
41
+
42
+ >>> from diffusers import LEditsPPPipelineStableDiffusion
43
+ >>> from diffusers.utils import load_image
44
+
45
+ >>> pipe = LEditsPPPipelineStableDiffusion.from_pretrained(
46
+ ... "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16
47
+ ... )
48
+ >>> pipe = pipe.to("cuda")
49
+
50
+ >>> img_url = "https://www.aiml.informatik.tu-darmstadt.de/people/mbrack/cherry_blossom.png"
51
+ >>> image = load_image(img_url).convert("RGB")
52
+
53
+ >>> _ = pipe.invert(image=image, num_inversion_steps=50, skip=0.1)
54
+
55
+ >>> edited_image = pipe(
56
+ ... editing_prompt=["cherry blossom"], edit_guidance_scale=10.0, edit_threshold=0.75
57
+ ... ).images[0]
58
+ ```
59
+ """
60
+
61
+
62
+ # Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionAttendAndExcitePipeline.AttentionStore
63
+ class LeditsAttentionStore:
64
+ @staticmethod
65
+ def get_empty_store():
66
+ return {"down_cross": [], "mid_cross": [], "up_cross": [], "down_self": [], "mid_self": [], "up_self": []}
67
+
68
+ def __call__(self, attn, is_cross: bool, place_in_unet: str, editing_prompts, PnP=False):
69
+ # attn.shape = batch_size * head_size, seq_len query, seq_len_key
70
+ if attn.shape[1] <= self.max_size:
71
+ bs = 1 + int(PnP) + editing_prompts
72
+ skip = 2 if PnP else 1 # skip PnP & unconditional
73
+ attn = torch.stack(attn.split(self.batch_size)).permute(1, 0, 2, 3)
74
+ source_batch_size = int(attn.shape[1] // bs)
75
+ self.forward(attn[:, skip * source_batch_size :], is_cross, place_in_unet)
76
+
77
+ def forward(self, attn, is_cross: bool, place_in_unet: str):
78
+ key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
79
+
80
+ self.step_store[key].append(attn)
81
+
82
+ def between_steps(self, store_step=True):
83
+ if store_step:
84
+ if self.average:
85
+ if len(self.attention_store) == 0:
86
+ self.attention_store = self.step_store
87
+ else:
88
+ for key in self.attention_store:
89
+ for i in range(len(self.attention_store[key])):
90
+ self.attention_store[key][i] += self.step_store[key][i]
91
+ else:
92
+ if len(self.attention_store) == 0:
93
+ self.attention_store = [self.step_store]
94
+ else:
95
+ self.attention_store.append(self.step_store)
96
+
97
+ self.cur_step += 1
98
+ self.step_store = self.get_empty_store()
99
+
100
+ def get_attention(self, step: int):
101
+ if self.average:
102
+ attention = {
103
+ key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store
104
+ }
105
+ else:
106
+ assert step is not None
107
+ attention = self.attention_store[step]
108
+ return attention
109
+
110
+ def aggregate_attention(
111
+ self, attention_maps, prompts, res: Union[int, Tuple[int]], from_where: List[str], is_cross: bool, select: int
112
+ ):
113
+ out = [[] for x in range(self.batch_size)]
114
+ if isinstance(res, int):
115
+ num_pixels = res**2
116
+ resolution = (res, res)
117
+ else:
118
+ num_pixels = res[0] * res[1]
119
+ resolution = res[:2]
120
+
121
+ for location in from_where:
122
+ for bs_item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]:
123
+ for batch, item in enumerate(bs_item):
124
+ if item.shape[1] == num_pixels:
125
+ cross_maps = item.reshape(len(prompts), -1, *resolution, item.shape[-1])[select]
126
+ out[batch].append(cross_maps)
127
+
128
+ out = torch.stack([torch.cat(x, dim=0) for x in out])
129
+ # average over heads
130
+ out = out.sum(1) / out.shape[1]
131
+ return out
132
+
133
+ def __init__(self, average: bool, batch_size=1, max_resolution=16, max_size: int = None):
134
+ self.step_store = self.get_empty_store()
135
+ self.attention_store = []
136
+ self.cur_step = 0
137
+ self.average = average
138
+ self.batch_size = batch_size
139
+ if max_size is None:
140
+ self.max_size = max_resolution**2
141
+ elif max_size is not None and max_resolution is None:
142
+ self.max_size = max_size
143
+ else:
144
+ raise ValueError("Only allowed to set one of max_resolution or max_size")
145
+
146
+
147
+ # Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionAttendAndExcitePipeline.GaussianSmoothing
148
+ class LeditsGaussianSmoothing:
149
+ def __init__(self, device):
150
+ kernel_size = [3, 3]
151
+ sigma = [0.5, 0.5]
152
+
153
+ # The gaussian kernel is the product of the gaussian function of each dimension.
154
+ kernel = 1
155
+ meshgrids = torch.meshgrid([torch.arange(size, dtype=torch.float32) for size in kernel_size])
156
+ for size, std, mgrid in zip(kernel_size, sigma, meshgrids):
157
+ mean = (size - 1) / 2
158
+ kernel *= 1 / (std * math.sqrt(2 * math.pi)) * torch.exp(-(((mgrid - mean) / (2 * std)) ** 2))
159
+
160
+ # Make sure sum of values in gaussian kernel equals 1.
161
+ kernel = kernel / torch.sum(kernel)
162
+
163
+ # Reshape to depthwise convolutional weight
164
+ kernel = kernel.view(1, 1, *kernel.size())
165
+ kernel = kernel.repeat(1, *[1] * (kernel.dim() - 1))
166
+
167
+ self.weight = kernel.to(device)
168
+
169
+ def __call__(self, input):
170
+ """
171
+ Arguments:
172
+ Apply gaussian filter to input.
173
+ input (torch.Tensor): Input to apply gaussian filter on.
174
+ Returns:
175
+ filtered (torch.Tensor): Filtered output.
176
+ """
177
+ return F.conv2d(input, weight=self.weight.to(input.dtype))
178
+
179
+
180
+ class LEDITSCrossAttnProcessor:
181
+ def __init__(self, attention_store, place_in_unet, pnp, editing_prompts):
182
+ self.attnstore = attention_store
183
+ self.place_in_unet = place_in_unet
184
+ self.editing_prompts = editing_prompts
185
+ self.pnp = pnp
186
+
187
+ def __call__(
188
+ self,
189
+ attn: Attention,
190
+ hidden_states,
191
+ encoder_hidden_states,
192
+ attention_mask=None,
193
+ temb=None,
194
+ ):
195
+ batch_size, sequence_length, _ = (
196
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
197
+ )
198
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
199
+
200
+ query = attn.to_q(hidden_states)
201
+
202
+ if encoder_hidden_states is None:
203
+ encoder_hidden_states = hidden_states
204
+ elif attn.norm_cross:
205
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
206
+
207
+ key = attn.to_k(encoder_hidden_states)
208
+ value = attn.to_v(encoder_hidden_states)
209
+
210
+ query = attn.head_to_batch_dim(query)
211
+ key = attn.head_to_batch_dim(key)
212
+ value = attn.head_to_batch_dim(value)
213
+
214
+ attention_probs = attn.get_attention_scores(query, key, attention_mask)
215
+ self.attnstore(
216
+ attention_probs,
217
+ is_cross=True,
218
+ place_in_unet=self.place_in_unet,
219
+ editing_prompts=self.editing_prompts,
220
+ PnP=self.pnp,
221
+ )
222
+
223
+ hidden_states = torch.bmm(attention_probs, value)
224
+ hidden_states = attn.batch_to_head_dim(hidden_states)
225
+
226
+ # linear proj
227
+ hidden_states = attn.to_out[0](hidden_states)
228
+ # dropout
229
+ hidden_states = attn.to_out[1](hidden_states)
230
+
231
+ hidden_states = hidden_states / attn.rescale_output_factor
232
+ return hidden_states
233
+
234
+
235
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
236
+ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
237
+ """
238
+ Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
239
+ Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
240
+ """
241
+ std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
242
+ std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
243
+ # rescale the results from guidance (fixes overexposure)
244
+ noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
245
+ # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
246
+ noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
247
+ return noise_cfg
248
+
249
+
250
+ class LEditsPPPipelineStableDiffusion(
251
+ DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin
252
+ ):
253
+ """
254
+ Pipeline for textual image editing using LEDits++ with Stable Diffusion.
255
+
256
+ This model inherits from [`DiffusionPipeline`] and builds on the [`StableDiffusionPipeline`]. Check the superclass
257
+ documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular
258
+ device, etc.).
259
+
260
+ Args:
261
+ vae ([`AutoencoderKL`]):
262
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
263
+ text_encoder ([`~transformers.CLIPTextModel`]):
264
+ Frozen text-encoder. Stable Diffusion uses the text portion of
265
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
266
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
267
+ tokenizer ([`~transformers.CLIPTokenizer`]):
268
+ Tokenizer of class
269
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
270
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
271
+ scheduler ([`DPMSolverMultistepScheduler`] or [`DDIMScheduler`]):
272
+ A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
273
+ [`DPMSolverMultistepScheduler`] or [`DDIMScheduler`]. If any other scheduler is passed it will
274
+ automatically be set to [`DPMSolverMultistepScheduler`].
275
+ safety_checker ([`StableDiffusionSafetyChecker`]):
276
+ Classification module that estimates whether generated images could be considered offensive or harmful.
277
+ Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
278
+ feature_extractor ([`~transformers.CLIPImageProcessor`]):
279
+ Model that extracts features from generated images to be used as inputs for the `safety_checker`.
280
+ """
281
+
282
+ model_cpu_offload_seq = "text_encoder->unet->vae"
283
+ _exclude_from_cpu_offload = ["safety_checker"]
284
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
285
+ _optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
286
+
287
+ def __init__(
288
+ self,
289
+ vae: AutoencoderKL,
290
+ text_encoder: CLIPTextModel,
291
+ tokenizer: CLIPTokenizer,
292
+ unet: UNet2DConditionModel,
293
+ scheduler: Union[DDIMScheduler, DPMSolverMultistepScheduler],
294
+ safety_checker: StableDiffusionSafetyChecker,
295
+ feature_extractor: CLIPImageProcessor,
296
+ requires_safety_checker: bool = True,
297
+ ):
298
+ super().__init__()
299
+
300
+ if not isinstance(scheduler, DDIMScheduler) and not isinstance(scheduler, DPMSolverMultistepScheduler):
301
+ scheduler = DPMSolverMultistepScheduler.from_config(
302
+ scheduler.config, algorithm_type="sde-dpmsolver++", solver_order=2
303
+ )
304
+ logger.warning(
305
+ "This pipeline only supports DDIMScheduler and DPMSolverMultistepScheduler. "
306
+ "The scheduler has been changed to DPMSolverMultistepScheduler."
307
+ )
308
+
309
+ if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
310
+ deprecation_message = (
311
+ f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
312
+ f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
313
+ "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
314
+ " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
315
+ " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
316
+ " file"
317
+ )
318
+ deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
319
+ new_config = dict(scheduler.config)
320
+ new_config["steps_offset"] = 1
321
+ scheduler._internal_dict = FrozenDict(new_config)
322
+
323
+ if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
324
+ deprecation_message = (
325
+ f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
326
+ " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
327
+ " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
328
+ " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
329
+ " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
330
+ )
331
+ deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
332
+ new_config = dict(scheduler.config)
333
+ new_config["clip_sample"] = False
334
+ scheduler._internal_dict = FrozenDict(new_config)
335
+
336
+ if safety_checker is None and requires_safety_checker:
337
+ logger.warning(
338
+ f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
339
+ " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
340
+ " results in services or applications open to the public. Both the diffusers team and Hugging Face"
341
+ " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
342
+ " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
343
+ " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
344
+ )
345
+
346
+ if safety_checker is not None and feature_extractor is None:
347
+ raise ValueError(
348
+ "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
349
+ " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
350
+ )
351
+
352
+ is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
353
+ version.parse(unet.config._diffusers_version).base_version
354
+ ) < version.parse("0.9.0.dev0")
355
+ is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
356
+ if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
357
+ deprecation_message = (
358
+ "The configuration file of the unet has set the default `sample_size` to smaller than"
359
+ " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
360
+ " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
361
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
362
+ " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
363
+ " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
364
+ " in the config might lead to incorrect results in future versions. If you have downloaded this"
365
+ " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
366
+ " the `unet/config.json` file"
367
+ )
368
+ deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
369
+ new_config = dict(unet.config)
370
+ new_config["sample_size"] = 64
371
+ unet._internal_dict = FrozenDict(new_config)
372
+
373
+ self.register_modules(
374
+ vae=vae,
375
+ text_encoder=text_encoder,
376
+ tokenizer=tokenizer,
377
+ unet=unet,
378
+ scheduler=scheduler,
379
+ safety_checker=safety_checker,
380
+ feature_extractor=feature_extractor,
381
+ )
382
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
383
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
384
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
385
+
386
+ self.inversion_steps = None
387
+
388
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
389
+ def run_safety_checker(self, image, device, dtype):
390
+ if self.safety_checker is None:
391
+ has_nsfw_concept = None
392
+ else:
393
+ if torch.is_tensor(image):
394
+ feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
395
+ else:
396
+ feature_extractor_input = self.image_processor.numpy_to_pil(image)
397
+ safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
398
+ image, has_nsfw_concept = self.safety_checker(
399
+ images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
400
+ )
401
+ return image, has_nsfw_concept
402
+
403
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
404
+ def decode_latents(self, latents):
405
+ deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
406
+ deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
407
+
408
+ latents = 1 / self.vae.config.scaling_factor * latents
409
+ image = self.vae.decode(latents, return_dict=False)[0]
410
+ image = (image / 2 + 0.5).clamp(0, 1)
411
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
412
+ image = image.cpu().permute(0, 2, 3, 1).float().numpy()
413
+ return image
414
+
415
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
416
+ def prepare_extra_step_kwargs(self, eta, generator=None):
417
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
418
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
419
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
420
+ # and should be between [0, 1]
421
+
422
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
423
+ extra_step_kwargs = {}
424
+ if accepts_eta:
425
+ extra_step_kwargs["eta"] = eta
426
+
427
+ # check if the scheduler accepts generator
428
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
429
+ if accepts_generator:
430
+ extra_step_kwargs["generator"] = generator
431
+ return extra_step_kwargs
432
+
433
+ # Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.check_inputs
434
+ def check_inputs(
435
+ self,
436
+ negative_prompt=None,
437
+ editing_prompt_embeddings=None,
438
+ negative_prompt_embeds=None,
439
+ callback_on_step_end_tensor_inputs=None,
440
+ ):
441
+ if callback_on_step_end_tensor_inputs is not None and not all(
442
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
443
+ ):
444
+ raise ValueError(
445
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
446
+ )
447
+ if negative_prompt is not None and negative_prompt_embeds is not None:
448
+ raise ValueError(
449
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
450
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
451
+ )
452
+
453
+ if editing_prompt_embeddings is not None and negative_prompt_embeds is not None:
454
+ if editing_prompt_embeddings.shape != negative_prompt_embeds.shape:
455
+ raise ValueError(
456
+ "`editing_prompt_embeddings` and `negative_prompt_embeds` must have the same shape when passed directly, but"
457
+ f" got: `editing_prompt_embeddings` {editing_prompt_embeddings.shape} != `negative_prompt_embeds`"
458
+ f" {negative_prompt_embeds.shape}."
459
+ )
460
+
461
+ # Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
462
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, latents):
463
+ # shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
464
+
465
+ # if latents.shape != shape:
466
+ # raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
467
+
468
+ latents = latents.to(device)
469
+
470
+ # scale the initial noise by the standard deviation required by the scheduler
471
+ latents = latents * self.scheduler.init_noise_sigma
472
+ return latents
473
+
474
+ def prepare_unet(self, attention_store, PnP: bool = False):
475
+ attn_procs = {}
476
+ for name in self.unet.attn_processors.keys():
477
+ if name.startswith("mid_block"):
478
+ place_in_unet = "mid"
479
+ elif name.startswith("up_blocks"):
480
+ place_in_unet = "up"
481
+ elif name.startswith("down_blocks"):
482
+ place_in_unet = "down"
483
+ else:
484
+ continue
485
+
486
+ if "attn2" in name and place_in_unet != "mid":
487
+ attn_procs[name] = LEDITSCrossAttnProcessor(
488
+ attention_store=attention_store,
489
+ place_in_unet=place_in_unet,
490
+ pnp=PnP,
491
+ editing_prompts=self.enabled_editing_prompts,
492
+ )
493
+ else:
494
+ attn_procs[name] = AttnProcessor()
495
+
496
+ self.unet.set_attn_processor(attn_procs)
497
+
498
+ def encode_prompt(
499
+ self,
500
+ device,
501
+ num_images_per_prompt,
502
+ enable_edit_guidance,
503
+ negative_prompt=None,
504
+ editing_prompt=None,
505
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
506
+ editing_prompt_embeds: Optional[torch.Tensor] = None,
507
+ lora_scale: Optional[float] = None,
508
+ clip_skip: Optional[int] = None,
509
+ ):
510
+ r"""
511
+ Encodes the prompt into text encoder hidden states.
512
+
513
+ Args:
514
+ device: (`torch.device`):
515
+ torch device
516
+ num_images_per_prompt (`int`):
517
+ number of images that should be generated per prompt
518
+ enable_edit_guidance (`bool`):
519
+ whether to perform any editing or reconstruct the input image instead
520
+ negative_prompt (`str` or `List[str]`, *optional*):
521
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
522
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
523
+ less than `1`).
