# app.py import display_gloss as dg import synonyms_preprocess as sp from NLP_Spacy_base_translator import NlpSpacyBaseTranslator from flask import Flask, render_template, Response, request, send_file import io import cv2 import numpy as np import os import requests from urllib.parse import quote, unquote import tempfile app = Flask(__name__, static_folder='static') app.config['TITLE'] = 'Sign Language Translate' nlp, dict_docs_spacy = sp.load_spacy_values() dataset, list_2000_tokens = dg.load_data() def translate_korean_to_english(text): try: url = "https://translate.googleapis.com/translate_a/single" params = { "client": "gtx", "sl": "ko", "tl": "en", "dt": "t", "q": text.strip() } response = requests.get(url, params=params) if response.status_code == 200: translated_text = ' '.join(item[0] for item in response.json()[0] if item[0]) return translated_text else: raise Exception(f"Translation API returned status code: {response.status_code}") except Exception as e: print(f"Translation error: {e}") return text def generate_complete_video(gloss_list, dataset, list_2000_tokens): try: frames = [] for frame in dg.generate_video(gloss_list, dataset, list_2000_tokens): frame_data = frame.split(b'\r\n\r\n')[1] nparr = np.frombuffer(frame_data, np.uint8) img = cv2.imdecode(nparr, cv2.IMREAD_COLOR) frames.append(img) if not frames: raise Exception("No frames generated") height, width = frames[0].shape[:2] fourcc = cv2.VideoWriter_fourcc(*'mp4v') with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_file: temp_path = temp_file.name out = cv2.VideoWriter(temp_path, fourcc, 25, (width, height)) for frame in frames: out.write(frame) out.release() with open(temp_path, 'rb') as f: video_bytes = f.read() os.remove(temp_path) return video_bytes except Exception as e: print(f"Error generating video: {str(e)}") raise @app.route('/') def index(): return render_template('index.html', title=app.config['TITLE']) @app.route('/translate/', methods=['POST']) def result(): if request.method == 'POST': input_text = request.form['inputSentence'].strip() if not input_text: return render_template('error.html', error="Please enter text to translate") try: english_text = translate_korean_to_english(input_text) if not english_text: raise Exception("Translation failed") eng_to_asl_translator = NlpSpacyBaseTranslator(sentence=english_text) generated_gloss = eng_to_asl_translator.translate_to_gloss() gloss_list_lower = [gloss.lower() for gloss in generated_gloss.split() if gloss.isalnum()] gloss_sentence_before_synonym = " ".join(gloss_list_lower) gloss_list = [sp.find_synonyms(gloss, nlp, dict_docs_spacy, list_2000_tokens) for gloss in gloss_list_lower] gloss_sentence_after_synonym = " ".join(gloss_list) return render_template('result.html', title=app.config['TITLE'], original_sentence=input_text, english_translation=english_text, gloss_sentence_before_synonym=gloss_sentence_before_synonym, gloss_sentence_after_synonym=gloss_sentence_after_synonym) except Exception as e: return render_template('error.html', error=f"Translation error: {str(e)}") @app.route('/video_feed') def video_feed(): sentence = request.args.get('gloss_sentence_to_display', '') gloss_list = sentence.split() return Response(dg.generate_video(gloss_list, dataset, list_2000_tokens), mimetype='multipart/x-mixed-replace; boundary=frame') @app.route('/download_video/') def download_video(gloss_sentence): try: decoded_sentence = unquote(gloss_sentence) gloss_list = decoded_sentence.split() if not gloss_list: return "No gloss provided", 400 video_bytes = generate_complete_video(gloss_list, dataset, list_2000_tokens) if not video_bytes: return "Failed to generate video", 500 return send_file( io.BytesIO(video_bytes), mimetype='video/mp4', as_attachment=True, download_name='sign_language.mp4' ) except Exception as e: print(f"Download error: {str(e)}") return f"Error downloading video: {str(e)}", 500 if __name__ == "__main__": app.run(host="0.0.0.0", port=7860, debug=True)