import os import uuid import gradio as gr import spaces from clip_slider_pipeline import CLIPSliderFlux from diffusers import FluxPipeline, AutoencoderTiny import torch import numpy as np import cv2 from PIL import Image from diffusers.utils import load_image from diffusers.utils import export_to_video import random from transformers import pipeline # Translation model load translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en") # English menu labels english_labels = { "Prompt": "Prompt", "1st direction to steer": "1st Direction", "2nd direction to steer": "2nd Direction", "Strength": "Strength", "Generate directions": "Generate Directions", "Generated Images": "Generated Images", "From 1st to 2nd direction": "From 1st to 2nd Direction", "Strip": "Image Strip", "Looping video": "Looping Video", "Advanced options": "Advanced Options", "Num of intermediate images": "Number of Intermediate Images", "Num iterations for clip directions": "Number of CLIP Direction Iterations", "Num inference steps": "Number of Inference Steps", "Guidance scale": "Guidance Scale", "Randomize seed": "Randomize Seed", "Seed": "Seed" } # Load pipelines base_model = "black-forest-labs/FLUX.1-schnell" taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to("cuda") pipe = FluxPipeline.from_pretrained( base_model, vae=taef1, torch_dtype=torch.bfloat16 ) pipe.transformer.to(memory_format=torch.channels_last) clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda")) MAX_SEED = 2**32 - 1 def save_images_with_unique_filenames(image_list, save_directory): if not os.path.exists(save_directory): os.makedirs(save_directory) paths = [] for image in image_list: unique_filename = f"{uuid.uuid4()}.png" file_path = os.path.join(save_directory, unique_filename) image.save(file_path) paths.append(file_path) return paths def convert_to_centered_scale(num): if num % 2 == 0: # even start = -(num // 2 - 1) end = num // 2 else: # odd start = -(num // 2) end = num // 2 return tuple(range(start, end + 1)) def translate_if_korean(text): if any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in text): return translator(text)[0]['translation_text'] return text @spaces.GPU(duration=85) def generate(prompt, concept_1, concept_2, scale, randomize_seed=True, seed=42, recalc_directions=True, iterations=200, steps=3, interm_steps=33, guidance_scale=3.5, x_concept_1="", x_concept_2="", avg_diff_x=None, total_images=[], gradio_progress=gr.Progress()): # Translate prompt and concepts if Korean prompt = translate_if_korean(prompt) concept_1 = translate_if_korean(concept_1) concept_2 = translate_if_korean(concept_2) print(f"Prompt: {prompt}, ← {concept_2}, {concept_1} ➡️ . scale {scale}, interm steps {interm_steps}") slider_x = [concept_2, concept_1] if randomize_seed: seed = random.randint(0, MAX_SEED) if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]) or recalc_directions: gradio_progress(0, desc="Calculating directions...") avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations) x_concept_1, x_concept_2 = slider_x[0], slider_x[1] else: avg_diff = avg_diff_x images = [] high_scale = scale low_scale = -1 * scale for i in gradio_progress.tqdm(range(interm_steps), desc="Generating images"): cur_scale = low_scale + (high_scale - low_scale) * i / (interm_steps - 1) image = clip_slider.generate( prompt, width=768, height=768, guidance_scale=guidance_scale, scale=cur_scale, seed=seed, num_inference_steps=steps, avg_diff=avg_diff ) images.append(image) canvas = Image.new('RGB', (256 * interm_steps, 256)) for i, im in enumerate(images): canvas.paste(im.resize((256, 256)), (256 * i, 0)) comma_concepts_x = f"{slider_x[1]}, {slider_x[0]}" scale_total = convert_to_centered_scale(interm_steps) scale_min = scale_total[0] scale_max = scale_total[-1] scale_middle = scale_total.index(0) post_generation_slider_update = gr.update(label=comma_concepts_x, value=0, minimum=scale_min, maximum=scale_max, interactive=True) avg_diff_x = avg_diff.cpu() video_path = f"{uuid.uuid4()}.mp4" print(video_path) return x_concept_1, x_concept_2, avg_diff_x, export_to_video(images, video_path, fps=5), canvas, images, images[scale_middle], post_generation_slider_update, seed def update_pre_generated_images(slider_value, total_images): number_images = len(total_images) if total_images else 0 if number_images > 0: scale_tuple = convert_to_centered_scale(number_images) return total_images[scale_tuple.index(slider_value)][0] else: return None def reset_recalc_directions(): return True # Five "Time Stream" themed examples (one Korean example included) examples = [ ["신선한 토마토가 부패한 토마토로 변해가는 과정", "Fresh", "Rotten", 2.0], ["A blooming flower gradually withers into decay", "Bloom", "Wither", 1.5], ["A vibrant cityscape transforms into a derelict ruin over time", "Modern", "Ruined", 2.5], ["A lively forest slowly changes into an autumnal landscape", "Spring", "Autumn", 