524
+ editing_prompt (`str` or `List[str]`, *optional*):
525
+ Editing prompt(s) to be encoded. If not defined, one has to pass `editing_prompt_embeds` instead.
526
+ editing_prompt_embeds (`torch.Tensor`, *optional*):
527
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
528
+ provided, text embeddings will be generated from `prompt` input argument.
529
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
530
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
531
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
532
+ argument.
533
+ lora_scale (`float`, *optional*):
534
+ A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
535
+ clip_skip (`int`, *optional*):
536
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
537
+ the output of the pre-final layer will be used for computing the prompt embeddings.
538
+ """
539
+ # set lora scale so that monkey patched LoRA
540
+ # function of text encoder can correctly access it
541
+ if lora_scale is not None and isinstance(self, LoraLoaderMixin):
542
+ self._lora_scale = lora_scale
543
+
544
+ # dynamically adjust the LoRA scale
545
+ if not USE_PEFT_BACKEND:
546
+ adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
547
+ else:
548
+ scale_lora_layers(self.text_encoder, lora_scale)
549
+
550
+ batch_size = self.batch_size
551
+ num_edit_tokens = None
552
+
553
+ if negative_prompt_embeds is None:
554
+ uncond_tokens: List[str]
555
+ if negative_prompt is None:
556
+ uncond_tokens = [""] * batch_size
557
+ elif isinstance(negative_prompt, str):
558
+ uncond_tokens = [negative_prompt]
559
+ elif batch_size != len(negative_prompt):
560
+ raise ValueError(
561
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but exoected"
562
+ f"{batch_size} based on the input images. Please make sure that passed `negative_prompt` matches"
563
+ " the batch size of `prompt`."
564
+ )
565
+ else:
566
+ uncond_tokens = negative_prompt
567
+
568
+ # textual inversion: procecss multi-vector tokens if necessary
569
+ if isinstance(self, TextualInversionLoaderMixin):
570
+ uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
571
+
572
+ uncond_input = self.tokenizer(
573
+ uncond_tokens,
574
+ padding="max_length",
575
+ max_length=self.tokenizer.model_max_length,
576
+ truncation=True,
577
+ return_tensors="pt",
578
+ )
579
+
580
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
581
+ attention_mask = uncond_input.attention_mask.to(device)
582
+ else:
583
+ attention_mask = None
584
+
585
+ negative_prompt_embeds = self.text_encoder(
586
+ uncond_input.input_ids.to(device),
587
+ attention_mask=attention_mask,
588
+ )
589
+ negative_prompt_embeds = negative_prompt_embeds[0]
590
+
591
+ if self.text_encoder is not None:
592
+ prompt_embeds_dtype = self.text_encoder.dtype
593
+ elif self.unet is not None:
594
+ prompt_embeds_dtype = self.unet.dtype
595
+ else:
596
+ prompt_embeds_dtype = negative_prompt_embeds.dtype
597
+
598
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
599
+
600
+ if enable_edit_guidance:
601
+ if editing_prompt_embeds is None:
602
+ # textual inversion: procecss multi-vector tokens if necessary
603
+ # if isinstance(self, TextualInversionLoaderMixin):
604
+ # prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
605
+ if isinstance(editing_prompt, str):
606
+ editing_prompt = [editing_prompt]
607
+
608
+ max_length = negative_prompt_embeds.shape[1]
609
+ text_inputs = self.tokenizer(
610
+ [x for item in editing_prompt for x in repeat(item, batch_size)],
611
+ padding="max_length",
612
+ max_length=max_length,
613
+ truncation=True,
614
+ return_tensors="pt",
615
+ return_length=True,
616
+ )
617
+
618
+ num_edit_tokens = text_inputs.length - 2 # not counting startoftext and endoftext
619
+ text_input_ids = text_inputs.input_ids
620
+ untruncated_ids = self.tokenizer(
621
+ [x for item in editing_prompt for x in repeat(item, batch_size)],
622
+ padding="longest",
623
+ return_tensors="pt",
624
+ ).input_ids
625
+
626
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
627
+ text_input_ids, untruncated_ids
628
+ ):
629
+ removed_text = self.tokenizer.batch_decode(
630
+ untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
631
+ )
632
+ logger.warning(
633
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
634
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
635
+ )
636
+
637
+ if (
638
+ hasattr(self.text_encoder.config, "use_attention_mask")
639
+ and self.text_encoder.config.use_attention_mask
640
+ ):
641
+ attention_mask = text_inputs.attention_mask.to(device)
642
+ else:
643
+ attention_mask = None
644
+
645
+ if clip_skip is None:
646
+ editing_prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
647
+ editing_prompt_embeds = editing_prompt_embeds[0]
648
+ else:
649
+ editing_prompt_embeds = self.text_encoder(
650
+ text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
651
+ )
652
+ # Access the `hidden_states` first, that contains a tuple of
653
+ # all the hidden states from the encoder layers. Then index into
654
+ # the tuple to access the hidden states from the desired layer.
655
+ editing_prompt_embeds = editing_prompt_embeds[-1][-(clip_skip + 1)]
656
+ # We also need to apply the final LayerNorm here to not mess with the
657
+ # representations. The `last_hidden_states` that we typically use for
658
+ # obtaining the final prompt representations passes through the LayerNorm
659
+ # layer.
660
+ editing_prompt_embeds = self.text_encoder.text_model.final_layer_norm(editing_prompt_embeds)
661
+
662
+ editing_prompt_embeds = editing_prompt_embeds.to(dtype=negative_prompt_embeds.dtype, device=device)
663
+
664
+ bs_embed_edit, seq_len, _ = editing_prompt_embeds.shape
665
+ editing_prompt_embeds = editing_prompt_embeds.to(dtype=negative_prompt_embeds.dtype, device=device)
666
+ editing_prompt_embeds = editing_prompt_embeds.repeat(1, num_images_per_prompt, 1)
667
+ editing_prompt_embeds = editing_prompt_embeds.view(bs_embed_edit * num_images_per_prompt, seq_len, -1)
668
+
669
+ # get unconditional embeddings for classifier free guidance
670
+
671
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
672
+ seq_len = negative_prompt_embeds.shape[1]
673
+
674
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
675
+
676
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
677
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
678
+
679
+ if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
680
+ # Retrieve the original scale by scaling back the LoRA layers
681
+ unscale_lora_layers(self.text_encoder, lora_scale)
682
+
683
+ return editing_prompt_embeds, negative_prompt_embeds, num_edit_tokens
684
+
685
+ @property
686
+ def guidance_rescale(self):
687
+ return self._guidance_rescale
688
+
689
+ @property
690
+ def clip_skip(self):
691
+ return self._clip_skip
692
+
693
+ @property
694
+ def cross_attention_kwargs(self):
695
+ return self._cross_attention_kwargs
696
+
697
+ @torch.no_grad()
698
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
699
+ def __call__(
700
+ self,
701
+ negative_prompt: Optional[Union[str, List[str]]] = None,
702
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
703
+ output_type: Optional[str] = "pil",
704
+ return_dict: bool = True,
705
+ editing_prompt: Optional[Union[str, List[str]]] = None,
706
+ editing_prompt_embeds: Optional[torch.Tensor] = None,
707
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
708
+ reverse_editing_direction: Optional[Union[bool, List[bool]]] = False,
709
+ edit_guidance_scale: Optional[Union[float, List[float]]] = 5,
710
+ edit_warmup_steps: Optional[Union[int, List[int]]] = 0,
711
+ edit_cooldown_steps: Optional[Union[int, List[int]]] = None,
712
+ edit_threshold: Optional[Union[float, List[float]]] = 0.9,
713
+ user_mask: Optional[torch.Tensor] = None,
714
+ sem_guidance: Optional[List[torch.Tensor]] = None,
715
+ use_cross_attn_mask: bool = False,
716
+ use_intersect_mask: bool = True,
717
+ attn_store_steps: Optional[List[int]] = [],
718
+ store_averaged_over_steps: bool = True,
719
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
720
+ guidance_rescale: float = 0.0,
721
+ clip_skip: Optional[int] = None,
722
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
723
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
724
+ **kwargs,
725
+ ):
726
+ r"""
727
+ The call function to the pipeline for editing. The
728
+ [`~pipelines.ledits_pp.LEditsPPPipelineStableDiffusion.invert`] method has to be called beforehand. Edits will
729
+ always be performed for the last inverted image(s).
730
+
731
+ Args:
732
+ negative_prompt (`str` or `List[str]`, *optional*):
733
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
734
+ if `guidance_scale` is less than `1`).
735
+ generator (`torch.Generator`, *optional*):
736
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
737
+ to make generation deterministic.
738
+ output_type (`str`, *optional*, defaults to `"pil"`):
739
+ The output format of the generate image. Choose between
740
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
741
+ return_dict (`bool`, *optional*, defaults to `True`):
742
+ Whether or not to return a [`~pipelines.ledits_pp.LEditsPPDiffusionPipelineOutput`] instead of a plain
743
+ tuple.
744
+ editing_prompt (`str` or `List[str]`, *optional*):
745
+ The prompt or prompts to guide the image generation. The image is reconstructed by setting
746
+ `editing_prompt = None`. Guidance direction of prompt should be specified via
747
+ `reverse_editing_direction`.
748
+ editing_prompt_embeds (`torch.Tensor>`, *optional*):
749
+ Pre-computed embeddings to use for guiding the image generation. Guidance direction of embedding should
750
+ be specified via `reverse_editing_direction`.
751
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
752
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
753
+ not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
754
+ reverse_editing_direction (`bool` or `List[bool]`, *optional*, defaults to `False`):
755
+ Whether the corresponding prompt in `editing_prompt` should be increased or decreased.
756
+ edit_guidance_scale (`float` or `List[float]`, *optional*, defaults to 5):
757
+ Guidance scale for guiding the image generation. If provided as list values should correspond to
758
+ `editing_prompt`. `edit_guidance_scale` is defined as `s_e` of equation 12 of [LEDITS++
759
+ Paper](https://arxiv.org/abs/2301.12247).
760
+ edit_warmup_steps (`float` or `List[float]`, *optional*, defaults to 10):
761
+ Number of diffusion steps (for each prompt) for which guidance will not be applied.
762
+ edit_cooldown_steps (`float` or `List[float]`, *optional*, defaults to `None`):
763
+ Number of diffusion steps (for each prompt) after which guidance will no longer be applied.
764
+ edit_threshold (`float` or `List[float]`, *optional*, defaults to 0.9):
765
+ Masking threshold of guidance. Threshold should be proportional to the image region that is modified.
766
+ 'edit_threshold' is defined as 'λ' of equation 12 of [LEDITS++
767
+ Paper](https://arxiv.org/abs/2301.12247).
768
+ user_mask (`torch.Tensor`, *optional*):
769
+ User-provided mask for even better control over the editing process. This is helpful when LEDITS++'s
770
+ implicit masks do not meet user preferences.
771
+ sem_guidance (`List[torch.Tensor]`, *optional*):
772
+ List of pre-generated guidance vectors to be applied at generation. Length of the list has to
773
+ correspond to `num_inference_steps`.
774
+ use_cross_attn_mask (`bool`, defaults to `False`):
775
+ Whether cross-attention masks are used. Cross-attention masks are always used when use_intersect_mask
776
+ is set to true. Cross-attention masks are defined as 'M^1' of equation 12 of [LEDITS++
777
+ paper](https://arxiv.org/pdf/2311.16711.pdf).
778
+ use_intersect_mask (`bool`, defaults to `True`):
779
+ Whether the masking term is calculated as intersection of cross-attention masks and masks derived from
780
+ the noise estimate. Cross-attention mask are defined as 'M^1' and masks derived from the noise estimate
781
+ are defined as 'M^2' of equation 12 of [LEDITS++ paper](https://arxiv.org/pdf/2311.16711.pdf).
782
+ attn_store_steps (`List[int]`, *optional*):
783
+ Steps for which the attention maps are stored in the AttentionStore. Just for visualization purposes.
784
+ store_averaged_over_steps (`bool`, defaults to `True`):
785
+ Whether the attention maps for the 'attn_store_steps' are stored averaged over the diffusion steps. If
786
+ False, attention maps for each step are stores separately. Just for visualization purposes.
787
+ cross_attention_kwargs (`dict`, *optional*):
788
+ A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
789
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
790
+ guidance_rescale (`float`, *optional*, defaults to 0.0):
791
+ Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
792
+ Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
793
+ using zero terminal SNR.
794
+ clip_skip (`int`, *optional*):
795
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
796
+ the output of the pre-final layer will be used for computing the prompt embeddings.
797
+ callback_on_step_end (`Callable`, *optional*):
798
+ A function that calls at the end of each denoising steps during the inference. The function is called
799
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
800
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
801
+ `callback_on_step_end_tensor_inputs`.
802
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
803
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
804
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
805
+ `._callback_tensor_inputs` attribute of your pipeline class.
806
+
807
+ Examples:
808
+
809
+ Returns:
810
+ [`~pipelines.ledits_pp.LEditsPPDiffusionPipelineOutput`] or `tuple`:
811
+ [`~pipelines.ledits_pp.LEditsPPDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When
812
+ returning a tuple, the first element is a list with the generated images, and the second element is a list
813
+ of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw)
814
+ content, according to the `safety_checker`.
815
+ """
816
+
817
+ if self.inversion_steps is None:
818
+ raise ValueError(
819
+ "You need to invert an input image first before calling the pipeline. The `invert` method has to be called beforehand. Edits will always be performed for the last inverted image(s)."
820
+ )
821
+
822
+ eta = self.eta
823
+ num_images_per_prompt = 1
824
+ latents = self.init_latents
825
+
826
+ zs = self.zs
827
+ self.scheduler.set_timesteps(len(self.scheduler.timesteps))
828
+
829
+ if use_intersect_mask:
830
+ use_cross_attn_mask = True
831
+
832
+ if use_cross_attn_mask:
833
+ self.smoothing = LeditsGaussianSmoothing(self.device)
834
+
835
+ if user_mask is not None:
836
+ user_mask = user_mask.to(self.device)
837
+
838
+ org_prompt = ""
839
+
840
+ # 1. Check inputs. Raise error if not correct
841
+ self.check_inputs(
842
+ negative_prompt,
843
+ editing_prompt_embeds,
844
+ negative_prompt_embeds,
845
+ callback_on_step_end_tensor_inputs,
846
+ )
847
+
848
+ self._guidance_rescale = guidance_rescale
849
+ self._clip_skip = clip_skip
850
+ self._cross_attention_kwargs = cross_attention_kwargs
851
+
852
+ # 2. Define call parameters
853
+ batch_size = self.batch_size
854
+
855
+ if editing_prompt:
856
+ enable_edit_guidance = True
857
+ if isinstance(editing_prompt, str):
858
+ editing_prompt = [editing_prompt]
859
+ self.enabled_editing_prompts = len(editing_prompt)
860
+ elif editing_prompt_embeds is not None:
861
+ enable_edit_guidance = True
862
+ self.enabled_editing_prompts = editing_prompt_embeds.shape[0]
863
+ else:
864
+ self.enabled_editing_prompts = 0
865
+ enable_edit_guidance = False
866
+
867
+ # 3. Encode input prompt
868
+ lora_scale = (
869
+ self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
870
+ )
871
+
872
+ edit_concepts, uncond_embeddings, num_edit_tokens = self.encode_prompt(
873
+ editing_prompt=editing_prompt,
874
+ device=self.device,
875
+ num_images_per_prompt=num_images_per_prompt,
876
+ enable_edit_guidance=enable_edit_guidance,
877
+ negative_prompt=negative_prompt,
878
+ editing_prompt_embeds=editing_prompt_embeds,
879
+ negative_prompt_embeds=negative_prompt_embeds,
880
+ lora_scale=lora_scale,
881
+ clip_skip=self.clip_skip,
882
+ )
883
+
884
+ # For classifier free guidance, we need to do two forward passes.
885
+ # Here we concatenate the unconditional and text embeddings into a single batch
886
+ # to avoid doing two forward passes
887
+ if enable_edit_guidance:
888
+ text_embeddings = torch.cat([uncond_embeddings, edit_concepts])
889
+ self.text_cross_attention_maps = [editing_prompt] if isinstance(editing_prompt, str) else editing_prompt
890
+ else:
891
+ text_embeddings = torch.cat([uncond_embeddings])
892
+
893
+ # 4. Prepare timesteps
894
+ # self.scheduler.set_timesteps(num_inference_steps, device=self.device)
895
+ timesteps = self.inversion_steps
896
+ t_to_idx = {int(v): k for k, v in enumerate(timesteps[-zs.shape[0] :])}
897
+
898
+ if use_cross_attn_mask:
899
+ self.attention_store = LeditsAttentionStore(
900
+ average=store_averaged_over_steps,
901
+ batch_size=batch_size,
902
+ max_size=(latents.shape[-2] / 4.0) * (latents.shape[-1] / 4.0),
903
+ max_resolution=None,
904
+ )
905
+ self.prepare_unet(self.attention_store, PnP=False)
906
+ resolution = latents.shape[-2:]
907
+ att_res = (int(resolution[0] / 4), int(resolution[1] / 4))
908
+
909
+ # 5. Prepare latent variables
910
+ num_channels_latents = self.unet.config.in_channels
911
+ latents = self.prepare_latents(
912
+ batch_size * num_images_per_prompt,
913
+ num_channels_latents,
914
+ None,
915
+ None,
916
+ text_embeddings.dtype,
917
+ self.device,
918
+ latents,
919
+ )
920
+
921
+ # 6. Prepare extra step kwargs.
