File size: 13,329 Bytes
4450790
 
 
 
 
 
 
1091c32
fd1c741
1fb6987
1091c32
 
 
 
 
 
 
 
 
 
 
59c7e0e
1091c32
 
 
 
 
 
 
59c7e0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
982b529
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd1c741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59c7e0e
 
fd1c741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c05abf
fd1c741
9c05abf
4450790
 
 
 
 
 
 
 
 
9c05abf
4450790
9c05abf
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59c7e0e
4450790
 
 
 
 
 
 
 
 
69c6cfb
9c05abf
 
 
 
 
 
69c6cfb
 
be37028
 
 
 
4969726
be37028
59c7e0e
be37028
 
 
4450790
be37028
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69f2337
 
 
 
 
9c05abf
69f2337
 
 
 
 
 
 
 
9c05abf
69f2337
 
b58401c
4450790
9c05abf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
import os
import random
import sys
from typing import Sequence, Mapping, Any, Union
import torch
import gradio as gr
from PIL import Image
from huggingface_hub import hf_hub_download, login
import spaces

# Hugging Face 토큰으로 로그인
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
    raise ValueError("Please set the HF_TOKEN environment variable")
login(token=HF_TOKEN)

# 이후 모델 다운로드
hf_hub_download(
    repo_id="black-forest-labs/FLUX.1-Redux-dev", 
    filename="flux1-redux-dev.safetensors", 
    local_dir="models/style_models",
    token=HF_TOKEN
)
hf_hub_download(
    repo_id="black-forest-labs/FLUX.1-Depth-dev", 
    filename="flux1-depth-dev.safetensors", 
    local_dir="models/diffusion_models",
    token=HF_TOKEN
)
hf_hub_download(
    repo_id="Comfy-Org/sigclip_vision_384", 
    filename="sigclip_vision_patch14_384.safetensors", 
    local_dir="models/clip_vision",
    token=HF_TOKEN
)
hf_hub_download(
    repo_id="Kijai/DepthAnythingV2-safetensors", 
    filename="depth_anything_v2_vitl_fp32.safetensors", 
    local_dir="models/depthanything",
    token=HF_TOKEN
)
hf_hub_download(
    repo_id="black-forest-labs/FLUX.1-dev", 
    filename="ae.safetensors", 
    local_dir="models/vae/FLUX1",
    token=HF_TOKEN
)
hf_hub_download(
    repo_id="comfyanonymous/flux_text_encoders", 
    filename="clip_l.safetensors", 
    local_dir="models/text_encoders",
    token=HF_TOKEN
)
t5_path = hf_hub_download(
    repo_id="comfyanonymous/flux_text_encoders", 
    filename="t5xxl_fp16.safetensors", 
    local_dir="models/text_encoders/t5",
    token=HF_TOKEN
)

def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
    try:
        return obj[index]
    except KeyError:
        return obj["result"][index]

def find_path(name: str, path: str = None) -> str:
    if path is None:
        path = os.getcwd()
    if name in os.listdir(path):
        path_name = os.path.join(path, name)
        print(f"{name} found: {path_name}")
        return path_name
    parent_directory = os.path.dirname(path)
    if parent_directory == path:
        return None
    return find_path(name, parent_directory)

def add_comfyui_directory_to_sys_path() -> None:
    comfyui_path = find_path("ComfyUI")
    if comfyui_path is not None and os.path.isdir(comfyui_path):
        sys.path.append(comfyui_path)
        print(f"'{comfyui_path}' added to sys.path")

def add_extra_model_paths() -> None:
    try:
        from main import load_extra_path_config
    except ImportError:
        from utils.extra_config import load_extra_path_config
    extra_model_paths = find_path("extra_model_paths.yaml")
    if extra_model_paths is not None:
        load_extra_path_config(extra_model_paths)
    else:
        print("Could not find the extra_model_paths config file.")

# Initialize paths
add_comfyui_directory_to_sys_path()
add_extra_model_paths()

def import_custom_nodes() -> None:
    import asyncio
    import execution
    from nodes import init_extra_nodes
    import server
    loop = asyncio.new_event_loop()
    asyncio.set_event_loop(loop)
    server_instance = server.PromptServer(loop)
    execution.PromptQueue(server_instance)
    init_extra_nodes()

# Import all necessary nodes
from nodes import (
    StyleModelLoader,
    VAEEncode,
    NODE_CLASS_MAPPINGS,
    LoadImage,
    CLIPVisionLoader,
    SaveImage,
    VAELoader,
    CLIPVisionEncode,
    DualCLIPLoader,
    EmptyLatentImage,
    VAEDecode,
    UNETLoader,
    CLIPTextEncode,
)

