Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import spaces | |
from transformers import CLIPVisionModelWithProjection,CLIPImageProcessor | |
from diffusers.utils import load_image | |
import os,sys | |
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
from kolors.pipelines.pipeline_controlnet_xl_kolors_img2img_face import StableDiffusionXLControlNetImg2ImgPipeline | |
from kolors.models.modeling_chatglm import ChatGLMModel | |
from kolors.models.tokenization_chatglm import ChatGLMTokenizer | |
from kolors.models.controlnet import ControlNetModel | |
from diffusers import AutoencoderKL | |
from kolors.models.unet_2d_condition import UNet2DConditionModel | |
from diffusers import EulerDiscreteScheduler | |
from PIL import Image | |
import numpy as np | |
import cv2 | |
from insightface.app import FaceAnalysis | |
from insightface.data import get_image as ins_get_image | |
example_path = os.path.join(os.path.dirname(__file__), 'examples') | |
class FaceInfoGenerator(): | |
def __init__(self, root_dir = "./"): | |
self.app = FaceAnalysis(name = 'antelopev2', root = root_dir, providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) | |
self.app.prepare(ctx_id = 0, det_size = (640, 640)) | |
def get_faceinfo_one_img(self, face_image): | |
face_info = self.app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR)) | |
if len(face_info) == 0: | |
face_info = None | |
else: | |
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face | |
return face_info | |
def face_bbox_to_square(bbox): | |
## l, t, r, b to square l, t, r, b | |
l,t,r,b = bbox | |
cent_x = (l + r) / 2 | |
cent_y = (t + b) / 2 | |
w, h = r - l, b - t | |
r = max(w, h) / 2 | |
l0 = cent_x - r | |
r0 = cent_x + r | |
t0 = cent_y - r | |
b0 = cent_y + r | |
return [l0, t0, r0, b0] | |
text_encoder = ChatGLMModel.from_pretrained("Kwai-Kolors/Kolors",subfolder="text_encoder").to(dtype=torch.bfloat16) | |
tokenizer = ChatGLMTokenizer.from_pretrained("Kwai-Kolors/Kolors",subfolder="text_encoder") | |
vae = AutoencoderKL.from_pretrained("Kwai-Kolors/Kolors",subfolder="vae", revision=None).to(dtype=torch.bfloat16) | |
scheduler = EulerDiscreteScheduler.from_pretrained("Kwai-Kolors/Kolors",subfolder="scheduler") | |
unet = UNet2DConditionModel.from_pretrained("Kwai-Kolors/Kolors",subfolder="unet", revision=None).to(dtype=torch.bfloat16) | |
control_path = "haowu11/Kolors-Controlnet-Pose-Tryon" | |
controlnet = ControlNetModel.from_pretrained( control_path , revision=None).to(dtype=torch.bfloat16) | |
face_info_generator = FaceInfoGenerator(root_dir = "./") | |
clip_image_encoder = CLIPVisionModelWithProjection.from_pretrained("Kwai-Kolors/Kolors-IP-Adapter-FaceID-Plus",subfolder="clip-vit-large-patch14-336", ignore_mismatched_sizes=True) | |
clip_image_processor = CLIPImageProcessor(size = 336, crop_size = 336) | |
hf_hub_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-FaceID-Plus", filename="ipa-faceid-plus.bin",cache_dir='./') | |
snapshotname = os.listdir('./models--Kwai-Kolors--Kolors-IP-Adapter-FaceID-Plus/snapshots')[0] | |
pipe = StableDiffusionXLControlNetImg2ImgPipeline( | |
vae=vae, | |
controlnet = controlnet, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
# image_encoder=image_encoder, | |
# feature_extractor=clip_image_processor, | |
force_zeros_for_empty_prompt=False, | |
face_clip_encoder=clip_image_encoder, | |
face_clip_processor=clip_image_processor, | |
) | |
if hasattr(pipe.unet, 'encoder_hid_proj'): | |
pipe.unet.text_encoder_hid_proj = pipe.unet.encoder_hid_proj | |
ip_scale = 0.5 | |
pipe.load_ip_adapter_faceid_plus(f'models--Kwai-Kolors--Kolors-IP-Adapter-FaceID-Plus/snapshots/{snapshotname}/ipa-faceid-plus.bin', device = 'cuda') | |
pipe.set_face_fidelity_scale(ip_scale) | |
pipe = pipe.to("cuda") | |
pipe.enable_model_cpu_offload() | |
def infer(face_img,pose_img, garm_img, prompt,negative_prompt, n_samples, n_steps, seed): | |
pipe.face_clip_encoder.to('cuda') | |
face_img = Image.open(face_img) | |
pose_img = Image.open(pose_img) | |
garm_img = Image.open(garm_img) | |
face_img = face_img.resize((336, 336)) | |
pose_img = pose_img.resize((768, 1024)) | |
garm_img = garm_img.resize((768, 1024)) | |
background = Image.new("RGB", (768, 768), (255, 255, 255)) | |
#将face_img粘贴到background中心 | |