922
+ extra_step_kwargs = self.prepare_extra_step_kwargs(eta)
923
+
924
+ self.sem_guidance = None
925
+ self.activation_mask = None
926
+
927
+ # 7. Denoising loop
928
+ num_warmup_steps = 0
929
+ with self.progress_bar(total=len(timesteps)) as progress_bar:
930
+ for i, t in enumerate(timesteps):
931
+ # expand the latents if we are doing classifier free guidance
932
+
933
+ if enable_edit_guidance:
934
+ latent_model_input = torch.cat([latents] * (1 + self.enabled_editing_prompts))
935
+ else:
936
+ latent_model_input = latents
937
+
938
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
939
+
940
+ text_embed_input = text_embeddings
941
+
942
+ # predict the noise residual
943
+ noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embed_input).sample
944
+
945
+ noise_pred_out = noise_pred.chunk(1 + self.enabled_editing_prompts) # [b,4, 64, 64]
946
+ noise_pred_uncond = noise_pred_out[0]
947
+ noise_pred_edit_concepts = noise_pred_out[1:]
948
+
949
+ noise_guidance_edit = torch.zeros(
950
+ noise_pred_uncond.shape,
951
+ device=self.device,
952
+ dtype=noise_pred_uncond.dtype,
953
+ )
954
+
955
+ if sem_guidance is not None and len(sem_guidance) > i:
956
+ noise_guidance_edit += sem_guidance[i].to(self.device)
957
+
958
+ elif enable_edit_guidance:
959
+ if self.activation_mask is None:
960
+ self.activation_mask = torch.zeros(
961
+ (len(timesteps), len(noise_pred_edit_concepts), *noise_pred_edit_concepts[0].shape)
962
+ )
963
+
964
+ if self.sem_guidance is None:
965
+ self.sem_guidance = torch.zeros((len(timesteps), *noise_pred_uncond.shape))
966
+
967
+ for c, noise_pred_edit_concept in enumerate(noise_pred_edit_concepts):
968
+ if isinstance(edit_warmup_steps, list):
969
+ edit_warmup_steps_c = edit_warmup_steps[c]
970
+ else:
971
+ edit_warmup_steps_c = edit_warmup_steps
972
+ if i < edit_warmup_steps_c:
973
+ continue
974
+
975
+ if isinstance(edit_guidance_scale, list):
976
+ edit_guidance_scale_c = edit_guidance_scale[c]
977
+ else:
978
+ edit_guidance_scale_c = edit_guidance_scale
979
+
980
+ if isinstance(edit_threshold, list):
981
+ edit_threshold_c = edit_threshold[c]
982
+ else:
983
+ edit_threshold_c = edit_threshold
984
+ if isinstance(reverse_editing_direction, list):
985
+ reverse_editing_direction_c = reverse_editing_direction[c]
986
+ else:
987
+ reverse_editing_direction_c = reverse_editing_direction
988
+
989
+ if isinstance(edit_cooldown_steps, list):
990
+ edit_cooldown_steps_c = edit_cooldown_steps[c]
991
+ elif edit_cooldown_steps is None:
992
+ edit_cooldown_steps_c = i + 1
993
+ else:
994
+ edit_cooldown_steps_c = edit_cooldown_steps
995
+
996
+ if i >= edit_cooldown_steps_c:
997
+ continue
998
+
999
+ noise_guidance_edit_tmp = noise_pred_edit_concept - noise_pred_uncond
1000
+
1001
+ if reverse_editing_direction_c:
1002
+ noise_guidance_edit_tmp = noise_guidance_edit_tmp * -1
1003
+
1004
+ noise_guidance_edit_tmp = noise_guidance_edit_tmp * edit_guidance_scale_c
1005
+
1006
+ if user_mask is not None:
1007
+ noise_guidance_edit_tmp = noise_guidance_edit_tmp * user_mask
1008
+
1009
+ if use_cross_attn_mask:
1010
+ out = self.attention_store.aggregate_attention(
1011
+ attention_maps=self.attention_store.step_store,
1012
+ prompts=self.text_cross_attention_maps,
1013
+ res=att_res,
1014
+ from_where=["up", "down"],
1015
+ is_cross=True,
1016
+ select=self.text_cross_attention_maps.index(editing_prompt[c]),
1017
+ )
1018
+ attn_map = out[:, :, :, 1 : 1 + num_edit_tokens[c]] # 0 -> startoftext
1019
+
1020
+ # average over all tokens
1021
+ if attn_map.shape[3] != num_edit_tokens[c]:
1022
+ raise ValueError(
1023
+ f"Incorrect shape of attention_map. Expected size {num_edit_tokens[c]}, but found {attn_map.shape[3]}!"
1024
+ )
1025
+
1026
+ attn_map = torch.sum(attn_map, dim=3)
1027
+
1028
+ # gaussian_smoothing
1029
+ attn_map = F.pad(attn_map.unsqueeze(1), (1, 1, 1, 1), mode="reflect")
1030
+ attn_map = self.smoothing(attn_map).squeeze(1)
1031
+
1032
+ # torch.quantile function expects float32
1033
+ if attn_map.dtype == torch.float32:
1034
+ tmp = torch.quantile(attn_map.flatten(start_dim=1), edit_threshold_c, dim=1)
1035
+ else:
1036
+ tmp = torch.quantile(
1037
+ attn_map.flatten(start_dim=1).to(torch.float32), edit_threshold_c, dim=1
1038
+ ).to(attn_map.dtype)
1039
+ attn_mask = torch.where(
1040
+ attn_map >= tmp.unsqueeze(1).unsqueeze(1).repeat(1, *att_res), 1.0, 0.0
1041
+ )
1042
+
1043
+ # resolution must match latent space dimension
1044
+ attn_mask = F.interpolate(
1045
+ attn_mask.unsqueeze(1),
1046
+ noise_guidance_edit_tmp.shape[-2:], # 64,64
1047
+ ).repeat(1, 4, 1, 1)
1048
+ self.activation_mask[i, c] = attn_mask.detach().cpu()
1049
+ if not use_intersect_mask:
1050
+ noise_guidance_edit_tmp = noise_guidance_edit_tmp * attn_mask
1051
+
1052
+ if use_intersect_mask:
1053
+ if t <= 800:
1054
+ noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp)
1055
+ noise_guidance_edit_tmp_quantile = torch.sum(
1056
+ noise_guidance_edit_tmp_quantile, dim=1, keepdim=True
1057
+ )
1058
+ noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat(
1059
+ 1, self.unet.config.in_channels, 1, 1
1060
+ )
1061
+
1062
+ # torch.quantile function expects float32
1063
+ if noise_guidance_edit_tmp_quantile.dtype == torch.float32:
1064
+ tmp = torch.quantile(
1065
+ noise_guidance_edit_tmp_quantile.flatten(start_dim=2),
1066
+ edit_threshold_c,
1067
+ dim=2,
1068
+ keepdim=False,
1069
+ )
1070
+ else:
1071
+ tmp = torch.quantile(
1072
+ noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32),
1073
+ edit_threshold_c,
1074
+ dim=2,
1075
+ keepdim=False,
1076
+ ).to(noise_guidance_edit_tmp_quantile.dtype)
1077
+
1078
+ intersect_mask = (
1079
+ torch.where(
1080
+ noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None],
1081
+ torch.ones_like(noise_guidance_edit_tmp),
1082
+ torch.zeros_like(noise_guidance_edit_tmp),
1083
+ )
1084
+ * attn_mask
1085
+ )
1086
+
1087
+ self.activation_mask[i, c] = intersect_mask.detach().cpu()
1088
+
1089
+ noise_guidance_edit_tmp = noise_guidance_edit_tmp * intersect_mask
1090
+
1091
+ else:
1092
+ # print(f"only attention mask for step {i}")
1093
+ noise_guidance_edit_tmp = noise_guidance_edit_tmp * attn_mask
1094
+
1095
+ elif not use_cross_attn_mask:
1096
+ # calculate quantile
1097
+ noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp)
1098
+ noise_guidance_edit_tmp_quantile = torch.sum(
1099
+ noise_guidance_edit_tmp_quantile, dim=1, keepdim=True
1100
+ )
1101
+ noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat(1, 4, 1, 1)
1102
+
1103
+ # torch.quantile function expects float32
1104
+ if noise_guidance_edit_tmp_quantile.dtype == torch.float32:
1105
+ tmp = torch.quantile(
1106
+ noise_guidance_edit_tmp_quantile.flatten(start_dim=2),
1107
+ edit_threshold_c,
1108
+ dim=2,
1109
+ keepdim=False,
1110
+ )
1111
+ else:
1112
+ tmp = torch.quantile(
1113
+ noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32),
1114
+ edit_threshold_c,
1115
+ dim=2,
1116
+ keepdim=False,
1117
+ ).to(noise_guidance_edit_tmp_quantile.dtype)
1118
+
1119
+ self.activation_mask[i, c] = (
1120
+ torch.where(
1121
+ noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None],
1122
+ torch.ones_like(noise_guidance_edit_tmp),
1123
+ torch.zeros_like(noise_guidance_edit_tmp),
1124
+ )
1125
+ .detach()
1126
+ .cpu()
1127
+ )
1128
+
1129
+ noise_guidance_edit_tmp = torch.where(
1130
+ noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None],
1131
+ noise_guidance_edit_tmp,
1132
+ torch.zeros_like(noise_guidance_edit_tmp),
1133
+ )
1134
+
1135
+ noise_guidance_edit += noise_guidance_edit_tmp
1136
+
1137
+ self.sem_guidance[i] = noise_guidance_edit.detach().cpu()
1138
+
1139
+ noise_pred = noise_pred_uncond + noise_guidance_edit
1140
+
1141
+ if enable_edit_guidance and self.guidance_rescale > 0.0:
1142
+ # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
1143
+ noise_pred = rescale_noise_cfg(
1144
+ noise_pred,
1145
+ noise_pred_edit_concepts.mean(dim=0, keepdim=False),
1146
+ guidance_rescale=self.guidance_rescale,
1147
+ )
1148
+
1149
+ idx = t_to_idx[int(t)]
1150
+ latents = self.scheduler.step(
1151
+ noise_pred, t, latents, variance_noise=zs[idx], **extra_step_kwargs
1152
+ ).prev_sample
1153
+
1154
+ # step callback
1155
+ if use_cross_attn_mask:
1156
+ store_step = i in attn_store_steps
1157
+ self.attention_store.between_steps(store_step)
1158
+
1159
+ if callback_on_step_end is not None:
1160
+ callback_kwargs = {}
1161
+ for k in callback_on_step_end_tensor_inputs:
1162
+ callback_kwargs[k] = locals()[k]
1163
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1164
+
1165
+ latents = callback_outputs.pop("latents", latents)
1166
+ # prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1167
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1168
+
1169
+ # call the callback, if provided
1170
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1171
+ progress_bar.update()
1172
+
1173
+ # 8. Post-processing
1174
+ if not output_type == "latent":
1175
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
1176
+ 0
1177
+ ]
1178
+ image, has_nsfw_concept = self.run_safety_checker(image, self.device, text_embeddings.dtype)
1179
+ else:
1180
+ image = latents
1181
+ has_nsfw_concept = None
1182
+
1183
+ if has_nsfw_concept is None:
1184
+ do_denormalize = [True] * image.shape[0]
1185
+ else:
1186
+ do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
1187
+
1188
+ image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
1189
+
1190
+ # Offload all models
1191
+ self.maybe_free_model_hooks()
1192
+
1193
+ if not return_dict:
1194
+ return (image, has_nsfw_concept)
1195
+
1196
+ return LEditsPPDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
1197
+
1198
+ @torch.no_grad()
1199
+ def invert(
1200
+ self,
1201
+ image: PipelineImageInput,
1202
+ source_prompt: str = "",
1203
+ source_guidance_scale: float = 3.5,
1204
+ num_inversion_steps: int = 30,
1205
+ skip: float = 0.15,
1206
+ generator: Optional[torch.Generator] = None,
1207
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
1208
+ clip_skip: Optional[int] = None,
1209
+ height: Optional[int] = None,
1210
+ width: Optional[int] = None,
1211
+ resize_mode: Optional[str] = "default",
1212
+ crops_coords: Optional[Tuple[int, int, int, int]] = None,
1213
+ ):
1214
+ r"""
1215
+ The function to the pipeline for image inversion as described by the [LEDITS++
1216
+ Paper](https://arxiv.org/abs/2301.12247). If the scheduler is set to [`~schedulers.DDIMScheduler`] the
1217
+ inversion proposed by [edit-friendly DPDM](https://arxiv.org/abs/2304.06140) will be performed instead.
1218
+
1219
+ Args:
1220
+ image (`PipelineImageInput`):
1221
+ Input for the image(s) that are to be edited. Multiple input images have to default to the same aspect
1222
+ ratio.
1223
+ source_prompt (`str`, defaults to `""`):
1224
+ Prompt describing the input image that will be used for guidance during inversion. Guidance is disabled
1225
+ if the `source_prompt` is `""`.
1226
+ source_guidance_scale (`float`, defaults to `3.5`):
1227
+ Strength of guidance during inversion.
1228
+ num_inversion_steps (`int`, defaults to `30`):
1229
+ Number of total performed inversion steps after discarding the initial `skip` steps.
1230
+ skip (`float`, defaults to `0.15`):
1231
+ Portion of initial steps that will be ignored for inversion and subsequent generation. Lower values
1232
+ will lead to stronger changes to the input image. `skip` has to be between `0` and `1`.
1233
+ generator (`torch.Generator`, *optional*):
1234
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make inversion
1235
+ deterministic.
1236
+ cross_attention_kwargs (`dict`, *optional*):
1237
+ A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
1238
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
1239
+ clip_skip (`int`, *optional*):
1240
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
1241
+ the output of the pre-final layer will be used for computing the prompt embeddings.
1242
+ height (`int`, *optional*, defaults to `None`):
1243
+ The height in preprocessed image. If `None`, will use the `get_default_height_width()` to get default
1244
+ height.
1245
+ width (`int`, *optional*`, defaults to `None`):
1246
+ The width in preprocessed. If `None`, will use get_default_height_width()` to get the default width.
1247
+ resize_mode (`str`, *optional*, defaults to `default`):
1248
+ The resize mode, can be one of `default` or `fill`. If `default`, will resize the image to fit within
1249
+ the specified width and height, and it may not maintaining the original aspect ratio. If `fill`, will
1250
+ resize the image to fit within the specified width and height, maintaining the aspect ratio, and then
1251
+ center the image within the dimensions, filling empty with data from image. If `crop`, will resize the
1252
+ image to fit within the specified width and height, maintaining the aspect ratio, and then center the
1253
+ image within the dimensions, cropping the excess. Note that resize_mode `fill` and `crop` are only
1254
+ supported for PIL image input.
1255
+ crops_coords (`List[Tuple[int, int, int, int]]`, *optional*, defaults to `None`):
1256
+ The crop coordinates for each image in the batch. If `None`, will not crop the image.
1257
+
1258
+ Returns:
1259
+ [`~pipelines.ledits_pp.LEditsPPInversionPipelineOutput`]: Output will contain the resized input image(s)
1260
+ and respective VAE reconstruction(s).