# Initialize all constant nodes and models in global context
import_custom_nodes()

# Global variables for preloaded models and constants
intconstant = NODE_CLASS_MAPPINGS["INTConstant"]()
CONST_1024 = intconstant.get_value(value=1024)

# Load CLIP
dualcliploader = DualCLIPLoader()
CLIP_MODEL = dualcliploader.load_clip(
    clip_name1="t5/t5xxl_fp16.safetensors",
    clip_name2="clip_l.safetensors",
    type="flux",
)

# Load VAE
vaeloader = VAELoader()
VAE_MODEL = vaeloader.load_vae(vae_name="FLUX1/ae.safetensors")

# Load UNET
unetloader = UNETLoader()
UNET_MODEL = unetloader.load_unet(
    unet_name="flux1-depth-dev.safetensors", weight_dtype="default"
)

# Load CLIP Vision
clipvisionloader = CLIPVisionLoader()
CLIP_VISION_MODEL = clipvisionloader.load_clip(
    clip_name="sigclip_vision_patch14_384.safetensors"
)

# Load Style Model
stylemodelloader = StyleModelLoader()
STYLE_MODEL = stylemodelloader.load_style_model(
    style_model_name="flux1-redux-dev.safetensors"
)

# Initialize samplers
ksamplerselect = NODE_CLASS_MAPPINGS["KSamplerSelect"]()
SAMPLER = ksamplerselect.get_sampler(sampler_name="euler")

# Initialize depth model
cr_clip_input_switch = NODE_CLASS_MAPPINGS["CR Clip Input Switch"]()
downloadandloaddepthanythingv2model = NODE_CLASS_MAPPINGS["DownloadAndLoadDepthAnythingV2Model"]()
DEPTH_MODEL = downloadandloaddepthanythingv2model.loadmodel(
    model="depth_anything_v2_vitl_fp32.safetensors"
)

# Initialize other nodes
cliptextencode = CLIPTextEncode()
loadimage = LoadImage()
vaeencode = VAEEncode()
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
instructpixtopixconditioning = NODE_CLASS_MAPPINGS["InstructPixToPixConditioning"]()
clipvisionencode = CLIPVisionEncode()
stylemodelapplyadvanced = NODE_CLASS_MAPPINGS["StyleModelApplyAdvanced"]()
emptylatentimage = EmptyLatentImage()
basicguider = NODE_CLASS_MAPPINGS["BasicGuider"]()
basicscheduler = NODE_CLASS_MAPPINGS["BasicScheduler"]()        
randomnoise = NODE_CLASS_MAPPINGS["RandomNoise"]()
samplercustomadvanced = NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]()
vaedecode = VAEDecode()
cr_text = NODE_CLASS_MAPPINGS["CR Text"]()
saveimage = SaveImage()
getimagesizeandcount = NODE_CLASS_MAPPINGS["GetImageSizeAndCount"]()
depthanything_v2 = NODE_CLASS_MAPPINGS["DepthAnything_V2"]()
imageresize = NODE_CLASS_MAPPINGS["ImageResize+"]()


@spaces.GPU
def generate_image(structure_image, style_image, depth_strength=15, style_strength=0.5, progress=gr.Progress(track_tqdm=True)) -> str:
    """Main generation function that processes inputs and returns the path to the generated image."""
    with torch.inference_mode():
        # Set up CLIP
        clip_switch = cr_clip_input_switch.switch(
            Input=1,
            clip1=get_value_at_index(CLIP_MODEL, 0),
            clip2=get_value_at_index(CLIP_MODEL, 0),
        )
        
        # Encode text with default prompt
        text_encoded = cliptextencode.encode(
            text="person wearing fashionable clothing",
            clip=get_value_at_index(clip_switch, 0),
        )
        empty_text = cliptextencode.encode(
            text="",
            clip=get_value_at_index(clip_switch, 0),
        )
        
        # Process structure image
        structure_img = loadimage.load_image(image=structure_image)
        
        # Resize image
        resized_img = imageresize.execute(
            width=get_value_at_index(CONST_1024, 0),
            height=get_value_at_index(CONST_1024, 0),
            interpolation="bicubic",
            method="keep proportion",
            condition="always",
            multiple_of=16,
            image=get_value_at_index(structure_img, 0),
        )
        
        # Get image size
        size_info = getimagesizeandcount.getsize(
            image=get_value_at_index(resized_img, 0)
        )
        
        # Encode VAE
        vae_encoded = vaeencode.encode(
            pixels=get_value_at_index(size_info, 0),
            vae=get_value_at_index(VAE_MODEL, 0),
        )
        
        # Process depth
        depth_processed = depthanything_v2.process(
            da_model=get_value_at_index(DEPTH_MODEL, 0),
            images=get_value_at_index(size_info, 0),
        )
        
