Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,42 +1,15 @@
|
|
1 |
import os
|
2 |
-
import
|
3 |
-
import
|
|
|
4 |
import torch
|
5 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
-
import gradio as gr
|
7 |
-
from threading import Thread
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
|
13 |
-
|
14 |
-
<h1><center>EXAONE-3.0-7.8B-Instruct</center></h1>
|
15 |
-
<center>
|
16 |
-
<p>The model is licensed under EXAONE AI Model License Agreement 1.0 - NC</p>
|
17 |
-
</center>
|
18 |
-
"""
|
19 |
-
|
20 |
-
PLACEHOLDER = """
|
21 |
-
<center>
|
22 |
-
<p>EXAONE-3.0-7.8B-Instruct is a pre-trained and instruction-tuned bilingual (English and Korean) generative model with 7.8 billion parameters</p>
|
23 |
-
</center>
|
24 |
-
"""
|
25 |
-
|
26 |
-
|
27 |
-
CSS = """
|
28 |
-
.duplicate-button {
|
29 |
-
margin: auto !important;
|
30 |
-
color: white !important;
|
31 |
-
background: black !important;
|
32 |
-
border-radius: 100vh !important;
|
33 |
-
}
|
34 |
-
h3 {
|
35 |
-
text-align: center;
|
36 |
-
}
|
37 |
-
"""
|
38 |
-
|
39 |
-
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
40 |
|
41 |
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
42 |
model = AutoModelForCausalLM.from_pretrained(
|
@@ -44,29 +17,20 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
44 |
torch_dtype=torch.bfloat16,
|
45 |
device_map="auto",
|
46 |
trust_remote_code=True,
|
47 |
-
ignore_mismatched_sizes=True
|
|
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
history: list,
|
53 |
-
system_prompt: str,
|
54 |
-
temperature: float = 0.3,
|
55 |
-
max_new_tokens: int = 256,
|
56 |
-
top_p: float = 1.0,
|
57 |
-
top_k: int = 20,
|
58 |
-
penalty: float = 1.2,
|
59 |
-
):
|
60 |
-
print(f'message: {message}')
|
61 |
-
print(f'history: {history}')
|
62 |
|
|
|
63 |
conversation = [{"role": "system", "content": system_prompt}]
|
64 |
for prompt, answer in history:
|
65 |
conversation.extend([
|
66 |
-
{"role": "user", "content": prompt},
|
67 |
{"role": "assistant", "content": answer},
|
68 |
])
|
69 |
-
|
70 |
conversation.append({"role": "user", "content": message})
|
71 |
|
72 |
inputs = tokenizer.apply_chat_template(
|
@@ -75,97 +39,43 @@ def stream_chat(
|
|
75 |
add_generation_prompt=True,
|
76 |
return_tensors="pt"
|
77 |
).to(device)
|
78 |
-
|
79 |
-
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
80 |
-
|
81 |
-
generate_kwargs = dict(
|
82 |
-
input_ids=inputs,
|
83 |
-
max_new_tokens = max_new_tokens,
|
84 |
-
do_sample = False if temperature == 0 else True,
|
85 |
-
top_p = top_p,
|
86 |
-
top_k = top_k,
|
87 |
-
temperature = temperature,
|
88 |
-
streamer=streamer,
|
89 |
-
pad_token_id = 0,
|
90 |
-
eos_token_id = 361 # 361
|
91 |
-
)
|
92 |
|
93 |
with torch.no_grad():
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
gr.Slider(
|
128 |
-
minimum=128,
|
129 |
-
maximum=4096,
|
130 |
-
step=1,
|
131 |
-
value=1024,
|
132 |
-
label="Max new tokens",
|
133 |
-
render=False,
|
134 |
-
),
|
135 |
-
gr.Slider(
|
136 |
-
minimum=0.0,
|
137 |
-
maximum=1.0,
|
138 |
-
step=0.1,
|
139 |
-
value=1.0,
|
140 |
-
label="top_p",
|
141 |
-
render=False,
|
142 |
-
),
|
143 |
-
gr.Slider(
|
144 |
-
minimum=1,
|
145 |
-
maximum=50,
|
146 |
-
step=1,
|
147 |
-
value=50,
|
148 |