1261
+ """
1262
+ # Reset attn processor, we do not want to store attn maps during inversion
1263
+ self.unet.set_attn_processor(AttnProcessor())
1264
+
1265
+ self.eta = 1.0
1266
+
1267
+ self.scheduler.config.timestep_spacing = "leading"
1268
+ self.scheduler.set_timesteps(int(num_inversion_steps * (1 + skip)))
1269
+ self.inversion_steps = self.scheduler.timesteps[-num_inversion_steps:]
1270
+ timesteps = self.inversion_steps
1271
+
1272
+ # 1. encode image
1273
+ x0, resized = self.encode_image(
1274
+ image,
1275
+ dtype=self.text_encoder.dtype,
1276
+ height=height,
1277
+ width=width,
1278
+ resize_mode=resize_mode,
1279
+ crops_coords=crops_coords,
1280
+ )
1281
+ self.batch_size = x0.shape[0]
1282
+
1283
+ # autoencoder reconstruction
1284
+ image_rec = self.vae.decode(x0 / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0]
1285
+ image_rec = self.image_processor.postprocess(image_rec, output_type="pil")
1286
+
1287
+ # 2. get embeddings
1288
+ do_classifier_free_guidance = source_guidance_scale > 1.0
1289
+
1290
+ lora_scale = cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
1291
+
1292
+ uncond_embedding, text_embeddings, _ = self.encode_prompt(
1293
+ num_images_per_prompt=1,
1294
+ device=self.device,
1295
+ negative_prompt=None,
1296
+ enable_edit_guidance=do_classifier_free_guidance,
1297
+ editing_prompt=source_prompt,
1298
+ lora_scale=lora_scale,
1299
+ clip_skip=clip_skip,
1300
+ )
1301
+
1302
+ # 3. find zs and xts
1303
+ variance_noise_shape = (num_inversion_steps, *x0.shape)
1304
+
1305
+ # intermediate latents
1306
+ t_to_idx = {int(v): k for k, v in enumerate(timesteps)}
1307
+ xts = torch.zeros(size=variance_noise_shape, device=self.device, dtype=uncond_embedding.dtype)
1308
+
1309
+ for t in reversed(timesteps):
1310
+ idx = num_inversion_steps - t_to_idx[int(t)] - 1
1311
+ noise = randn_tensor(shape=x0.shape, generator=generator, device=self.device, dtype=x0.dtype)
1312
+ xts[idx] = self.scheduler.add_noise(x0, noise, torch.Tensor([t]))
1313
+ xts = torch.cat([x0.unsqueeze(0), xts], dim=0)
1314
+
1315
+ self.scheduler.set_timesteps(len(self.scheduler.timesteps))
1316
+ # noise maps
1317
+ zs = torch.zeros(size=variance_noise_shape, device=self.device, dtype=uncond_embedding.dtype)
1318
+
1319
+ with self.progress_bar(total=len(timesteps)) as progress_bar:
1320
+ for t in timesteps:
1321
+ idx = num_inversion_steps - t_to_idx[int(t)] - 1
1322
+ # 1. predict noise residual
1323
+ xt = xts[idx + 1]
1324
+
1325
+ noise_pred = self.unet(xt, timestep=t, encoder_hidden_states=uncond_embedding).sample
1326
+
1327
+ if not source_prompt == "":
1328
+ noise_pred_cond = self.unet(xt, timestep=t, encoder_hidden_states=text_embeddings).sample
1329
+ noise_pred = noise_pred + source_guidance_scale * (noise_pred_cond - noise_pred)
1330
+
1331
+ xtm1 = xts[idx]
1332
+ z, xtm1_corrected = compute_noise(self.scheduler, xtm1, xt, t, noise_pred, self.eta)
1333
+ zs[idx] = z
1334
+
1335
+ # correction to avoid error accumulation
1336
+ xts[idx] = xtm1_corrected
1337
+
1338
+ progress_bar.update()
1339
+
1340
+ self.init_latents = xts[-1].expand(self.batch_size, -1, -1, -1)
1341
+ zs = zs.flip(0)
1342
+ self.zs = zs
1343
+
1344
+ return LEditsPPInversionPipelineOutput(images=resized, vae_reconstruction_images=image_rec)
1345
+
1346
+ @torch.no_grad()
1347
+ def encode_image(self, image, dtype=None, height=None, width=None, resize_mode="default", crops_coords=None):
1348
+ image = self.image_processor.preprocess(
1349
+ image=image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
1350
+ )
1351
+ resized = self.image_processor.postprocess(image=image, output_type="pil")
1352
+
1353
+ if max(image.shape[-2:]) > self.vae.config["sample_size"] * 1.5:
1354
+ logger.warning(
1355
+ "Your input images far exceed the default resolution of the underlying diffusion model. "
1356
+ "The output images may contain severe artifacts! "
1357
+ "Consider down-sampling the input using the `height` and `width` parameters"
1358
+ )
1359
+ image = image.to(dtype)
1360
+
1361
+ x0 = self.vae.encode(image.to(self.device)).latent_dist.mode()
1362
+ x0 = x0.to(dtype)
1363
+ x0 = self.vae.config.scaling_factor * x0
1364
+ return x0, resized
1365
+
1366
+
1367
+ def compute_noise_ddim(scheduler, prev_latents, latents, timestep, noise_pred, eta):
1368
+ # 1. get previous step value (=t-1)
1369
+ prev_timestep = timestep - scheduler.config.num_train_timesteps // scheduler.num_inference_steps
1370
+
1371
+ # 2. compute alphas, betas
1372
+ alpha_prod_t = scheduler.alphas_cumprod[timestep]
1373
+ alpha_prod_t_prev = (
1374
+ scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else scheduler.final_alpha_cumprod
1375
+ )
1376
+
1377
+ beta_prod_t = 1 - alpha_prod_t
1378
+
1379
+ # 3. compute predicted original sample from predicted noise also called
1380
+ # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
1381
+ pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)
1382
+
1383
+ # 4. Clip "predicted x_0"
1384
+ if scheduler.config.clip_sample:
1385
+ pred_original_sample = torch.clamp(pred_original_sample, -1, 1)
1386
+
1387
+ # 5. compute variance: "sigma_t(η)" -> see formula (16)
1388
+ # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
1389
+ variance = scheduler._get_variance(timestep, prev_timestep)
1390
+ std_dev_t = eta * variance ** (0.5)
1391
+
1392
+ # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
1393
+ pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * noise_pred
1394
+
1395
+ # modifed so that updated xtm1 is returned as well (to avoid error accumulation)
1396
+ mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
1397
+ if variance > 0.0:
1398
+ noise = (prev_latents - mu_xt) / (variance ** (0.5) * eta)
1399
+ else:
1400
+ noise = torch.tensor([0.0]).to(latents.device)
1401
+
1402
+ return noise, mu_xt + (eta * variance**0.5) * noise
1403
+
1404
+
1405
+ def compute_noise_sde_dpm_pp_2nd(scheduler, prev_latents, latents, timestep, noise_pred, eta):
1406
+ def first_order_update(model_output, sample): # timestep, prev_timestep, sample):
1407
+ sigma_t, sigma_s = scheduler.sigmas[scheduler.step_index + 1], scheduler.sigmas[scheduler.step_index]
1408
+ alpha_t, sigma_t = scheduler._sigma_to_alpha_sigma_t(sigma_t)
1409
+ alpha_s, sigma_s = scheduler._sigma_to_alpha_sigma_t(sigma_s)
1410
+ lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
1411
+ lambda_s = torch.log(alpha_s) - torch.log(sigma_s)
1412
+
1413
+ h = lambda_t - lambda_s
1414
+
1415
+ mu_xt = (sigma_t / sigma_s * torch.exp(-h)) * sample + (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output
1416
+
1417
+ mu_xt = scheduler.dpm_solver_first_order_update(
1418
+ model_output=model_output, sample=sample, noise=torch.zeros_like(sample)
1419
+ )
1420
+
1421
+ sigma = sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h))
1422
+ if sigma > 0.0:
1423
+ noise = (prev_latents - mu_xt) / sigma
1424
+ else:
1425
+ noise = torch.tensor([0.0]).to(sample.device)
1426
+
1427
+ prev_sample = mu_xt + sigma * noise
1428
+ return noise, prev_sample
1429
+
1430
+ def second_order_update(model_output_list, sample): # timestep_list, prev_timestep, sample):
1431
+ sigma_t, sigma_s0, sigma_s1 = (
1432
+ scheduler.sigmas[scheduler.step_index + 1],
1433
+ scheduler.sigmas[scheduler.step_index],
1434
+ scheduler.sigmas[scheduler.step_index - 1],
1435
+ )
1436
+
1437
+ alpha_t, sigma_t = scheduler._sigma_to_alpha_sigma_t(sigma_t)
1438
+ alpha_s0, sigma_s0 = scheduler._sigma_to_alpha_sigma_t(sigma_s0)
1439
+ alpha_s1, sigma_s1 = scheduler._sigma_to_alpha_sigma_t(sigma_s1)
1440
+
1441
+ lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
1442
+ lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
1443
+ lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
1444
+
1445
+ m0, m1 = model_output_list[-1], model_output_list[-2]
1446
+
1447
+ h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
1448
+ r0 = h_0 / h
1449
+ D0, D1 = m0, (1.0 / r0) * (m0 - m1)
1450
+
1451
+ mu_xt = (
1452
+ (sigma_t / sigma_s0 * torch.exp(-h)) * sample
1453
+ + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
1454
+ + 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1
1455
+ )
1456
+
1457
+ sigma = sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h))
1458
+ if sigma > 0.0:
1459
+ noise = (prev_latents - mu_xt) / sigma
1460
+ else:
1461
+ noise = torch.tensor([0.0]).to(sample.device)
1462
+
1463
+ prev_sample = mu_xt + sigma * noise
1464
+
1465
+ return noise, prev_sample
1466
+
1467
+ if scheduler.step_index is None:
1468
+ scheduler._init_step_index(timestep)
1469
+
1470
+ model_output = scheduler.convert_model_output(model_output=noise_pred, sample=latents)
1471
+ for i in range(scheduler.config.solver_order - 1):
1472
+ scheduler.model_outputs[i] = scheduler.model_outputs[i + 1]
1473
+ scheduler.model_outputs[-1] = model_output
1474
+
1475
+ if scheduler.lower_order_nums < 1:
1476
+ noise, prev_sample = first_order_update(model_output, latents)
1477
+ else:
1478
+ noise, prev_sample = second_order_update(scheduler.model_outputs, latents)
1479
+
1480
+ if scheduler.lower_order_nums < scheduler.config.solver_order:
1481
+ scheduler.lower_order_nums += 1
1482
+
1483
+ # upon completion increase step index by one
1484
+ scheduler._step_index += 1
1485
+
1486
+ return noise, prev_sample
1487
+
1488
+
1489
+ def compute_noise(scheduler, *args):
1490
+ if isinstance(scheduler, DDIMScheduler):
1491
+ return compute_noise_ddim(scheduler, *args)
1492
+ elif (
1493
+ isinstance(scheduler, DPMSolverMultistepScheduler)
1494
+ and scheduler.config.algorithm_type == "sde-dpmsolver++"
1495
+ and scheduler.config.solver_order == 2
1496
+ ):
1497
+ return compute_noise_sde_dpm_pp_2nd(scheduler, *args)
1498
+ else:
1499
+ raise NotImplementedError
ledits/pipeline_leditspp_stable_diffusion_xl.py ADDED
@@ -0,0 +1,1854 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ import math
17
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
18
+
19
+ import torch
20
+ import torch.nn.functional as F
21
+ from transformers import (
22
+ CLIPImageProcessor,
23
+ CLIPTextModel,
24
+ CLIPTextModelWithProjection,
25
+ CLIPTokenizer,
26
+ CLIPVisionModelWithProjection,
27
+ )
28
+
29
+ from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
30
+ from diffusers.loaders import (
31
+ FromSingleFileMixin,
32
+ IPAdapterMixin,
33
+ StableDiffusionXLLoraLoaderMixin,
34
+ TextualInversionLoaderMixin,
35
+ )
36
+ from diffusers.models import AutoencoderKL, UNet2DConditionModel
37
+ from diffusers.models.attention_processor import (
38
+ Attention,
39
+ AttnProcessor,
40
+ AttnProcessor2_0,
41
+ XFormersAttnProcessor,
42
+ )
43
+ from diffusers.models.lora import adjust_lora_scale_text_encoder
44
+ from diffusers.schedulers import DDIMScheduler, DPMSolverMultistepScheduler
45
+ from diffusers.utils import (
46
+ USE_PEFT_BACKEND,
47
+ is_invisible_watermark_available,
48
+ is_torch_xla_available,
49
+ logging,
50
+ replace_example_docstring,
51
+ scale_lora_layers,
52
+ unscale_lora_layers,
53
+ )
54
+ from diffusers.utils.torch_utils import randn_tensor
55
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline
56
+ from .pipeline_output import LEditsPPDiffusionPipelineOutput, LEditsPPInversionPipelineOutput
57
+
58
+
59
+ if is_invisible_watermark_available():
60
+ from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
61
+
62
+ if is_torch_xla_available():
63
+ import torch_xla.core.xla_model as xm
64
+
65
+ XLA_AVAILABLE = True
66
+ else:
67
+ XLA_AVAILABLE = False
68
+
69
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
70
+
71
+ EXAMPLE_DOC_STRING = """
72
+ Examples:
73
+ ```py
74
+ >>> import torch
75
+ >>> import PIL
76
+ >>> import requests
77
+ >>> from io import BytesIO
78
+
79
+ >>> from diffusers import LEditsPPPipelineStableDiffusionXL
80
+
81
+ >>> pipe = LEditsPPPipelineStableDiffusionXL.from_pretrained(
82
+ ... "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
83
+ ... )
84
+ >>> pipe = pipe.to("cuda")
85
+
86
+
87
+ >>> def download_image(url):
88
+ ... response = requests.get(url)
89
+ ... return PIL.Image.open(BytesIO(response.content)).convert("RGB")
90
+
91
+
92
+ >>> img_url = "https://www.aiml.informatik.tu-darmstadt.de/people/mbrack/tennis.jpg"
93
+ >>> image = download_image(img_url)
94
+
95
+ >>> _ = pipe.invert(image=image, num_inversion_steps=50, skip=0.2)
96
+
97
+ >>> edited_image = pipe(
98
+ ... editing_prompt=["tennis ball", "tomato"],
99
+ ... reverse_editing_direction=[True, False],
100
+ ... edit_guidance_scale=[5.0, 10.0],
101
+ ... edit_threshold=[0.9, 0.85],
102
+ ... ).images[0]
103
+ ```
104
+ """
105
+
106
+
107
+ # Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LeditsAttentionStore
108
+ class LeditsAttentionStore:
109
+ @staticmethod
110
+ def get_empty_store():
111
+ return {"down_cross": [], "mid_cross": [], "up_cross": [], "down_self": [], "mid_self": [], "up_self": []}
112
+
113
+ def __call__(self, attn, is_cross: bool, place_in_unet: str, editing_prompts, PnP=False):
114
+ # attn.shape = batch_size * head_size, seq_len query, seq_len_key
115
+ if attn.shape[1] <= self.max_size:
116
+ bs = 1 + int(PnP) + editing_prompts
117
+ skip = 2 if PnP else 1 # skip PnP & unconditional
118
+ attn = torch.stack(attn.split(self.batch_size)).permute(1, 0, 2, 3)
119
+ source_batch_size = int(attn.shape[1] // bs)
120
+ self.forward(attn[:, skip * source_batch_size :], is_cross, place_in_unet)
121
+
122
+ def forward(self, attn, is_cross: bool, place_in_unet: str):
123
+ key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
124
+
125
+ self.step_store[key].append(attn)
126
+
127
+ def between_steps(self, store_step=True):
128
+ if store_step:
129
+ if self.average:
130
+ if len(self.attention_store) == 0:
131
+ self.attention_store = self.step_store
132
+ else:
133
+ for key in self.attention_store:
134
+ for i in range(len(self.attention_store[key])):
135
+ self.attention_store[key][i] += self.step_store[key][i]
136
+ else:
137
+ if len(self.attention_store) == 0:
138
+ self.attention_store = [self.step_store]
139
+ else:
140
+ self.attention_store.append(self.step_store)
141
+
142
+ self.cur_step += 1
143
+ self.step_store = self.get_empty_store()
144
+
145
+ def get_attention(self, step: int):
146
+ if self.average:
147
+ attention = {
148
+ key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store
149
+ }
150
+ else:
151
+ assert step is not None
152
+ attention = self.attention_store[step]
153
+ return attention
154
+
155
+ def aggregate_attention(
156
+ self, attention_maps, prompts, res: Union[int, Tuple[int]], from_where: List[str], is_cross: bool, select: int
157
+ ):
158
+ out = [[] for x in range(self.batch_size)]
159
+ if isinstance(res, int):
160
+ num_pixels = res**2
161
+ resolution = (res, res)
162
+ else:
163
+ num_pixels = res[0] * res[1]
164
+ resolution = res[:2]
165
+
166
+ for location in from_where:
167
+ for bs_item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]:
168
+ for batch, item in enumerate(bs_item):
169
+ if item.shape[1] == num_pixels:
170
+ cross_maps = item.reshape(len(prompts), -1, *resolution, item.shape[-1])[select]
171
+ out[batch].append(cross_maps)
172
+
173
+ out = torch.stack([torch.cat(x, dim=0) for x in out])
174
+ # average over heads
175
+ out = out.sum(1) / out.shape[1]
176
+ return out
177
+
178
+ def __init__(self, average: bool, batch_size=1, max_resolution=16, max_size: int = None):
179
+ self.step_store = self.get_empty_store()
180
+ self.attention_store = []
181
+ self.cur_step = 0
182
+ self.average = average
183
+ self.batch_size = batch_size
184
+ if max_size is None:
185
+ self.max_size = max_resolution**2
186
+ elif max_size is not None and max_resolution is None:
187
+ self.max_size = max_size
188
+ else:
189
+ raise ValueError("Only allowed to set one of max_resolution or max_size")
190
+
191
+
192
+ # Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LeditsGaussianSmoothing
193
+ class LeditsGaussianSmoothing:
194
+ def __init__(self, device):
195
+ kernel_size = [3, 3]
196
+ sigma = [0.5, 0.5]
197
+
198
+ # The gaussian kernel is the product of the gaussian function of each dimension.
199
+ kernel = 1
200
+ meshgrids = torch.meshgrid([torch.arange(size, dtype=torch.float32) for size in kernel_size])
201
+ for size, std, mgrid in zip(kernel_size, sigma, meshgrids):
202
+ mean = (size - 1) / 2
203
+ kernel *= 1 / (std * math.sqrt(2 * math.pi)) * torch.exp(-(((mgrid - mean) / (2 * std)) ** 2))
204
+
205
+ # Make sure sum of values in gaussian kernel equals 1.
206
+ kernel = kernel / torch.sum(kernel)
207
+
208
+ # Reshape to depthwise convolutional weight
209
+ kernel = kernel.view(1, 1, *kernel.size())
210
+ kernel = kernel.repeat(1, *[1] * (kernel.dim() - 1))
211
+
212
+ self.weight = kernel.to(device)
213
+
214
+ def __call__(self, input):
215
+ """
216
+ Arguments:
217
+ Apply gaussian filter to input.
218
+ input (torch.Tensor): Input to apply gaussian filter on.
219
+ Returns:
220
+ filtered (torch.Tensor): Filtered output.