2.0], ["A calm ocean evolves into a stormy seascape as time passes", "Calm", "Stormy", 3.0] ] # CSS for a bright and modern UI with a background image css = """ /* Bright and modern UI with background image */ body { background: #ffffff url('https://images.unsplash.com/photo-1506748686214-e9df14d4d9d0?ixlib=rb-1.2.1&auto=format&fit=crop&w=1600&q=80') no-repeat center center fixed; background-size: cover; font-family: "Helvetica Neue", Helvetica, Arial, sans-serif; color: #333; } footer { visibility: hidden; } .container { max-width: 1200px; margin: 20px auto; padding: 0 10px; } .main-panel { background-color: rgba(255, 255, 255, 0.9); border-radius: 12px; padding: 20px; margin-bottom: 20px; box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); } .controls-panel { background-color: rgba(255, 255, 255, 0.85); border-radius: 8px; padding: 16px; box-shadow: inset 0 2px 4px rgba(0, 0, 0, 0.05); } .image-display { min-height: 400px; display: flex; flex-direction: column; justify-content: center; } .slider-container { padding: 10px 0; } .advanced-panel { margin-top: 20px; border-top: 1px solid #eaeaea; padding-top: 20px; } """ with gr.Blocks(css=css, title="Time Stream") as demo: gr.Markdown("# Time Stream") x_concept_1 = gr.State("") x_concept_2 = gr.State("") total_images = gr.State([]) avg_diff_x = gr.State() recalc_directions = gr.State(False) with gr.Row(elem_classes="container"): # Left Column - Controls with gr.Column(scale=4): with gr.Group(elem_classes="main-panel"): gr.Markdown("### Image Generation Controls") with gr.Group(elem_classes="controls-panel"): prompt = gr.Textbox( label=english_labels["Prompt"], info="Enter the description", placeholder="A dog in the park", lines=2 ) with gr.Row(): with gr.Column(scale=1): concept_1 = gr.Textbox( label=english_labels["1st direction to steer"], info="Initial state", placeholder="Fresh" ) with gr.Column(scale=1): concept_2 = gr.Textbox( label=english_labels["2nd direction to steer"], info="Final state", placeholder="Rotten" ) with gr.Row(elem_classes="slider-container"): x = gr.Slider( minimum=0, value=1.75, step=0.1, maximum=4.0, label=english_labels["Strength"], info="Maximum strength for each direction (above 2.5 may be unstable)" ) submit = gr.Button(english_labels["Generate directions"], size="lg", variant="primary") with gr.Accordion(label=english_labels["Advanced options"], open=False, elem_classes="advanced-panel"): with gr.Row(): with gr.Column(scale=1): interm_steps = gr.Slider( label=english_labels["Num of intermediate images"], minimum=3, value=7, maximum=65, step=2 ) with gr.Column(scale=1): guidance_scale = gr.Slider( label=english_labels["Guidance scale"], minimum=0.1, maximum=10.0, step=0.1, value=3.5 ) with gr.Row(): with gr.Column(scale=1): iterations = gr.Slider( label=english_labels["Num iterations for clip directions"], minimum=0, value=200, maximum=400, step=1 ) with gr.Column(scale=1): steps = gr.Slider( label=english_labels["Num inference steps"], minimum=1, value=3, maximum=4, step=1 ) with gr.Row(): with gr.Column(scale=1): randomize_seed = gr.Checkbox( True, label=english_labels["Randomize seed"] ) with gr.Column(scale=1): seed = gr.Slider( minimum=0, maximum=MAX_SEED, step=1, label=english_labels["Seed"], interactive=True, randomize=True ) # Right Column - Output with gr.Column(scale=8): with gr.Group(elem_classes="main-panel"): gr.Markdown("### Generated Results") # Swapped order: Image strip on top, video below (video is larger) image_strip = gr.Image(label="Image Strip", type="filepath", elem_id="strip", height=200) output_video = gr.Video(label=english_labels["Looping video"], elem_id="video", loop=True, autoplay=True, height=600) with gr.Row(): post_generation_image = gr.Image( label=english_labels["Generated Images"], type="filepath", elem_id="interactive", elem_classes="image-display" ) post_generation_slider = gr.Slider( minimum=-10, maximum=10, value=0, step=1, label=english_labels["From 1st to 2nd direction"] ) # Examples: 예제 클릭 시 입력란에 값이 바로 삽입됨 gr.Examples( examples=examples, inputs=[prompt, concept_1, concept_2, x] ) # Event Handlers submit.click( fn=generate, inputs=[ prompt, concept_1, concept_2, x, randomize_seed, seed, recalc_directions, iterations, steps, interm_steps, guidance_scale, x_concept_1, x_concept_2, avg_diff_x, total_images ], outputs=[ x_concept_1, x_concept_2, avg_diff_x, output_video, # video output image_strip, # canvas (image strip) total_images, post_generation_image, post_generation_slider, seed ] ) iterations.change(fn=reset_recalc_directions, outputs=[recalc_directions]) seed.change(fn=reset_recalc_directions, outputs=[recalc_directions]) post_generation_slider.change( fn=update_pre_generated_images, inputs=[post_generation_slider, total_images], outputs=[post_generation_image], queue=False, show_progress="hidden", concurrency_limit=None ) if __name__ == "__main__": demo.launch()