background.paste(face_img, (int((768 - 336) / 2), int((768 - 336) / 2))) | |
face_info = face_info_generator.get_faceinfo_one_img(background) | |
face_embeds = torch.from_numpy(np.array([face_info["embedding"]])) | |
face_embeds = face_embeds.to('cuda', dtype = torch.bfloat16) | |
controlnet_conditioning_scale = 1.0 | |
control_guidance_end = 0.9 | |
#strength 越是小,则生成图片越是依赖原始图片。 | |
strength = 1.0 | |
im1 = np.array(pose_img) | |
im2 = np.array(garm_img) | |
condi_img = Image.fromarray( np.concatenate( (im1, im2), axis=1 ) ) | |
generator = torch.Generator(device="cpu").manual_seed(seed) | |
image = pipe( | |
prompt= prompt , | |
# image = init_image, | |
controlnet_conditioning_scale = controlnet_conditioning_scale, | |
control_guidance_end = control_guidance_end, | |
# ip_adapter_image=[ ip_adapter_img ], | |
face_crop_image = face_img, | |
face_insightface_embeds = face_embeds, | |
strength= strength , | |
control_image = condi_img, | |
negative_prompt= negative_prompt , | |
num_inference_steps=n_steps , | |
guidance_scale= 5.0, | |
num_images_per_prompt=n_samples, | |
generator=generator, | |
).images | |
return image | |
block = gr.Blocks().queue() | |
with block: | |
with gr.Row(): | |
gr.Markdown("# KolorsControlnerTryon Demo") | |
with gr.Row(): | |
with gr.Column(): | |
pose_img = gr.Image(label="Pose", sources='upload', type="filepath", height=768, value=os.path.join(example_path, 'pose/1.jpg')) | |
example = gr.Examples( | |
inputs=pose_img, | |
examples_per_page=10, | |
examples=[ | |
os.path.join(example_path, 'pose/1.jpg'), | |
os.path.join(example_path, 'pose/2.jpg'), | |
os.path.join(example_path, 'pose/3.jpg'), | |
os.path.join(example_path, 'pose/4.jpg'), | |
os.path.join(example_path, 'pose/5.jpg'), | |
os.path.join(example_path, 'pose/6.jpg'), | |
os.path.join(example_path, 'pose/7.jpg'), | |
os.path.join(example_path, 'pose/8.jpg'), | |
os.path.join(example_path, 'pose/9.jpg'), | |
os.path.join(example_path, 'pose/10.jpg'), | |
]) | |
with gr.Column(): | |
garm_img = gr.Image(label="Garment", sources='upload', type="filepath", height=768, value=os.path.join(example_path, 'garment/1.jpg'),) | |
example = gr.Examples( | |
inputs=garm_img, | |
examples_per_page=10, | |
examples=[ | |
os.path.join(example_path, 'garment/1.jpg'), | |
os.path.join(example_path, 'garment/2.jpg'), | |
os.path.join(example_path, 'garment/3.jpg'), | |
os.path.join(example_path, 'garment/4.jpg'), | |
os.path.join(example_path, 'garment/5.jpg'), | |
os.path.join(example_path, 'garment/6.jpg'), | |
os.path.join(example_path, 'garment/7.jpg'), | |
os.path.join(example_path, 'garment/8.jpg'), | |
os.path.join(example_path, 'garment/9.jpg'), | |
os.path.join(example_path, 'garment/10.jpg'), | |
]) | |
with gr.Row(): | |
with gr.Column(): | |
face_img = gr.Image(label="Face", sources='upload', type="filepath", height=336, value=os.path.join(example_path, 'face/1.png'),) | |
example = gr.Examples( | |
inputs=face_img, | |
examples_per_page=10, | |
examples=[ | |
os.path.join(example_path, 'face/1.png'), | |
os.path.join(example_path, 'face/2.png'), | |
os.path.join(example_path, 'face/3.png'), | |
os.path.join(example_path, 'face/4.png'), | |
os.path.join(example_path, 'face/5.png'), | |
os.path.join(example_path, 'face/6.png'), | |
os.path.join(example_path, 'face/7.png'), | |
os.path.join(example_path, 'face/8.png'), | |
os.path.join(example_path, 'face/9.png'), | |
os.path.join(example_path, 'face/10.png'), | |
]) | |
with gr.Column(): | |
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True, scale=1) | |
with gr.Column(): | |
prompt = gr.Textbox(value="这张图片上的模特穿着一件黑色的长袖T恤,T恤上印着彩色的字母'OBEY'。她还穿着一条牛仔裤。", show_label=False, elem_id="prompt") | |
negative_prompt = gr.Textbox(value="nsfw,脸部阴影,低分辨率,糟糕的解剖结构、糟糕的手,缺失手指、质量最差、低质量、jpeg伪影、模糊、糟糕,黑脸,霓虹灯", show_label=False, elem_id="negative_prompt") | |
n_samples = gr.Slider(label="Images", minimum=1, maximum=4, value=1, step=1) | |
n_steps = gr.Slider(label="Steps", minimum=20, maximum=50, value=20, step=1) | |
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=-1) | |
run_button = gr.Button(value="Run") | |
ips = [face_img,pose_img, garm_img, prompt,negative_prompt, n_samples, n_steps, seed] | |
run_button.click(fn=infer, inputs=ips, outputs=[result_gallery]) | |
if __name__ == "__main__": | |
block.launch(server_name='0.0.0.0') |