221
+ """
222
+ return F.conv2d(input, weight=self.weight.to(input.dtype))
223
+
224
+
225
+ # Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LEDITSCrossAttnProcessor
226
+ class LEDITSCrossAttnProcessor:
227
+ def __init__(self, attention_store, place_in_unet, pnp, editing_prompts):
228
+ self.attnstore = attention_store
229
+ self.place_in_unet = place_in_unet
230
+ self.editing_prompts = editing_prompts
231
+ self.pnp = pnp
232
+
233
+ def __call__(
234
+ self,
235
+ attn: Attention,
236
+ hidden_states,
237
+ encoder_hidden_states,
238
+ attention_mask=None,
239
+ temb=None,
240
+ ):
241
+ batch_size, sequence_length, _ = (
242
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
243
+ )
244
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
245
+
246
+ query = attn.to_q(hidden_states)
247
+
248
+ if encoder_hidden_states is None:
249
+ encoder_hidden_states = hidden_states
250
+ elif attn.norm_cross:
251
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
252
+
253
+ key = attn.to_k(encoder_hidden_states)
254
+ value = attn.to_v(encoder_hidden_states)
255
+
256
+ query = attn.head_to_batch_dim(query)
257
+ key = attn.head_to_batch_dim(key)
258
+ value = attn.head_to_batch_dim(value)
259
+
260
+ attention_probs = attn.get_attention_scores(query, key, attention_mask)
261
+ self.attnstore(
262
+ attention_probs,
263
+ is_cross=True,
264
+ place_in_unet=self.place_in_unet,
265
+ editing_prompts=self.editing_prompts,
266
+ PnP=self.pnp,
267
+ )
268
+
269
+ hidden_states = torch.bmm(attention_probs, value)
270
+ hidden_states = attn.batch_to_head_dim(hidden_states)
271
+
272
+ # linear proj
273
+ hidden_states = attn.to_out[0](hidden_states)
274
+ # dropout
275
+ hidden_states = attn.to_out[1](hidden_states)
276
+
277
+ hidden_states = hidden_states / attn.rescale_output_factor
278
+ return hidden_states
279
+
280
+
281
+ class LEditsPPPipelineStableDiffusionXL(
282
+ DiffusionPipeline,
283
+ FromSingleFileMixin,
284
+ StableDiffusionXLLoraLoaderMixin,
285
+ TextualInversionLoaderMixin,
286
+ IPAdapterMixin,
287
+ ):
288
+ """
289
+ Pipeline for textual image editing using LEDits++ with Stable Diffusion XL.
290
+
291
+ This model inherits from [`DiffusionPipeline`] and builds on the [`StableDiffusionXLPipeline`]. Check the
292
+ superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a
293
+ particular device, etc.).
294
+
295
+ In addition the pipeline inherits the following loading methods:
296
+ - *LoRA*: [`LEditsPPPipelineStableDiffusionXL.load_lora_weights`]
297
+ - *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`]
298
+
299
+ as well as the following saving methods:
300
+ - *LoRA*: [`loaders.StableDiffusionXLPipeline.save_lora_weights`]
301
+
302
+ Args:
303
+ vae ([`AutoencoderKL`]):
304
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
305
+ text_encoder ([`~transformers.CLIPTextModel`]):
306
+ Frozen text-encoder. Stable Diffusion XL uses the text portion of
307
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
308
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
309
+ text_encoder_2 ([`~transformers.CLIPTextModelWithProjection`]):
310
+ Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
311
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
312
+ specifically the
313
+ [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
314
+ variant.
315
+ tokenizer ([`~transformers.CLIPTokenizer`]):
316
+ Tokenizer of class
317
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
318
+ tokenizer_2 ([`~transformers.CLIPTokenizer`]):
319
+ Second Tokenizer of class
320
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
321
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
322
+ scheduler ([`DPMSolverMultistepScheduler`] or [`DDIMScheduler`]):
323
+ A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
324
+ [`DPMSolverMultistepScheduler`] or [`DDIMScheduler`]. If any other scheduler is passed it will
325
+ automatically be set to [`DPMSolverMultistepScheduler`].
326
+ force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
327
+ Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
328
+ `stabilityai/stable-diffusion-xl-base-1-0`.
329
+ add_watermarker (`bool`, *optional*):
330
+ Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
331
+ watermark output images. If not defined, it will default to True if the package is installed, otherwise no
332
+ watermarker will be used.
333
+ """
334
+
335
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
336
+ _optional_components = [
337
+ "tokenizer",
338
+ "tokenizer_2",
339
+ "text_encoder",
340
+ "text_encoder_2",
341
+ "image_encoder",
342
+ "feature_extractor",
343
+ ]
344
+ _callback_tensor_inputs = [
345
+ "latents",
346
+ "prompt_embeds",
347
+ "negative_prompt_embeds",
348
+ "add_text_embeds",
349
+ "add_time_ids",
350
+ "negative_pooled_prompt_embeds",
351
+ "negative_add_time_ids",
352
+ ]
353
+
354
+ def __init__(
355
+ self,
356
+ vae: AutoencoderKL,
357
+ text_encoder: CLIPTextModel,
358
+ text_encoder_2: CLIPTextModelWithProjection,
359
+ tokenizer: CLIPTokenizer,
360
+ tokenizer_2: CLIPTokenizer,
361
+ unet: UNet2DConditionModel,
362
+ scheduler: Union[DPMSolverMultistepScheduler, DDIMScheduler],
363
+ image_encoder: CLIPVisionModelWithProjection = None,
364
+ feature_extractor: CLIPImageProcessor = None,
365
+ force_zeros_for_empty_prompt: bool = True,
366
+ add_watermarker: Optional[bool] = None,
367
+ ):
368
+ super().__init__()
369
+
370
+ self.register_modules(
371
+ vae=vae,
372
+ text_encoder=text_encoder,
373
+ text_encoder_2=text_encoder_2,
374
+ tokenizer=tokenizer,
375
+ tokenizer_2=tokenizer_2,
376
+ unet=unet,
377
+ scheduler=scheduler,
378
+ image_encoder=image_encoder,
379
+ feature_extractor=feature_extractor,
380
+ )
381
+ self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
382
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
383
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
384
+
385
+ if not isinstance(scheduler, DDIMScheduler) and not isinstance(scheduler, DPMSolverMultistepScheduler):
386
+ self.scheduler = DPMSolverMultistepScheduler.from_config(
387
+ scheduler.config, algorithm_type="sde-dpmsolver++", solver_order=2
388
+ )
389
+ logger.warning(
390
+ "This pipeline only supports DDIMScheduler and DPMSolverMultistepScheduler. "
391
+ "The scheduler has been changed to DPMSolverMultistepScheduler."
392
+ )
393
+
394
+ self.default_sample_size = self.unet.config.sample_size
395
+
396
+ add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
397
+
398
+ if add_watermarker:
399
+ self.watermark = StableDiffusionXLWatermarker()
400
+ else:
401
+ self.watermark = None
402
+ self.inversion_steps = None
403
+
404
+ def encode_prompt(
405
+ self,
406
+ device: Optional[torch.device] = None,
407
+ num_images_per_prompt: int = 1,
408
+ negative_prompt: Optional[str] = None,
409
+ negative_prompt_2: Optional[str] = None,
410
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
411
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
412
+ lora_scale: Optional[float] = None,
413
+ clip_skip: Optional[int] = None,
414
+ enable_edit_guidance: bool = True,
415
+ editing_prompt: Optional[str] = None,
416
+ editing_prompt_embeds: Optional[torch.Tensor] = None,
417
+ editing_pooled_prompt_embeds: Optional[torch.Tensor] = None,
418
+ avg_diff = None,
419
+ avg_diff_2 = None,
420
+ correlation_weight_factor = 0.7,
421
+ scale=2,
422
+ ) -> object:
423
+ r"""
424
+ Encodes the prompt into text encoder hidden states.
425
+
426
+ Args:
427
+ device: (`torch.device`):
428
+ torch device
429
+ num_images_per_prompt (`int`):
430
+ number of images that should be generated per prompt
431
+ negative_prompt (`str` or `List[str]`, *optional*):
432
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
433
+ `negative_prompt_embeds` instead.
434
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
435
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
436
+ `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
437
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
438
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
439
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
440
+ argument.
441
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
442
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
443
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
444
+ input argument.
445
+ lora_scale (`float`, *optional*):
446
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
447
+ clip_skip (`int`, *optional*):
448
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
449
+ the output of the pre-final layer will be used for computing the prompt embeddings.
450
+ enable_edit_guidance (`bool`):
451
+ Whether to guide towards an editing prompt or not.
452
+ editing_prompt (`str` or `List[str]`, *optional*):
453
+ Editing prompt(s) to be encoded. If not defined and 'enable_edit_guidance' is True, one has to pass
454
+ `editing_prompt_embeds` instead.
455
+ editing_prompt_embeds (`torch.Tensor`, *optional*):
456
+ Pre-generated edit text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
457
+ If not provided and 'enable_edit_guidance' is True, editing_prompt_embeds will be generated from
458
+ `editing_prompt` input argument.
459
+ editing_pooled_prompt_embeds (`torch.Tensor`, *optional*):
460
+ Pre-generated edit pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
461
+ weighting. If not provided, pooled editing_pooled_prompt_embeds will be generated from `editing_prompt`
462
+ input argument.
463
+ """
464
+ device = device or self._execution_device
465
+
466
+ # set lora scale so that monkey patched LoRA
467
+ # function of text encoder can correctly access it
468
+ if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
469
+ self._lora_scale = lora_scale
470
+
471
+ # dynamically adjust the LoRA scale
472
+ if self.text_encoder is not None:
473
+ if not USE_PEFT_BACKEND:
474
+ adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
475
+ else:
476
+ scale_lora_layers(self.text_encoder, lora_scale)
477
+
478
+ if self.text_encoder_2 is not None:
479
+ if not USE_PEFT_BACKEND:
480
+ adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
481
+ else:
482
+ scale_lora_layers(self.text_encoder_2, lora_scale)
483
+
484
+ batch_size = self.batch_size
485
+
486
+ # Define tokenizers and text encoders
487
+ tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
488
+ text_encoders = (
489
+ [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
490
+ )
491
+ num_edit_tokens = 0
492
+
493
+ # get unconditional embeddings for classifier free guidance
494
+ zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
495
+
496
+ if negative_prompt_embeds is None:
497
+ negative_prompt = negative_prompt or ""
498
+ negative_prompt_2 = negative_prompt_2 or negative_prompt
499
+
500
+ # normalize str to list
501
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
502
+ negative_prompt_2 = (
503
+ batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
504
+ )
505
+
506
+ uncond_tokens: List[str]
507
+
508
+ if batch_size != len(negative_prompt):
509
+ raise ValueError(
510
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but image inversion "
511
+ f" has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
512
+ " the batch size of the input images."
513
+ )
514
+ else:
515
+ uncond_tokens = [negative_prompt, negative_prompt_2]
516
+
517
+ j=0
518
+ negative_prompt_embeds_list = []
519
+ for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
520
+ if isinstance(self, TextualInversionLoaderMixin):
521
+ negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
522
+
523
+
524
+ uncond_input = tokenizer(
525
+ negative_prompt,
526
+ padding="max_length",
527
+ max_length=tokenizer.model_max_length,
528
+ truncation=True,
529
+ return_tensors="pt",
530
+ )
531
+ toks = uncond_input.input_ids
532
+
533
+ negative_prompt_embeds = text_encoder(
534
+ uncond_input.input_ids.to(device),
535
+ output_hidden_states=True,
536
+ )
537
+ # We are only ALWAYS interested in the pooled output of the final text encoder
538
+ negative_pooled_prompt_embeds = negative_prompt_embeds[0]
539
+ negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
540
+
541
+ if avg_diff is not None and avg_diff_2 is not None:
542
+ #scale=3
543
+ print("SHALOM neg")
544
+ normed_prompt_embeds = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1, keepdim=True)
545
+ sims = normed_prompt_embeds[0] @ normed_prompt_embeds[0].T
546
+ if j == 0:
547
+ weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 768)
548
+
549
+ standard_weights = torch.ones_like(weights)
550
+
551
+ weights = standard_weights + (weights - standard_weights) * correlation_weight_factor
552
+ edit_concepts_embeds = negative_prompt_embeds + (weights * avg_diff[None, :].repeat(1,tokenizer.model_max_length, 1) * scale)
553
+ else:
554
+ weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 1280)
555
+
556
+ standard_weights = torch.ones_like(weights)
557
+
558
+ weights = standard_weights + (weights - standard_weights) * correlation_weight_factor
559
+ edit_concepts_embeds = negative_prompt_embeds + (weights * avg_diff_2[None, :].repeat(1, tokenizer.model_max_length, 1) * scale)
560
+
561
+
562
+ negative_prompt_embeds_list.append(negative_prompt_embeds)
563
+ j+=1
564
+
565
+ negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
566
+
567
+ if zero_out_negative_prompt:
568
+ negative_prompt_embeds = torch.zeros_like(negative_prompt_embeds)
569
+ negative_pooled_prompt_embeds = torch.zeros_like(negative_pooled_prompt_embeds)
570
+
571
+ if enable_edit_guidance and editing_prompt_embeds is None:
572
+ editing_prompt_2 = editing_prompt
573
+
574
+ editing_prompts = [editing_prompt, editing_prompt_2]
575
+ edit_prompt_embeds_list = []
576
+
577
+ i = 0
578
+ for editing_prompt, tokenizer, text_encoder in zip(editing_prompts, tokenizers, text_encoders):
579
+ if isinstance(self, TextualInversionLoaderMixin):
580
+ editing_prompt = self.maybe_convert_prompt(editing_prompt, tokenizer)
581
+
582
+ max_length = negative_prompt_embeds.shape[1]
583
+ edit_concepts_input = tokenizer(
584
+ # [x for item in editing_prompt for x in repeat(item, batch_size)],
585
+ editing_prompt,
586
+ padding="max_length",
587
+ max_length=max_length,
588
+ truncation=True,
589
+ return_tensors="pt",
590
+ return_length=True,
591
+ )
592
+ num_edit_tokens = edit_concepts_input.length - 2
593
+ toks = edit_concepts_input.input_ids
594
+ edit_concepts_embeds = text_encoder(
595
+ edit_concepts_input.input_ids.to(device),
596
+ output_hidden_states=True,
597
+ )
598
+ # We are only ALWAYS interested in the pooled output of the final text encoder
599
+ editing_pooled_prompt_embeds = edit_concepts_embeds[0]
600
+ if clip_skip is None:
601
+ edit_concepts_embeds = edit_concepts_embeds.hidden_states[-2]
602
+ else:
603
+ # "2" because SDXL always indexes from the penultimate layer.
604
+ edit_concepts_embeds = edit_concepts_embeds.hidden_states[-(clip_skip + 2)]
605
+
606
+ print("SHALOM???")
607
+ if avg_diff is not None and avg_diff_2 is not None:
608
+ #scale=3
609
+ print("SHALOM")
610
+ normed_prompt_embeds = edit_concepts_embeds / edit_concepts_embeds.norm(dim=-1, keepdim=True)
611
+ sims = normed_prompt_embeds[0] @ normed_prompt_embeds[0].T
612
+ if i == 0:
613
+ weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 768)
614
+
615
+ standard_weights = torch.ones_like(weights)
616
+
617
+ weights = standard_weights + (weights - standard_weights) * correlation_weight_factor
618
+ edit_concepts_embeds = edit_concepts_embeds + (weights * avg_diff[None, :].repeat(1,tokenizer.model_max_length, 1) * scale)
619
+ else:
620
+ weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 1280)
621
+
622
+ standard_weights = torch.ones_like(weights)
623
+
624
+ weights = standard_weights + (weights - standard_weights) * correlation_weight_factor
625
+ edit_concepts_embeds = edit_concepts_embeds + (weights * avg_diff_2[None, :].repeat(1, tokenizer.model_max_length, 1) * scale)
626
+
627
+ edit_prompt_embeds_list.append(edit_concepts_embeds)
628
+ i+=1
629
+
630
+ edit_concepts_embeds = torch.concat(edit_prompt_embeds_list, dim=-1)
631
+ elif not enable_edit_guidance:
632
+ edit_concepts_embeds = None
633
+ editing_pooled_prompt_embeds = None
634
+
635
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
636
+ bs_embed, seq_len, _ = negative_prompt_embeds.shape
637
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
638
+ seq_len = negative_prompt_embeds.shape[1]
639
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
640
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
641
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
642
+
643
+ if enable_edit_guidance:
644
+ bs_embed_edit, seq_len, _ = edit_concepts_embeds.shape
645
+ edit_concepts_embeds = edit_concepts_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
646
+ edit_concepts_embeds = edit_concepts_embeds.repeat(1, num_images_per_prompt, 1)
647
+ edit_concepts_embeds = edit_concepts_embeds.view(bs_embed_edit * num_images_per_prompt, seq_len, -1)
648
+
649
+ negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
650
+ bs_embed * num_images_per_prompt, -1
651
+ )
652
+
653
+ if enable_edit_guidance:
654
+ editing_pooled_prompt_embeds = editing_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
655
+ bs_embed_edit * num_images_per_prompt, -1
656
+ )
657
+
658
+ if self.text_encoder is not None:
659
+ if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
660
+ # Retrieve the original scale by scaling back the LoRA layers
661
+ unscale_lora_layers(self.text_encoder, lora_scale)
662
+
663
+ if self.text_encoder_2 is not None:
664
+ if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
665
+ # Retrieve the original scale by scaling back the LoRA layers
666
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
667
+
668
+ return (
669
+ negative_prompt_embeds,
670
+ edit_concepts_embeds,
671
+ negative_pooled_prompt_embeds,
672
+ editing_pooled_prompt_embeds,
673
+ num_edit_tokens,
674
+ )
675
+
676
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
677
+ def prepare_extra_step_kwargs(self, eta, generator=None):
678
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
679
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
680
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
681
+ # and should be between [0, 1]
682
+
683
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
684
+ extra_step_kwargs = {}
685
+ if accepts_eta:
686
+ extra_step_kwargs["eta"] = eta
687
+
688
+ # check if the scheduler accepts generator
689
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
690
+ if accepts_generator:
691
+ extra_step_kwargs["generator"] = generator
692
+ return extra_step_kwargs
693
+
694
+ def check_inputs(
695
+ self,
696
+ negative_prompt=None,
697
+ negative_prompt_2=None,
698
+ negative_prompt_embeds=None,
699
+ negative_pooled_prompt_embeds=None,
700
+ ):
701
+ if negative_prompt is not None and negative_prompt_embeds is not None:
702
+ raise ValueError(
703
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
704
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
705
+ )
706
+ elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
707
+ raise ValueError(
708
+ f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
709
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
710
+ )
711
+
712
+ if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
713
+ raise ValueError(
714
+ "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
715
+ )
716
+
717
+ # Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
718
+ def prepare_latents(self, device, latents):
719
+ latents = latents.to(device)
720
+
721
+ # scale the initial noise by the standard deviation required by the scheduler
722
+ latents = latents * self.scheduler.init_noise_sigma
723
+ return latents
724
+
725
+ def _get_add_time_ids(
726
+ self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
727
+ ):
728
+ add_time_ids = list(original_size + crops_coords_top_left + target_size)
729
+
730
+ passed_add_embed_dim = (
731
+ self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
732
+ )
733
+ expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
734
+
735
+ if expected_add_embed_dim != passed_add_embed_dim:
736
+ raise ValueError(
737
+ f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
738
+ )
739
+
740
+ add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
741
+ return add_time_ids
742
+
743
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
744
+ def upcast_vae(self):
745
+ dtype = self.vae.dtype
746
+ self.vae.to(dtype=torch.float32)
747
+ use_torch_2_0_or_xformers = isinstance(
748
+ self.vae.decoder.mid_block.attentions[0].processor,
749
+ (
750
+ AttnProcessor2_0,
751
+ XFormersAttnProcessor,
752
+ ),
753
+ )
754
+ # if xformers or torch_2_0 is used attention block does not need
755
+ # to be in float32 which can save lots of memory
756
+ if use_torch_2_0_or_xformers:
757
+ self.vae.post_quant_conv.to(dtype)
758
+ self.vae.decoder.conv_in.to(dtype)
759
+ self.vae.decoder.mid_block.to(dtype)
760
+
761
+ # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
762
+ def get_guidance_scale_embedding(
763
+ self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
764
+ ) -> torch.Tensor:
765
+ """
766
+ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
767
+
768
+ Args:
769
+ w (`torch.Tensor`):
770
+ Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
771
+ embedding_dim (`int`, *optional*, defaults to 512):
772
+ Dimension of the embeddings to generate.