        # Apply Flux guidance
        flux_guided = fluxguidance.append(
            guidance=depth_strength,
            conditioning=get_value_at_index(text_encoded, 0),
        )
        
        # Process style image
        style_img = loadimage.load_image(image=style_image)
        
        # Encode style with CLIP Vision
        style_encoded = clipvisionencode.encode(
            crop="center",
            clip_vision=get_value_at_index(CLIP_VISION_MODEL, 0),
            image=get_value_at_index(style_img, 0),
        )
        
        # Set up conditioning
        conditioning = instructpixtopixconditioning.encode(
            positive=get_value_at_index(flux_guided, 0),
            negative=get_value_at_index(empty_text, 0),
            vae=get_value_at_index(VAE_MODEL, 0),
            pixels=get_value_at_index(depth_processed, 0),
        )
        
        # Apply style
        style_applied = stylemodelapplyadvanced.apply_stylemodel(
            strength=style_strength,
            conditioning=get_value_at_index(conditioning, 0),
            style_model=get_value_at_index(STYLE_MODEL, 0),
            clip_vision_output=get_value_at_index(style_encoded, 0),
        )
        
        # Set up empty latent
        empty_latent = emptylatentimage.generate(
            width=get_value_at_index(resized_img, 1),
            height=get_value_at_index(resized_img, 2),
            batch_size=1,
        )
        
        # Set up guidance
        guided = basicguider.get_guider(
            model=get_value_at_index(UNET_MODEL, 0),
            conditioning=get_value_at_index(style_applied, 0),
        )
        
        # Set up scheduler
        schedule = basicscheduler.get_sigmas(
            scheduler="simple",
            steps=28,
            denoise=1,
            model=get_value_at_index(UNET_MODEL, 0),
        )
        
        # Generate random noise
        noise = randomnoise.get_noise(noise_seed=random.randint(1, 2**64))
        
        # Sample
        sampled = samplercustomadvanced.sample(
            noise=get_value_at_index(noise, 0),
            guider=get_value_at_index(guided, 0),
            sampler=get_value_at_index(SAMPLER, 0),
            sigmas=get_value_at_index(schedule, 0),
            latent_image=get_value_at_index(empty_latent, 0),
        )
        
        # Decode VAE
        decoded = vaedecode.decode(
            samples=get_value_at_index(sampled, 0),
            vae=get_value_at_index(VAE_MODEL, 0),
        )
        
        # Save image
        prefix = cr_text.text_multiline(text="Virtual_TryOn")
        
        saved = saveimage.save_images(
            filename_prefix=get_value_at_index(prefix, 0),
            images=get_value_at_index(decoded, 0),
        )
        saved_path = f"output/{saved['ui']['images'][0]['filename']}"
        return saved_path

# Create Gradio interface
examples = [
    ["f1.webp", "f11.webp", 15, 0.6],
    ["f2.webp", "f21.webp", 15, 0.5],
    ["f3.webp", "f31.webp", 15, 0.5],
    ["qq1.webp", "ww1.webp", 15, 0.5],
    ["qq2.webp", "ww2.webp", 15, 0.5],
    ["qq3.webp", "ww3.webp", 15, 0.5]
]

# Gradio 인터페이스 생성
demo = gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange")

with demo:
    gr.Markdown("# 🎭 StyleGen : Flux Inpainting")
    gr.Markdown("Generate fashion images and try on virtual clothing using AI")
    
    with gr.Tabs():
        # Virtual Try-On 탭
        with gr.TabItem("👔 Virtual Try-On"):
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        with gr.Group():
                            structure_image = gr.Image(
                                label="Your Photo (Full-body)", 
                                type="filepath"
                            )
                            gr.Markdown("*Upload a clear, well-lit full-body photo*")
                            depth_strength = gr.Slider(
                                minimum=0, 
                                maximum=50, 
                                value=15, 
                                label="Fitting Strength"
                            )
                        with gr.Group():
                            style_image = gr.Image(
                                label="Clothing Item", 
                                type="filepath"
                            )
                            gr.Markdown("*Upload the clothing item you want to try on*")
                            style_strength = gr.Slider(
                                minimum=0, 
                                maximum=1, 
                                value=0.5, 
                                label="Style Transfer Strength"
                            )
                    
                with gr.Column():
                    output_image = gr.Image(label="Virtual Try-On Result")
                    
            generate_button = gr.Button("Generate Try-On")
            
            gr.Examples(
                examples=examples,
                inputs=[structure_image, style_image, depth_strength, style_strength],
                outputs=output_image,
                fn=generate_image,
                cache_examples=False
            )
            
            # Connect the button to the generation function
            generate_button.click(
                fn=generate_image,
                inputs=[structure_image, style_image, depth_strength, style_strength],
                outputs=output_image
            )

if __name__ == "__main__":
    demo.launch(share=True)