-
label="top_k",
|
149 |
-
render=False,
|
150 |
-
),
|
151 |
-
gr.Slider(
|
152 |
-
minimum=0.0,
|
153 |
-
maximum=2.0,
|
154 |
-
step=0.1,
|
155 |
-
value=1.0,
|
156 |
-
label="Repetition penalty",
|
157 |
-
render=False,
|
158 |
-
),
|
159 |
-
],
|
160 |
-
examples=[
|
161 |
-
["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
|
162 |
-
["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
|
163 |
-
["Explain who you are"],
|
164 |
-
["너의 소원을 말해봐"],
|
165 |
-
],
|
166 |
-
cache_examples=False,
|
167 |
-
)
|
168 |
-
|
169 |
|
170 |
if __name__ == "__main__":
|
171 |
-
|
|
|
|
|
|
1 |
import os
|
2 |
+
import asyncio
|
3 |
+
import discord
|
4 |
+
from discord.ext import commands
|
5 |
import torch
|
6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
7 |
|
8 |
+
MODEL = "LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct"
|
9 |
+
DISCORD_TOKEN = os.getenv("DISCORD_TOKEN")
|
10 |
+
DISCORD_CHANNEL_ID = int(os.getenv("DISCORD_CHANNEL_ID"))
|
11 |
|
12 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
15 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
17 |
torch_dtype=torch.bfloat16,
|
18 |
device_map="auto",
|
19 |
trust_remote_code=True,
|
20 |
+
ignore_mismatched_sizes=True
|
21 |
+
)
|
22 |
|
23 |
+
intents = discord.Intents.default()
|
24 |
+
intents.message_content = True
|
25 |
+
bot = commands.Bot(command_prefix="!", intents=intents)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
async def generate_response(message, history, system_prompt):
|
28 |
conversation = [{"role": "system", "content": system_prompt}]
|
29 |
for prompt, answer in history:
|
30 |
conversation.extend([
|
31 |
+
{"role": "user", "content": prompt},
|
32 |
{"role": "assistant", "content": answer},
|
33 |
])
|
|
|
34 |
conversation.append({"role": "user", "content": message})
|
35 |
|
36 |
inputs = tokenizer.apply_chat_template(
|
|
|
39 |
add_generation_prompt=True,
|
40 |
return_tensors="pt"
|
41 |
).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
with torch.no_grad():
|
44 |
+
output = model.generate(
|
45 |
+
inputs,
|
46 |
+
max_new_tokens=1024,
|
47 |
+
do_sample=True,
|
48 |
+
top_p=1.0,
|
49 |
+
top_k=50,
|
50 |
+
temperature=1.0,
|
51 |
+
pad_token_id=0,
|
52 |
+
eos_token_id=361
|
53 |
+
)
|
54 |
+
|
55 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
56 |
+
return response.split("Assistant:")[-1].strip()
|
57 |
+
|
58 |
+
@bot.event
|
59 |
+
async def on_ready():
|
60 |
+
print(f"{bot.user} has connected to Discord!")
|
61 |
+
|
62 |
+
@bot.event
|
63 |
+
async def on_message(message):
|
64 |
+
if message.author == bot.user:
|
65 |
+
return
|
66 |
+
|
67 |
+
if message.channel.id != DISCORD_CHANNEL_ID:
|
68 |
+
return
|
69 |
+
|
70 |
+
response = await generate_response(message.content, [], "You are EXAONE model from LG AI Research, a helpful assistant.")
|
71 |
+
|
72 |
+
# Split the response into chunks of 2000 characters
|
73 |
+
chunks = [response[i:i+2000] for i in range(0, len(response), 2000)]
|
74 |
+
|
75 |
+
for chunk in chunks:
|
76 |
+
await message.channel.send(chunk)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
if __name__ == "__main__":
|
79 |
+
import subprocess
|
80 |
+
subprocess.Popen(["python", "web.py"])
|
81 |
+
bot.run(DISCORD_TOKEN)
|