773
+ dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
774
+ Data type of the generated embeddings.
775
+
776
+ Returns:
777
+ `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
778
+ """
779
+ assert len(w.shape) == 1
780
+ w = w * 1000.0
781
+
782
+ half_dim = embedding_dim // 2
783
+ emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
784
+ emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
785
+ emb = w.to(dtype)[:, None] * emb[None, :]
786
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
787
+ if embedding_dim % 2 == 1: # zero pad
788
+ emb = torch.nn.functional.pad(emb, (0, 1))
789
+ assert emb.shape == (w.shape[0], embedding_dim)
790
+ return emb
791
+
792
+ @property
793
+ def guidance_scale(self):
794
+ return self._guidance_scale
795
+
796
+ @property
797
+ def guidance_rescale(self):
798
+ return self._guidance_rescale
799
+
800
+ @property
801
+ def clip_skip(self):
802
+ return self._clip_skip
803
+
804
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
805
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
806
+ # corresponds to doing no classifier free guidance.
807
+ @property
808
+ def do_classifier_free_guidance(self):
809
+ return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
810
+
811
+ @property
812
+ def cross_attention_kwargs(self):
813
+ return self._cross_attention_kwargs
814
+
815
+ @property
816
+ def denoising_end(self):
817
+ return self._denoising_end
818
+
819
+ @property
820
+ def num_timesteps(self):
821
+ return self._num_timesteps
822
+
823
+ # Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LEditsPPPipelineStableDiffusion.prepare_unet
824
+ def prepare_unet(self, attention_store, PnP: bool = False):
825
+ attn_procs = {}
826
+ for name in self.unet.attn_processors.keys():
827
+ if name.startswith("mid_block"):
828
+ place_in_unet = "mid"
829
+ elif name.startswith("up_blocks"):
830
+ place_in_unet = "up"
831
+ elif name.startswith("down_blocks"):
832
+ place_in_unet = "down"
833
+ else:
834
+ continue
835
+
836
+ if "attn2" in name and place_in_unet != "mid":
837
+ attn_procs[name] = LEDITSCrossAttnProcessor(
838
+ attention_store=attention_store,
839
+ place_in_unet=place_in_unet,
840
+ pnp=PnP,
841
+ editing_prompts=self.enabled_editing_prompts,
842
+ )
843
+ else:
844
+ attn_procs[name] = AttnProcessor()
845
+
846
+ self.unet.set_attn_processor(attn_procs)
847
+
848
+ @torch.no_grad()
849
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
850
+ def __call__(
851
+ self,
852
+ denoising_end: Optional[float] = None,
853
+ negative_prompt: Optional[Union[str, List[str]]] = None,
854
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
855
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
856
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
857
+ ip_adapter_image: Optional[PipelineImageInput] = None,
858
+ output_type: Optional[str] = "pil",
859
+ return_dict: bool = True,
860
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
861
+ guidance_rescale: float = 0.0,
862
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
863
+ target_size: Optional[Tuple[int, int]] = None,
864
+ editing_prompt: Optional[Union[str, List[str]]] = None,
865
+ editing_prompt_embeddings: Optional[torch.Tensor] = None,
866
+ editing_pooled_prompt_embeds: Optional[torch.Tensor] = None,
867
+ reverse_editing_direction: Optional[Union[bool, List[bool]]] = False,
868
+ edit_guidance_scale: Optional[Union[float, List[float]]] = 5,
869
+ edit_warmup_steps: Optional[Union[int, List[int]]] = 0,
870
+ edit_cooldown_steps: Optional[Union[int, List[int]]] = None,
871
+ edit_threshold: Optional[Union[float, List[float]]] = 0.9,
872
+ sem_guidance: Optional[List[torch.Tensor]] = None,
873
+ use_cross_attn_mask: bool = False,
874
+ use_intersect_mask: bool = False,
875
+ user_mask: Optional[torch.Tensor] = None,
876
+ attn_store_steps: Optional[List[int]] = [],
877
+ store_averaged_over_steps: bool = True,
878
+ clip_skip: Optional[int] = None,
879
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
880
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
881
+ avg_diff = None,
882
+ avg_diff_2 = None,
883
+ correlation_weight_factor = 0.7,
884
+ scale=2,
885
+ **kwargs,
886
+ ):
887
+ r"""
888
+ The call function to the pipeline for editing. The
889
+ [`~pipelines.ledits_pp.LEditsPPPipelineStableDiffusionXL.invert`] method has to be called beforehand. Edits
890
+ will always be performed for the last inverted image(s).
891
+
892
+ Args:
893
+ denoising_end (`float`, *optional*):
894
+ When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
895
+ completed before it is intentionally prematurely terminated. As a result, the returned sample will
896
+ still retain a substantial amount of noise as determined by the discrete timesteps selected by the
897
+ scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
898
+ "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
899
+ negative_prompt (`str` or `List[str]`, *optional*):
900
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
901
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
902
+ less than `1`).
903
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
904
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
905
+ `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
906
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
907
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
908
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
909
+ argument.
910
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
911
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
912
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
913
+ input argument.
914
+ ip_adapter_image: (`PipelineImageInput`, *optional*):
915
+ Optional image input to work with IP Adapters.
916
+ output_type (`str`, *optional*, defaults to `"pil"`):
917
+ The output format of the generate image. Choose between
918
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
919
+ return_dict (`bool`, *optional*, defaults to `True`):
920
+ Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
921
+ of a plain tuple.
922
+ callback (`Callable`, *optional*):
923
+ A function that will be called every `callback_steps` steps during inference. The function will be
924
+ called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
925
+ callback_steps (`int`, *optional*, defaults to 1):
926
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
927
+ called at every step.
928
+ cross_attention_kwargs (`dict`, *optional*):
929
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
930
+ `self.processor` in
931
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
932
+ guidance_rescale (`float`, *optional*, defaults to 0.7):
933
+ Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
934
+ Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
935
+ [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
936
+ Guidance rescale factor should fix overexposure when using zero terminal SNR.
937
+ crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
938
+ `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
939
+ `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
940
+ `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
941
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
942
+ target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
943
+ For most cases, `target_size` should be set to the desired height and width of the generated image. If
944
+ not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in
945
+ section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
946
+ editing_prompt (`str` or `List[str]`, *optional*):
947
+ The prompt or prompts to guide the image generation. The image is reconstructed by setting
948
+ `editing_prompt = None`. Guidance direction of prompt should be specified via
949
+ `reverse_editing_direction`.
950
+ editing_prompt_embeddings (`torch.Tensor`, *optional*):
951
+ Pre-generated edit text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
952
+ If not provided, editing_prompt_embeddings will be generated from `editing_prompt` input argument.
953
+ editing_pooled_prompt_embeddings (`torch.Tensor`, *optional*):
954
+ Pre-generated pooled edit text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
955
+ weighting. If not provided, editing_prompt_embeddings will be generated from `editing_prompt` input
956
+ argument.
957
+ reverse_editing_direction (`bool` or `List[bool]`, *optional*, defaults to `False`):
958
+ Whether the corresponding prompt in `editing_prompt` should be increased or decreased.
959
+ edit_guidance_scale (`float` or `List[float]`, *optional*, defaults to 5):
960
+ Guidance scale for guiding the image generation. If provided as list values should correspond to
961
+ `editing_prompt`. `edit_guidance_scale` is defined as `s_e` of equation 12 of [LEDITS++
962
+ Paper](https://arxiv.org/abs/2301.12247).
963
+ edit_warmup_steps (`float` or `List[float]`, *optional*, defaults to 10):
964
+ Number of diffusion steps (for each prompt) for which guidance is not applied.
965
+ edit_cooldown_steps (`float` or `List[float]`, *optional*, defaults to `None`):
966
+ Number of diffusion steps (for each prompt) after which guidance is no longer applied.
967
+ edit_threshold (`float` or `List[float]`, *optional*, defaults to 0.9):
968
+ Masking threshold of guidance. Threshold should be proportional to the image region that is modified.
969
+ 'edit_threshold' is defined as 'λ' of equation 12 of [LEDITS++
970
+ Paper](https://arxiv.org/abs/2301.12247).
971
+ sem_guidance (`List[torch.Tensor]`, *optional*):
972
+ List of pre-generated guidance vectors to be applied at generation. Length of the list has to
973
+ correspond to `num_inference_steps`.
974
+ use_cross_attn_mask:
975
+ Whether cross-attention masks are used. Cross-attention masks are always used when use_intersect_mask
976
+ is set to true. Cross-attention masks are defined as 'M^1' of equation 12 of [LEDITS++
977
+ paper](https://arxiv.org/pdf/2311.16711.pdf).
978
+ use_intersect_mask:
979
+ Whether the masking term is calculated as intersection of cross-attention masks and masks derived from
980
+ the noise estimate. Cross-attention mask are defined as 'M^1' and masks derived from the noise estimate
981
+ are defined as 'M^2' of equation 12 of [LEDITS++ paper](https://arxiv.org/pdf/2311.16711.pdf).
982
+ user_mask:
983
+ User-provided mask for even better control over the editing process. This is helpful when LEDITS++'s
984
+ implicit masks do not meet user preferences.
985
+ attn_store_steps:
986
+ Steps for which the attention maps are stored in the AttentionStore. Just for visualization purposes.
987
+ store_averaged_over_steps:
988
+ Whether the attention maps for the 'attn_store_steps' are stored averaged over the diffusion steps. If
989
+ False, attention maps for each step are stores separately. Just for visualization purposes.
990
+ clip_skip (`int`, *optional*):
991
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
992
+ the output of the pre-final layer will be used for computing the prompt embeddings.
993
+ callback_on_step_end (`Callable`, *optional*):
994
+ A function that calls at the end of each denoising steps during the inference. The function is called
995
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
996
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
997
+ `callback_on_step_end_tensor_inputs`.
998
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
999
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
1000
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
1001
+ `._callback_tensor_inputs` attribute of your pipeline class.
1002
+
1003
+ Examples:
1004
+
1005
+ Returns:
1006
+ [`~pipelines.ledits_pp.LEditsPPDiffusionPipelineOutput`] or `tuple`:
1007
+ [`~pipelines.ledits_pp.LEditsPPDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When
1008
+ returning a tuple, the first element is a list with the generated images.
1009
+ """
1010
+ if self.inversion_steps is None:
1011
+ raise ValueError(
1012
+ "You need to invert an input image first before calling the pipeline. The `invert` method has to be called beforehand. Edits will always be performed for the last inverted image(s)."
1013
+ )
1014
+
1015
+ eta = self.eta
1016
+ num_images_per_prompt = 1
1017
+ latents = self.init_latents
1018
+
1019
+ zs = self.zs
1020
+ self.scheduler.set_timesteps(len(self.scheduler.timesteps))
1021
+
1022
+ if use_intersect_mask:
1023
+ use_cross_attn_mask = True
1024
+
1025
+ if use_cross_attn_mask:
1026
+ self.smoothing = LeditsGaussianSmoothing(self.device)
1027
+
1028
+ if user_mask is not None:
1029
+ user_mask = user_mask.to(self.device)
1030
+
1031
+ # TODO: Check inputs
1032
+ # 1. Check inputs. Raise error if not correct
1033
+ # self.check_inputs(
1034
+ # callback_steps,
1035
+ # negative_prompt,
1036
+ # negative_prompt_2,
1037
+ # prompt_embeds,
1038
+ # negative_prompt_embeds,
1039
+ # pooled_prompt_embeds,
1040
+ # negative_pooled_prompt_embeds,
1041
+ # )
1042
+ self._guidance_rescale = guidance_rescale
1043
+ self._clip_skip = clip_skip
1044
+ self._cross_attention_kwargs = cross_attention_kwargs
1045
+ self._denoising_end = denoising_end
1046
+
1047
+ # 2. Define call parameters
1048
+ batch_size = self.batch_size
1049
+
1050
+ device = self._execution_device
1051
+
1052
+ if editing_prompt:
1053
+ enable_edit_guidance = True
1054
+ if isinstance(editing_prompt, str):
1055
+ editing_prompt = [editing_prompt]
1056
+ self.enabled_editing_prompts = len(editing_prompt)
1057
+ elif editing_prompt_embeddings is not None:
1058
+ enable_edit_guidance = True
1059
+ self.enabled_editing_prompts = editing_prompt_embeddings.shape[0]
1060
+ else:
1061
+ self.enabled_editing_prompts = 0
1062
+ enable_edit_guidance = False
1063
+ print("negative_prompt", negative_prompt)
1064
+ # 3. Encode input prompt
1065
+ text_encoder_lora_scale = (
1066
+ cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
1067
+ )
1068
+ (
1069
+ prompt_embeds,
1070
+ edit_prompt_embeds,
1071
+ negative_pooled_prompt_embeds,
1072
+ pooled_edit_embeds,
1073
+ num_edit_tokens,
1074
+ ) = self.encode_prompt(
1075
+ device=device,
1076
+ num_images_per_prompt=num_images_per_prompt,
1077
+ negative_prompt=negative_prompt,
1078
+ negative_prompt_2=negative_prompt_2,
1079
+ negative_prompt_embeds=negative_prompt_embeds,
1080
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
1081
+ lora_scale=text_encoder_lora_scale,
1082
+ clip_skip=self.clip_skip,
1083
+ enable_edit_guidance=enable_edit_guidance,
1084
+ editing_prompt=editing_prompt,
1085
+ editing_prompt_embeds=editing_prompt_embeddings,
1086
+ editing_pooled_prompt_embeds=editing_pooled_prompt_embeds,
1087
+ avg_diff = avg_diff,
1088
+ avg_diff_2 = avg_diff_2,
1089
+ correlation_weight_factor = correlation_weight_factor,
1090
+ scale=scale,
1091
+ )
1092
+
1093
+ # 4. Prepare timesteps
1094
+ # self.scheduler.set_timesteps(num_inference_steps, device=device)
1095
+
1096
+ timesteps = self.inversion_steps
1097
+ t_to_idx = {int(v): k for k, v in enumerate(timesteps)}
1098
+
1099
+ if use_cross_attn_mask:
1100
+ self.attention_store = LeditsAttentionStore(
1101
+ average=store_averaged_over_steps,
1102
+ batch_size=batch_size,
1103
+ max_size=(latents.shape[-2] / 4.0) * (latents.shape[-1] / 4.0),
1104
+ max_resolution=None,
1105
+ )
1106
+ self.prepare_unet(self.attention_store)
1107
+ resolution = latents.shape[-2:]
1108
+ att_res = (int(resolution[0] / 4), int(resolution[1] / 4))
1109
+
1110
+ # 5. Prepare latent variables
1111
+ latents = self.prepare_latents(device=device, latents=latents)
1112
+
1113
+ # 6. Prepare extra step kwargs.
