Spaces:
Paused
Paused
Add DockerFile and synonyms_final_vf.py
Browse files- Dockerfile +22 -0
- src/synonyms_final_vf.py +125 -0
Dockerfile
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.12-slim
|
2 |
+
|
3 |
+
RUN apt-get update && \
|
4 |
+
apt-get upgrade -y && \
|
5 |
+
apt-get install ffmpeg libsm6 libxext6 -y && \
|
6 |
+
apt-get clean
|
7 |
+
|
8 |
+
# Install the dependancies
|
9 |
+
COPY requirements.txt /
|
10 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
11 |
+
|
12 |
+
# Copy the code files
|
13 |
+
COPY src /
|
14 |
+
|
15 |
+
# Listen to port 5000 (the default port of flask)
|
16 |
+
EXPOSE 7860
|
17 |
+
|
18 |
+
# Define the working dir in the contener
|
19 |
+
WORKDIR /
|
20 |
+
|
21 |
+
# Commande to start the app
|
22 |
+
CMD ["gunicorn", "--bind", "0.0.0.0:7860", "main:app"]
|
src/synonyms_final_vf.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import pandas as pd
|
3 |
+
import spacy
|
4 |
+
import numpy as np
|
5 |
+
from sklearn.cluster import DBSCAN
|
6 |
+
from sklearn.metrics.pairwise import cosine_distances
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import nltk
|
9 |
+
from nltk.corpus import wordnet
|
10 |
+
|
11 |
+
def load_data(file_path):
|
12 |
+
"""
|
13 |
+
This function loads the data from a given file_path
|
14 |
+
|
15 |
+
parameter: str the file path
|
16 |
+
|
17 |
+
Returns: the unique words in gloss column
|
18 |
+
"""
|
19 |
+
data = pd.read_csv(file_path, delimiter=";")
|
20 |
+
return data["gloss"].unique()
|
21 |
+
|
22 |
+
def initialize_spacy_model(model_name="en_core_web_md"):
|
23 |
+
return spacy.load(model_name)
|
24 |
+
|
25 |
+
def download_wordnet():
|
26 |
+
"""
|
27 |
+
This function downloads a dictionary that will be used to find antonyms
|
28 |
+
"""
|
29 |
+
nltk.download('wordnet')
|
30 |
+
|
31 |
+
def generate_word_vectors(words, model):
|
32 |
+
return np.array([model(word).vector for word in words])
|
33 |
+
|
34 |
+
def plot_k_distance_graph(distances, k):
|
35 |
+
k_distances = np.sort(distances, axis=1)[:, k]
|
36 |
+
k_distances = np.sort(k_distances)
|
37 |
+
plt.figure(figsize=(10, 5))
|
38 |
+
plt.plot(k_distances)
|
39 |
+
plt.xlabel('Points sorted by distance')
|
40 |
+
plt.ylabel(f'{k}-th Nearest Neighbor Distance')
|
41 |
+
plt.title(f'k-distance Graph for k={k}')
|
42 |
+
plt.grid(True)
|
43 |
+
plt.show()
|
44 |
+
|
45 |
+
def perform_dbscan_clustering(word_vectors, eps, min_samples=5):
|
46 |
+
dbscan = DBSCAN(metric='cosine', eps=eps, min_samples=min_samples)
|
47 |
+
dbscan.fit(word_vectors)
|
48 |
+
return dbscan
|
49 |
+
|
50 |
+
def create_cluster_mapping(words, dbscan_labels):
|
51 |
+
cluster_to_words = {}
|
52 |
+
for word, cluster in zip(words, dbscan_labels):
|
53 |
+
if cluster not in cluster_to_words:
|
54 |
+
cluster_to_words[cluster] = []
|
55 |
+
cluster_to_words[cluster].append(word)
|
56 |
+
return cluster_to_words
|
57 |
+
|
58 |
+
def find_antonyms(word):
|
59 |
+
antonyms = set()
|
60 |
+
for syn in wordnet.synsets(word):
|
61 |
+
for lemma in syn.lemmas():
|
62 |
+
if lemma.antonyms():
|
63 |
+
antonyms.add(lemma.antonyms()[0].name())
|
64 |
+
return antonyms
|
65 |
+
|
66 |
+
def find_synonyms_in_cluster(word, model, cluster_to_words, dbscan_model):
|
67 |
+
"""
|
68 |
+
This function finds the most similar word in the same cluster, and excludes antonyms
|
69 |
+
"""
|
70 |
+
word_vector = model(word).vector
|
71 |
+
cluster_label = dbscan_model.fit_predict([word_vector])[0]
|
72 |
+
cluster_words = cluster_to_words.get(cluster_label, [])
|
73 |
+
|
74 |
+
if not cluster_words:
|
75 |
+
return None
|
76 |
+
|
77 |
+
antonyms = find_antonyms(word)
|
78 |
+
similarities = [(dict_word, model(dict_word).similarity(model(word))) for dict_word in cluster_words if dict_word != word and dict_word not in antonyms]
|
79 |
+
|
80 |
+
if not similarities:
|
81 |
+
return None
|
82 |
+
|
83 |
+
most_similar_word = sorted(similarities, key=lambda item: -item[1])[0][0]
|
84 |
+
return most_similar_word
|
85 |
+
|
86 |
+
def display_clusters(cluster_to_words):
|
87 |
+
for cluster_label, words in cluster_to_words.items():
|
88 |
+
if cluster_label != -1: # Exclude noise points
|
89 |
+
print(f"Cluster {cluster_label}: {words}")
|
90 |
+
else:
|
91 |
+
print(f"Noise: {words}")
|
92 |
+
|
93 |
+
def main(file_path, model_name="en_core_web_md", eps=0.23, min_samples=5, k=5):
|
94 |
+
global nlp, cluster_to_words, dbscan
|
95 |
+
|
96 |
+
dict_2000 = load_data(file_path)
|
97 |
+
nlp = initialize_spacy_model(model_name)
|
98 |
+
download_wordnet()
|
99 |
+
|
100 |
+
word_vectors = generate_word_vectors(dict_2000, nlp)
|
101 |
+
|
102 |
+
# distances = cosine_distances(word_vectors)
|
103 |
+
# plot_k_distance_graph(distances, k)
|
104 |
+
|
105 |
+
dbscan = perform_dbscan_clustering(word_vectors, eps, min_samples)
|
106 |
+
cluster_to_words = create_cluster_mapping(dict_2000, dbscan.labels_)
|
107 |
+
|
108 |
+
if __name__ == "__main__":
|
109 |
+
main("filtered_WLASL.csv")
|
110 |
+
|
111 |
+
##TEST##
|
112 |
+
#target_word = "unhappy"
|
113 |
+
#synonym = find_synonyms_in_cluster(target_word, nlp, cluster_to_words, dbscan)
|
114 |
+
#print(f"The most similar word to '{target_word}' is '{synonym}'")
|
115 |
+
|
116 |
+
##If you want to see clusters##
|
117 |
+
#num_clusters = len(set(dbscan.labels_)) - (1 if -1 in dbscan.labels_ else 0)
|
118 |
+
#print(f"Number of clusters: {num_clusters}")
|
119 |
+
|
120 |
+
#cluster_label = dbscan.fit_predict([nlp("unhappy").vector])[0]
|
121 |
+
#same_cluster_words = cluster_to_words.get(cluster_label, [])
|
122 |
+
#print(f"Words in the same cluster as 'unhappy': {same_cluster_words}")
|
123 |
+
|
124 |
+
#display_clusters(cluster_to_words)
|
125 |
+
|