1114
+ extra_step_kwargs = self.prepare_extra_step_kwargs(eta)
1115
+
1116
+ if self.text_encoder_2 is None:
1117
+ text_encoder_projection_dim = int(negative_pooled_prompt_embeds.shape[-1])
1118
+ else:
1119
+ text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
1120
+
1121
+ # 7. Prepare added time ids & embeddings
1122
+ add_text_embeds = negative_pooled_prompt_embeds
1123
+ add_time_ids = self._get_add_time_ids(
1124
+ self.size,
1125
+ crops_coords_top_left,
1126
+ self.size,
1127
+ dtype=negative_pooled_prompt_embeds.dtype,
1128
+ text_encoder_projection_dim=text_encoder_projection_dim,
1129
+ )
1130
+
1131
+ if enable_edit_guidance:
1132
+ prompt_embeds = torch.cat([prompt_embeds, edit_prompt_embeds], dim=0)
1133
+ add_text_embeds = torch.cat([add_text_embeds, pooled_edit_embeds], dim=0)
1134
+ edit_concepts_time_ids = add_time_ids.repeat(edit_prompt_embeds.shape[0], 1)
1135
+ add_time_ids = torch.cat([add_time_ids, edit_concepts_time_ids], dim=0)
1136
+ self.text_cross_attention_maps = [editing_prompt] if isinstance(editing_prompt, str) else editing_prompt
1137
+
1138
+ prompt_embeds = prompt_embeds.to(device)
1139
+ add_text_embeds = add_text_embeds.to(device)
1140
+ add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
1141
+
1142
+ if ip_adapter_image is not None:
1143
+ # TODO: fix image encoding
1144
+ image_embeds, negative_image_embeds = self.encode_image(ip_adapter_image, device, num_images_per_prompt)
1145
+ if self.do_classifier_free_guidance:
1146
+ image_embeds = torch.cat([negative_image_embeds, image_embeds])
1147
+ image_embeds = image_embeds.to(device)
1148
+
1149
+ # 8. Denoising loop
1150
+ self.sem_guidance = None
1151
+ self.activation_mask = None
1152
+
1153
+ if (
1154
+ self.denoising_end is not None
1155
+ and isinstance(self.denoising_end, float)
1156
+ and self.denoising_end > 0
1157
+ and self.denoising_end < 1
1158
+ ):
1159
+ discrete_timestep_cutoff = int(
1160
+ round(
1161
+ self.scheduler.config.num_train_timesteps
1162
+ - (self.denoising_end * self.scheduler.config.num_train_timesteps)
1163
+ )
1164
+ )
1165
+ num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
1166
+ timesteps = timesteps[:num_inference_steps]
1167
+
1168
+ # 9. Optionally get Guidance Scale Embedding
1169
+ timestep_cond = None
1170
+ if self.unet.config.time_cond_proj_dim is not None:
1171
+ guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
1172
+ timestep_cond = self.get_guidance_scale_embedding(
1173
+ guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
1174
+ ).to(device=device, dtype=latents.dtype)
1175
+
1176
+ self._num_timesteps = len(timesteps)
1177
+ with self.progress_bar(total=self._num_timesteps) as progress_bar:
1178
+ for i, t in enumerate(timesteps):
1179
+ # expand the latents if we are doing classifier free guidance
1180
+ latent_model_input = torch.cat([latents] * (1 + self.enabled_editing_prompts))
1181
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
1182
+ # predict the noise residual
1183
+ added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
1184
+ if ip_adapter_image is not None:
1185
+ added_cond_kwargs["image_embeds"] = image_embeds
1186
+ noise_pred = self.unet(
1187
+ latent_model_input,
1188
+ t,
1189
+ encoder_hidden_states=prompt_embeds,
1190
+ cross_attention_kwargs=cross_attention_kwargs,
1191
+ added_cond_kwargs=added_cond_kwargs,
1192
+ return_dict=False,
1193
+ )[0]
1194
+
1195
+ noise_pred_out = noise_pred.chunk(1 + self.enabled_editing_prompts) # [b,4, 64, 64]
1196
+ noise_pred_uncond = noise_pred_out[0]
1197
+ noise_pred_edit_concepts = noise_pred_out[1:]
1198
+
1199
+ noise_guidance_edit = torch.zeros(
1200
+ noise_pred_uncond.shape,
1201
+ device=self.device,
1202
+ dtype=noise_pred_uncond.dtype,
1203
+ )
1204
+
1205
+ if sem_guidance is not None and len(sem_guidance) > i:
1206
+ noise_guidance_edit += sem_guidance[i].to(self.device)
1207
+
1208
+ elif enable_edit_guidance:
1209
+ if self.activation_mask is None:
1210
+ self.activation_mask = torch.zeros(
1211
+ (len(timesteps), self.enabled_editing_prompts, *noise_pred_edit_concepts[0].shape)
1212
+ )
1213
+ if self.sem_guidance is None:
1214
+ self.sem_guidance = torch.zeros((len(timesteps), *noise_pred_uncond.shape))
1215
+
1216
+ # noise_guidance_edit = torch.zeros_like(noise_guidance)
1217
+ for c, noise_pred_edit_concept in enumerate(noise_pred_edit_concepts):
1218
+ if isinstance(edit_warmup_steps, list):
1219
+ edit_warmup_steps_c = edit_warmup_steps[c]
1220
+ else:
1221
+ edit_warmup_steps_c = edit_warmup_steps
1222
+ if i < edit_warmup_steps_c:
1223
+ continue
1224
+
1225
+ if isinstance(edit_guidance_scale, list):
1226
+ edit_guidance_scale_c = edit_guidance_scale[c]
1227
+ else:
1228
+ edit_guidance_scale_c = edit_guidance_scale
1229
+
1230
+ if isinstance(edit_threshold, list):
1231
+ edit_threshold_c = edit_threshold[c]
1232
+ else:
1233
+ edit_threshold_c = edit_threshold
1234
+ if isinstance(reverse_editing_direction, list):
1235
+ reverse_editing_direction_c = reverse_editing_direction[c]
1236
+ else:
1237
+ reverse_editing_direction_c = reverse_editing_direction
1238
+
1239
+ if isinstance(edit_cooldown_steps, list):
1240
+ edit_cooldown_steps_c = edit_cooldown_steps[c]
1241
+ elif edit_cooldown_steps is None:
1242
+ edit_cooldown_steps_c = i + 1
1243
+ else:
1244
+ edit_cooldown_steps_c = edit_cooldown_steps
1245
+
1246
+ if i >= edit_cooldown_steps_c:
1247
+ continue
1248
+
1249
+ noise_guidance_edit_tmp = noise_pred_edit_concept - noise_pred_uncond
1250
+
1251
+ if reverse_editing_direction_c:
1252
+ noise_guidance_edit_tmp = noise_guidance_edit_tmp * -1
1253
+
1254
+ noise_guidance_edit_tmp = noise_guidance_edit_tmp * edit_guidance_scale_c
1255
+
1256
+ if user_mask is not None:
1257
+ noise_guidance_edit_tmp = noise_guidance_edit_tmp * user_mask
1258
+
1259
+ if use_cross_attn_mask:
1260
+ out = self.attention_store.aggregate_attention(
1261
+ attention_maps=self.attention_store.step_store,
1262
+ prompts=self.text_cross_attention_maps,
1263
+ res=att_res,
1264
+ from_where=["up", "down"],
1265
+ is_cross=True,
1266
+ select=self.text_cross_attention_maps.index(editing_prompt[c]),
1267
+ )
1268
+ attn_map = out[:, :, :, 1 : 1 + num_edit_tokens[c]] # 0 -> startoftext
1269
+
1270
+ # average over all tokens
1271
+ if attn_map.shape[3] != num_edit_tokens[c]:
1272
+ raise ValueError(
1273
+ f"Incorrect shape of attention_map. Expected size {num_edit_tokens[c]}, but found {attn_map.shape[3]}!"
1274
+ )
1275
+ attn_map = torch.sum(attn_map, dim=3)
1276
+
1277
+ # gaussian_smoothing
1278
+ attn_map = F.pad(attn_map.unsqueeze(1), (1, 1, 1, 1), mode="reflect")
1279
+ attn_map = self.smoothing(attn_map).squeeze(1)
1280
+
1281
+ # torch.quantile function expects float32
1282
+ if attn_map.dtype == torch.float32:
1283
+ tmp = torch.quantile(attn_map.flatten(start_dim=1), edit_threshold_c, dim=1)
1284
+ else:
1285
+ tmp = torch.quantile(
1286
+ attn_map.flatten(start_dim=1).to(torch.float32), edit_threshold_c, dim=1
1287
+ ).to(attn_map.dtype)
1288
+ attn_mask = torch.where(
1289
+ attn_map >= tmp.unsqueeze(1).unsqueeze(1).repeat(1, *att_res), 1.0, 0.0
1290
+ )
1291
+
1292
+ # resolution must match latent space dimension
1293
+ attn_mask = F.interpolate(
1294
+ attn_mask.unsqueeze(1),
1295
+ noise_guidance_edit_tmp.shape[-2:], # 64,64
1296
+ ).repeat(1, 4, 1, 1)
1297
+ self.activation_mask[i, c] = attn_mask.detach().cpu()
1298
+ if not use_intersect_mask:
1299
+ noise_guidance_edit_tmp = noise_guidance_edit_tmp * attn_mask
1300
+
1301
+ if use_intersect_mask:
1302
+ noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp)
1303
+ noise_guidance_edit_tmp_quantile = torch.sum(
1304
+ noise_guidance_edit_tmp_quantile, dim=1, keepdim=True
1305
+ )
1306
+ noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat(
1307
+ 1, self.unet.config.in_channels, 1, 1
1308
+ )
1309
+
1310
+ # torch.quantile function expects float32
1311
+ if noise_guidance_edit_tmp_quantile.dtype == torch.float32:
1312
+ tmp = torch.quantile(
1313
+ noise_guidance_edit_tmp_quantile.flatten(start_dim=2),
1314
+ edit_threshold_c,
1315
+ dim=2,
1316
+ keepdim=False,
1317
+ )
1318
+ else:
1319
+ tmp = torch.quantile(
1320
+ noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32),
1321
+ edit_threshold_c,
1322
+ dim=2,
1323
+ keepdim=False,
1324
+ ).to(noise_guidance_edit_tmp_quantile.dtype)
1325
+
1326
+ intersect_mask = (
1327
+ torch.where(
1328
+ noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None],
1329
+ torch.ones_like(noise_guidance_edit_tmp),
1330
+ torch.zeros_like(noise_guidance_edit_tmp),
1331
+ )
1332
+ * attn_mask
1333
+ )
1334
+
1335
+ self.activation_mask[i, c] = intersect_mask.detach().cpu()
1336
+
1337
+ noise_guidance_edit_tmp = noise_guidance_edit_tmp * intersect_mask
1338
+
1339
+ elif not use_cross_attn_mask:
1340
+ # calculate quantile
1341
+ noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp)
1342
+ noise_guidance_edit_tmp_quantile = torch.sum(
1343
+ noise_guidance_edit_tmp_quantile, dim=1, keepdim=True
1344
+ )
1345
+ noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat(1, 4, 1, 1)
1346
+
1347
+ # torch.quantile function expects float32
1348
+ if noise_guidance_edit_tmp_quantile.dtype == torch.float32:
1349
+ tmp = torch.quantile(
1350
+ noise_guidance_edit_tmp_quantile.flatten(start_dim=2),
1351
+ edit_threshold_c,
1352
+ dim=2,
1353
+ keepdim=False,
1354
+ )
1355
+ else:
1356
+ tmp = torch.quantile(
1357
+ noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32),
1358
+ edit_threshold_c,
1359
+ dim=2,
1360
+ keepdim=False,
1361
+ ).to(noise_guidance_edit_tmp_quantile.dtype)
1362
+
1363
+ self.activation_mask[i, c] = (
1364
+ torch.where(
1365
+ noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None],
1366
+ torch.ones_like(noise_guidance_edit_tmp),
1367
+ torch.zeros_like(noise_guidance_edit_tmp),
1368
+ )
1369
+ .detach()
1370
+ .cpu()
1371
+ )
1372
+
1373
+ noise_guidance_edit_tmp = torch.where(
1374
+ noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None],
1375
+ noise_guidance_edit_tmp,
1376
+ torch.zeros_like(noise_guidance_edit_tmp),
1377
+ )
1378
+
1379
+ noise_guidance_edit += noise_guidance_edit_tmp
1380
+
1381
+ self.sem_guidance[i] = noise_guidance_edit.detach().cpu()
1382
+
1383
+ noise_pred = noise_pred_uncond + noise_guidance_edit
1384
+
1385
+ # compute the previous noisy sample x_t -> x_t-1
1386
+ if enable_edit_guidance and self.guidance_rescale > 0.0:
1387
+ # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
1388
+ noise_pred = rescale_noise_cfg(
1389
+ noise_pred,
1390
+ noise_pred_edit_concepts.mean(dim=0, keepdim=False),
1391
+ guidance_rescale=self.guidance_rescale,
1392
+ )
1393
+
1394
+ idx = t_to_idx[int(t)]
1395
+ latents = self.scheduler.step(
1396
+ noise_pred, t, latents, variance_noise=zs[idx], **extra_step_kwargs, return_dict=False
1397
+ )[0]
1398
+
1399
+ # step callback
1400
+ if use_cross_attn_mask:
1401
+ store_step = i in attn_store_steps
1402
+ self.attention_store.between_steps(store_step)
1403
+
1404
+ if callback_on_step_end is not None:
1405
+ callback_kwargs = {}
1406
+ for k in callback_on_step_end_tensor_inputs:
1407
+ callback_kwargs[k] = locals()[k]
1408
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1409
+
1410
+ latents = callback_outputs.pop("latents", latents)
1411
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1412
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1413
+ add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
1414
+ negative_pooled_prompt_embeds = callback_outputs.pop(
1415
+ "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
1416
+ )
1417
+ add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
1418
+ # negative_add_time_ids = callback_outputs.pop("negative_add_time_ids", negative_add_time_ids)
1419
+
1420
+ # call the callback, if provided
1421
+ if i == len(timesteps) - 1 or ((i + 1) > 0 and (i + 1) % self.scheduler.order == 0):
1422
+ progress_bar.update()
1423
+
1424
+ if XLA_AVAILABLE:
1425
+ xm.mark_step()
1426
+
1427
+ if not output_type == "latent":
1428
+ # make sure the VAE is in float32 mode, as it overflows in float16
1429
+ needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
1430
+
1431
+ if needs_upcasting:
1432
+ self.upcast_vae()
1433
+ latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
1434
+
1435
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
1436
+
1437
+ # cast back to fp16 if needed
1438
+ if needs_upcasting:
1439
+ self.vae.to(dtype=torch.float16)
1440
+ else:
1441
+ image = latents
1442
+
1443
+ if not output_type == "latent":
1444
+ # apply watermark if available
1445
+ if self.watermark is not None:
1446
+ image = self.watermark.apply_watermark(image)
1447
+
1448
+ image = self.image_processor.postprocess(image, output_type=output_type)
1449
+
1450
+ # Offload all models
1451
+ self.maybe_free_model_hooks()
1452
+
1453
+ if not return_dict:
1454
+ return (image,)
1455
+
1456
+ return LEditsPPDiffusionPipelineOutput(images=image, nsfw_content_detected=None)
1457
+
1458
+ @torch.no_grad()
1459
+ # Modified from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LEditsPPPipelineStableDiffusion.encode_image
1460
+ def encode_image(self, image, dtype=None, height=None, width=None, resize_mode="default", crops_coords=None):
1461
+ image = self.image_processor.preprocess(
1462
+ image=image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
1463
+ )
1464
+ resized = self.image_processor.postprocess(image=image, output_type="pil")
1465
+
1466
+ if max(image.shape[-2:]) > self.vae.config["sample_size"] * 1.5:
1467
+ logger.warning(
1468
+ "Your input images far exceed the default resolution of the underlying diffusion model. "
1469
+ "The output images may contain severe artifacts! "
1470
+ "Consider down-sampling the input using the `height` and `width` parameters"
1471
+ )
1472
+ image = image.to(self.device, dtype=dtype)
1473
+ needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
1474
+
1475
+ if needs_upcasting:
1476
+ image = image.float()
1477
+ self.upcast_vae()
1478
+
1479
+ x0 = self.vae.encode(image).latent_dist.mode()
1480
+ x0 = x0.to(dtype)
1481
+ # cast back to fp16 if needed
1482
+ if needs_upcasting:
1483
+ self.vae.to(dtype=torch.float16)
1484
+
1485
+ x0 = self.vae.config.scaling_factor * x0
1486
+ return x0, resized
1487
+
1488
+ @torch.no_grad()
1489
+ def invert(
1490
+ self,
1491
+ image: PipelineImageInput,
1492
+ source_prompt: str = "",
1493
+ source_guidance_scale=3.5,
1494
+ negative_prompt: str = None,
1495
+ negative_prompt_2: str = None,
1496
+ num_inversion_steps: int = 50,
1497
+ skip: float = 0.15,
1498
+ generator: Optional[torch.Generator] = None,
1499
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
1500
+ num_zero_noise_steps: int = 3,
1501
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
1502
+ ):
1503
+ r"""
1504
+ The function to the pipeline for image inversion as described by the [LEDITS++
1505
+ Paper](https://arxiv.org/abs/2301.12247). If the scheduler is set to [`~schedulers.DDIMScheduler`] the
1506
+ inversion proposed by [edit-friendly DPDM](https://arxiv.org/abs/2304.06140) will be performed instead.
1507
+
1508
+ Args:
1509
+ image (`PipelineImageInput`):
1510
+ Input for the image(s) that are to be edited. Multiple input images have to default to the same aspect
1511
+ ratio.
1512
+ source_prompt (`str`, defaults to `""`):
1513
+ Prompt describing the input image that will be used for guidance during inversion. Guidance is disabled
1514
+ if the `source_prompt` is `""`.
1515
+ source_guidance_scale (`float`, defaults to `3.5`):
1516
+ Strength of guidance during inversion.
1517
+ negative_prompt (`str` or `List[str]`, *optional*):
1518
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
1519
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
1520
+ less than `1`).
1521
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
1522
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
1523
+ `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
1524
+ num_inversion_steps (`int`, defaults to `50`):
1525
+ Number of total performed inversion steps after discarding the initial `skip` steps.
1526
+ skip (`float`, defaults to `0.15`):
1527
+ Portion of initial steps that will be ignored for inversion and subsequent generation. Lower values
1528
+ will lead to stronger changes to the input image. `skip` has to be between `0` and `1`.
1529
+ generator (`torch.Generator`, *optional*):
1530
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make inversion
1531
+ deterministic.
1532
+ crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
1533
+ `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
1534
+ `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
1535
+ `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
1536
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1537
+ num_zero_noise_steps (`int`, defaults to `3`):
1538
+ Number of final diffusion steps that will not renoise the current image. If no steps are set to zero
1539
+ SD-XL in combination with [`DPMSolverMultistepScheduler`] will produce noise artifacts.
1540
+ cross_attention_kwargs (`dict`, *optional*):
1541
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
1542
+ `self.processor` in
1543
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
1544
+
1545
+ Returns:
1546
+ [`~pipelines.ledits_pp.LEditsPPInversionPipelineOutput`]: Output will contain the resized input image(s)
1547
+ and respective VAE reconstruction(s).
1548
+ """
1549
+
1550
+ # Reset attn processor, we do not want to store attn maps during inversion
1551
+ self.unet.set_attn_processor(AttnProcessor())
1552
+
1553
+ self.eta = 1.0
1554
+
1555
+ self.scheduler.config.timestep_spacing = "leading"
1556
+ self.scheduler.set_timesteps(int(num_inversion_steps * (1 + skip)))
1557
+ self.inversion_steps = self.scheduler.timesteps[-num_inversion_steps:]
1558
+ timesteps = self.inversion_steps
1559
+
1560
+ num_images_per_prompt = 1
1561
+
1562
+ device = self._execution_device
1563
+
1564
+ # 0. Ensure that only uncond embedding is used if prompt = ""
1565
+ if source_prompt == "":
1566
+ # noise pred should only be noise_pred_uncond
1567
+ source_guidance_scale = 0.0
1568
+ do_classifier_free_guidance = False
1569
+ else:
1570
+ do_classifier_free_guidance = source_guidance_scale > 1.0
1571
+
1572
+ # 1. prepare image
1573
+ x0, resized = self.encode_image(image, dtype=self.text_encoder_2.dtype)
1574
+ width = x0.shape[2] * self.vae_scale_factor
1575
+ height = x0.shape[3] * self.vae_scale_factor
1576
+ self.size = (height, width)
1577
+
1578
+ self.batch_size = x0.shape[0]
1579
+
1580
+ # 2. get embeddings
1581
+ text_encoder_lora_scale = (
1582
+ cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
1583
+ )
1584
+
1585
+ if isinstance(source_prompt, str):
1586
+ source_prompt = [source_prompt] * self.batch_size
1587
+
1588
+ (
1589
+ negative_prompt_embeds,
1590
+ prompt_embeds,
1591
+ negative_pooled_prompt_embeds,
1592
+ edit_pooled_prompt_embeds,
1593
+ _,
1594
+ ) = self.encode_prompt(
1595
+ device=device,
1596
+ num_images_per_prompt=num_images_per_prompt,
1597
+ negative_prompt=negative_prompt,
1598
+ negative_prompt_2=negative_prompt_2,
1599
+ editing_prompt=source_prompt,
1600
+ lora_scale=text_encoder_lora_scale,
1601
+ enable_edit_guidance=do_classifier_free_guidance,
1602
+ )
1603
+ if self.text_encoder_2 is None:
1604
+ text_encoder_projection_dim = int(negative_pooled_prompt_embeds.shape[-1])
1605
+ else:
1606
+ text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
1607
+
1608
+ # 3. Prepare added time ids & embeddings
1609
+ add_text_embeds = negative_pooled_prompt_embeds
1610
+ add_time_ids = self._get_add_time_ids(
1611
+ self.size,
1612
+ crops_coords_top_left,
1613
+ self.size,
1614
+ dtype=negative_prompt_embeds.dtype,
1615
+ text_encoder_projection_dim=text_encoder_projection_dim,
1616
+ )
1617
+
1618
+ if do_classifier_free_guidance:
1619
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
1620
+ add_text_embeds = torch.cat([add_text_embeds, edit_pooled_prompt_embeds], dim=0)
1621
+ add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
1622
+
1623
+ negative_prompt_embeds = negative_prompt_embeds.to(device)
1624
+
1625
+ add_text_embeds = add_text_embeds.to(device)
1626
+ add_time_ids = add_time_ids.to(device).repeat(self.batch_size * num_images_per_prompt, 1)
1627
+
1628
+ # autoencoder reconstruction
1629
+ if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
1630
+ self.upcast_vae()
1631
+ x0_tmp = x0.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
1632
+ image_rec = self.vae.decode(
1633
+ x0_tmp / self.vae.config.scaling_factor, return_dict=False, generator=generator
1634
+ )[0]
1635
+ elif self.vae.config.force_upcast:
1636
+ x0_tmp = x0.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
1637
+ image_rec = self.vae.decode(
1638
+ x0_tmp / self.vae.config.scaling_factor, return_dict=False, generator=generator
1639
+ )[0]
1640
+ else:
1641
+ image_rec = self.vae.decode(x0 / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0]
1642
+
1643
+ image_rec = self.image_processor.postprocess(image_rec, output_type="pil")
1644
+
1645
+ # 5. find zs and xts
1646
+ variance_noise_shape = (num_inversion_steps, *x0.shape)
1647
+
1648
+ # intermediate latents
1649
+ t_to_idx = {int(v): k for k, v in enumerate(timesteps)}
1650
+ xts = torch.zeros(size=variance_noise_shape, device=self.device, dtype=negative_prompt_embeds.dtype)
1651
+
1652
+ for t in reversed(timesteps):
1653
+ idx = num_inversion_steps - t_to_idx[int(t)] - 1
1654
+ noise = randn_tensor(shape=x0.shape, generator=generator, device=self.device, dtype=x0.dtype)
1655
+ xts[idx] = self.scheduler.add_noise(x0, noise, t.unsqueeze(0))
1656
+ xts = torch.cat([x0.unsqueeze(0), xts], dim=0)
1657
+
1658
+ # noise maps
1659
+ zs = torch.zeros(size=variance_noise_shape, device=self.device, dtype=negative_prompt_embeds.dtype)
1660
+
1661
+ self.scheduler.set_timesteps(len(self.scheduler.timesteps))
1662
+
1663
+ for t in self.progress_bar(timesteps):
1664
+ idx = num_inversion_steps - t_to_idx[int(t)] - 1
1665
+ # 1. predict noise residual
1666
+ xt = xts[idx + 1]
1667
+
1668
+ latent_model_input = torch.cat([xt] * 2) if do_classifier_free_guidance else xt
1669
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
1670
+
1671
+ added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
1672
+
1673
+ noise_pred = self.unet(
1674
+ latent_model_input,
1675
+ t,
1676
+ encoder_hidden_states=negative_prompt_embeds,
1677
+ cross_attention_kwargs=cross_attention_kwargs,
1678
+ added_cond_kwargs=added_cond_kwargs,
1679
+ return_dict=False,
1680
+ )[0]
1681
+
1682
+ # 2. perform guidance
1683
+ if do_classifier_free_guidance:
1684
+ noise_pred_out = noise_pred.chunk(2)
1685
+ noise_pred_uncond, noise_pred_text = noise_pred_out[0], noise_pred_out[1]
1686
+ noise_pred = noise_pred_uncond + source_guidance_scale * (noise_pred_text - noise_pred_uncond)
1687
+
1688
+ xtm1 = xts[idx]
1689
+ z, xtm1_corrected = compute_noise(self.scheduler, xtm1, xt, t, noise_pred, self.eta)
1690
+ zs[idx] = z
1691
+
1692
+ # correction to avoid error accumulation
1693
+ xts[idx] = xtm1_corrected
1694
+
1695
+ self.init_latents = xts[-1]
1696
+ zs = zs.flip(0)
1697
+
1698
+ if num_zero_noise_steps > 0:
1699
+ zs[-num_zero_noise_steps:] = torch.zeros_like(zs[-num_zero_noise_steps:])
1700
+ self.zs = zs
1701
+ return LEditsPPInversionPipelineOutput(images=resized, vae_reconstruction_images=image_rec)
1702
+
1703
+
1704
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.rescale_noise_cfg
1705
+ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
1706
+ """
1707
+ Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
1708
+ Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
1709
+ """
1710
+ std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
1711
+ std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
1712
+ # rescale the results from guidance (fixes overexposure)
1713
+ noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
1714
+ # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
1715
+ noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
1716
+ return noise_cfg
1717
+
1718
+
1719
+ # Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.compute_noise_ddim
1720
+ def compute_noise_ddim(scheduler, prev_latents, latents, timestep, noise_pred, eta):
1721
+ # 1. get previous step value (=t-1)
1722
+ prev_timestep = timestep - scheduler.config.num_train_timesteps // scheduler.num_inference_steps
1723
+
1724
+ # 2. compute alphas, betas
1725
+ alpha_prod_t = scheduler.alphas_cumprod[timestep]
1726
+ alpha_prod_t_prev = (
1727
+ scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else scheduler.final_alpha_cumprod
1728
+ )
1729
+
1730
+ beta_prod_t = 1 - alpha_prod_t
1731
+
1732
+ # 3. compute predicted original sample from predicted noise also called
1733
+ # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
1734
+ pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)
1735
+
1736
+ # 4. Clip "predicted x_0"
1737
+ if scheduler.config.clip_sample:
1738
+ pred_original_sample = torch.clamp(pred_original_sample, -1, 1)
1739
+
1740
+ # 5. compute variance: "sigma_t(η)" -> see formula (16)
1741
+ # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
1742
+ variance = scheduler._get_variance(timestep, prev_timestep)
1743
+ std_dev_t = eta * variance ** (0.5)
1744
+
1745
+ # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
1746
+ pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * noise_pred
1747
+
1748
+ # modifed so that updated xtm1 is returned as well (to avoid error accumulation)
1749
+ mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
1750
+ if variance > 0.0:
1751
+ noise = (prev_latents - mu_xt) / (variance ** (0.5) * eta)
1752
+ else:
1753
+ noise = torch.tensor([0.0]).to(latents.device)
1754
+
1755
+ return noise, mu_xt + (eta * variance**0.5) * noise
1756
+
1757
+
1758
+ # Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.compute_noise_sde_dpm_pp_2nd
1759
+ def compute_noise_sde_dpm_pp_2nd(scheduler, prev_latents, latents, timestep, noise_pred, eta):
1760
+ def first_order_update(model_output, sample): # timestep, prev_timestep, sample):
1761
+ sigma_t, sigma_s = scheduler.sigmas[scheduler.step_index + 1], scheduler.sigmas[scheduler.step_index]
1762
+ alpha_t, sigma_t = scheduler._sigma_to_alpha_sigma_t(sigma_t)
1763
+ alpha_s, sigma_s = scheduler._sigma_to_alpha_sigma_t(sigma_s)
1764
+ lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
1765
+ lambda_s = torch.log(alpha_s) - torch.log(sigma_s)
1766
+
1767
+ h = lambda_t - lambda_s
1768
+
1769
+ mu_xt = (sigma_t / sigma_s * torch.exp(-h)) * sample + (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output
1770
+
1771
+ mu_xt = scheduler.dpm_solver_first_order_update(
1772
+ model_output=model_output, sample=sample, noise=torch.zeros_like(sample)
1773
+ )
1774
+
1775
+ sigma = sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h))
1776
+ if sigma > 0.0:
1777
+ noise = (prev_latents - mu_xt) / sigma
1778
+ else:
1779
+ noise = torch.tensor([0.0]).to(sample.device)
1780
+
1781
+ prev_sample = mu_xt + sigma * noise
1782
+ return noise, prev_sample
1783
+
1784
+ def second_order_update(model_output_list, sample): # timestep_list, prev_timestep, sample):
1785
+ sigma_t, sigma_s0, sigma_s1 = (
1786
+ scheduler.sigmas[scheduler.step_index + 1],
1787
+ scheduler.sigmas[scheduler.step_index],
1788
+ scheduler.sigmas[scheduler.step_index - 1],
1789
+ )
1790
+
1791
+ alpha_t, sigma_t = scheduler._sigma_to_alpha_sigma_t(sigma_t)
1792
+ alpha_s0, sigma_s0 = scheduler._sigma_to_alpha_sigma_t(sigma_s0)
1793
+ alpha_s1, sigma_s1 = scheduler._sigma_to_alpha_sigma_t(sigma_s1)
1794
+
1795
+ lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
1796
+ lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
1797
+ lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
1798
+
1799
+ m0, m1 = model_output_list[-1], model_output_list[-2]
1800
+
1801
+ h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
1802
+ r0 = h_0 / h
1803
+ D0, D1 = m0, (1.0 / r0) * (m0 - m1)
1804
+
1805
+ mu_xt = (
1806
+ (sigma_t / sigma_s0 * torch.exp(-h)) * sample
1807
+ + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
1808
+ + 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1
1809
+ )
1810
+
1811
+ sigma = sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h))
1812
+ if sigma > 0.0:
1813
+ noise = (prev_latents - mu_xt) / sigma
1814
+ else:
1815
+ noise = torch.tensor([0.0]).to(sample.device)
1816
+
1817
+ prev_sample = mu_xt + sigma * noise
1818
+
1819
+ return noise, prev_sample
1820
+
1821
+ if scheduler.step_index is None:
1822
+ scheduler._init_step_index(timestep)
1823
+
1824
+ model_output = scheduler.convert_model_output(model_output=noise_pred, sample=latents)
1825
+ for i in range(scheduler.config.solver_order - 1):
1826
+ scheduler.model_outputs[i] = scheduler.model_outputs[i + 1]
1827
+ scheduler.model_outputs[-1] = model_output
1828
+
1829
+ if scheduler.lower_order_nums < 1:
1830
+ noise, prev_sample = first_order_update(model_output, latents)
1831
+ else:
1832
+ noise, prev_sample = second_order_update(scheduler.model_outputs, latents)
1833
+
1834
+ if scheduler.lower_order_nums < scheduler.config.solver_order:
1835
+ scheduler.lower_order_nums += 1
1836
+
1837
+ # upon completion increase step index by one
1838
+ scheduler._step_index += 1
1839
+
1840
+ return noise, prev_sample
1841
+
1842
+
1843
+ # Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.compute_noise
1844
+ def compute_noise(scheduler, *args):
1845
+ if isinstance(scheduler, DDIMScheduler):
1846
+ return compute_noise_ddim(scheduler, *args)
1847
+ elif (
1848
+ isinstance(scheduler, DPMSolverMultistepScheduler)
1849
+ and scheduler.config.algorithm_type == "sde-dpmsolver++"
1850
+ and scheduler.config.solver_order == 2
1851
+ ):
1852
+ return compute_noise_sde_dpm_pp_2nd(scheduler, *args)
1853
+ else:
1854
+ raise NotImplementedError
ledits/pipeline_output.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+ from typing import List, Optional, Union
3
+
4
+ import numpy as np
5
+ import PIL.Image
6
+
7
+ from diffusers.utils import BaseOutput
8
+
9
+
10
+ @dataclass
11
+ class LEditsPPDiffusionPipelineOutput(BaseOutput):
12
+ """
13
+ Output class for LEdits++ Diffusion pipelines.
14
+
15
+ Args:
16
+ images (`List[PIL.Image.Image]` or `np.ndarray`)
17
+ List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
18
+ num_channels)`.
19
+ nsfw_content_detected (`List[bool]`)
20
+ List indicating whether the corresponding generated image contains “not-safe-for-work” (nsfw) content or
21
+ `None` if safety checking could not be performed.
22
+ """
23
+
24
+ images: Union[List[PIL.Image.Image], np.ndarray]
25
+ nsfw_content_detected: Optional[List[bool]]
26
+
27
+
28
+ @dataclass
29
+ class LEditsPPInversionPipelineOutput(BaseOutput):
30
+ """
31
+ Output class for LEdits++ Diffusion pipelines.
32
+
33
+ Args:
34
+ input_images (`List[PIL.Image.Image]` or `np.ndarray`)
35
+ List of the cropped and resized input images as PIL images of length `batch_size` or NumPy array of shape `
36
+ (batch_size, height, width, num_channels)`.
37
+ vae_reconstruction_images (`List[PIL.Image.Image]` or `np.ndarray`)
38
+ List of VAE reconstruction of all input images as PIL images of length `batch_size` or NumPy array of shape
39
+ ` (batch_size, height, width, num_channels)`.
40
+ """
41
+
42
+ images: Union[List[PIL.Image.Image], np.ndarray]
43
+ vae_reconstruction_images: Union[List[PIL.Image.Image], np.ndarray]