File size: 16,080 Bytes
2167d97
5c9eeb6
2167d97
bf0bce0
2167d97
 
 
5c9eeb6
7f11a12
2167d97
c3a32d9
 
 
 
 
 
 
 
 
 
 
 
0baf760
e0a3e11
c3a32d9
2167d97
317082e
 
2167d97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3a32d9
 
 
 
 
 
 
 
 
 
 
 
c6028a1
2167d97
c6028a1
51be1b7
 
 
 
 
c3a32d9
 
 
51be1b7
2167d97
 
 
 
4a007ca
c3a32d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a87a9d
 
 
 
 
 
 
c3a32d9
 
 
 
3a87a9d
c3a32d9
 
 
 
 
 
3a87a9d
7f11a12
3a87a9d
 
 
 
 
 
 
 
 
 
 
 
ef4ce59
3a87a9d
 
 
 
 
 
 
ef4ce59
3a87a9d
 
 
ef4ce59
3a87a9d
 
 
ef4ce59
3a87a9d
 
 
 
ef4ce59
3a87a9d
 
 
 
 
 
 
 
 
 
 
 
 
ef4ce59
3a87a9d
 
 
 
 
 
 
 
 
 
ef4ce59
3a87a9d
 
 
 
 
 
 
 
 
ef4ce59
3a87a9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ee7dc7
3a87a9d
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import streamlit as st
import os
import numpy as np
import torchaudio
import tensorflow as tf
from tensorflow.keras.models import load_model
import tensorflow_hub as hub
import time
import streamlit.components.v1 as components

# Set GPU memory growth for TensorFlow (optional, for environments with GPUs)
try:
    from tensorflow.compat.v1 import ConfigProto
    from tensorflow.compat.v1 import InteractiveSession

    config = ConfigProto()
    config.gpu_options.allow_growth = True
    session = InteractiveSession(config=config)
except Exception as e:
    st.warning(f"Could not set GPU memory growth: {e}")

# Load TensorFlow Hub layer
m = hub.KerasLayer('https://tfhub.dev/google/nonsemantic-speech-benchmark/trillsson4/1')

# Define TransformerEncoder (custom layer used in the model)
class TransformerEncoder(tf.keras.layers.Layer):
    def __init__(self, embed_dim, num_heads, ff_dim, rate=0.01, **kwargs):
        super(TransformerEncoder, self).__init__(**kwargs)
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.ff_dim = ff_dim
        self.rate = rate
        self.att = tf.keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim)
        self.ffn = tf.keras.Sequential([tf.keras.layers.Dense(ff_dim, activation="relu"), tf.keras.layers.Dense(embed_dim)])
        self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
        self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
        self.dropout1 = tf.keras.layers.Dropout(rate)
        self.dropout2 = tf.keras.layers.Dropout(rate)

    def call(self, inputs, training=False):
        attn_output = self.att(inputs, inputs)
        attn_output = self.dropout1(attn_output, training=training)
        out1 = self.layernorm1(inputs + attn_output)
        ffn_output = self.ffn(out1)
        ffn_output = self.dropout2(ffn_output, training=training)
        return self.layernorm2(out1 + ffn_output)

    def get_config(self):
        config = super(TransformerEncoder, self).get_config()
        config.update({
            'embed_dim': self.embed_dim,
            'num_heads': self.num_heads,
            'ff_dim': self.ff_dim,
            'rate': self.rate
        })
        return config

# Load the Autism detection model
@st.cache_resource
def load_autism_model():
    try:
        return load_model('autism_detection_model3.h5', custom_objects={'TransformerEncoder': TransformerEncoder})
    except Exception as e:
        st.error(f"Error loading model: {e}")
        return None

model = load_autism_model()

# Function to extract features from an audio file
def extract_features(path):
    sample_rate = 16000
    array, fs = torchaudio.load(path)

    array = np.array(array)
    if array.shape[0] > 1:
        array = np.mean(array, axis=0, keepdims=True)

    # Truncate audio to 10 seconds for efficiency
    array = array[:, :sample_rate * 10]

    embeddings = m(array)['embedding']
    embeddings.shape.assert_is_compatible_with([None, 1024])
    embeddings = np.squeeze(np.array(embeddings), axis=0)

    return embeddings

# Run prediction and display results
def run_prediction(features):
    try:
        prediction = model.predict(np.expand_dims(features, axis=0))
        autism_probability = prediction[0][1]
        normal_probability = prediction[0][0]

        st.subheader("Prediction Probabilities:")
        if autism_probability > normal_probability:
            st.markdown(
                f'<div style="background-color:#658EA9;padding:20px;border-radius:10px;margin-bottom:40px;">'
                f'<h3 style="color:white;">Autism: {autism_probability:.2f}</h3>'
                '</div>',
                unsafe_allow_html=True
            )
            st.markdown(
                f'<div style="background-color:#ADD8E6;padding:20px;border-radius:10px;margin-bottom:40px;">'
                f'<h3 style="color:black;">Normal: {normal_probability:.2f}</h3>'
                '</div>',
                unsafe_allow_html=True
            )
        else:
            st.markdown(
                f'<div style="background-color:#658EA9;padding:20px;border-radius:10px;margin-bottom:40px;">'
                f'<h3 style="color:white;">Normal: {normal_probability:.2f}</h3>'
                '</div>',
                unsafe_allow_html=True
            )
            st.markdown(
                f'<div style="background-color:#ADD8E6;padding:20px;border-radius:10px;margin-bottom:40px;">'
                f'<h3 style="color:black;">Autism: {autism_probability:.2f}</h3>'
                '</div>',
                unsafe_allow_html=True
            )
    except Exception as e:
        st.error(f"Error during prediction: {e}")

# Streamlit app layout
st.markdown('<span style="color:black; font-size: 48px; font-weight: bold;">Neu</span> <span style="color:black; font-size: 48px; font-weight: bold;">RO:</span> <span style="color:black; font-size: 48px; font-weight: bold;">An Application for Code-Switched Autism Detection in Children</span>', unsafe_allow_html=True)

option = st.radio("Choose an option:", ["Upload an audio file", "Record audio"])

if option == "Upload an audio file":
    uploaded_file = st.file_uploader("Upload an audio file (.wav)", type=["wav"])
    if uploaded_file is not None:
        start_time = time.time()  # Record start time
        with st.spinner('Extracting features...'):
            temp_audio_path = os.path.join(".", "temp_audio.wav")
            with open(temp_audio_path, "wb") as f:
                f.write(uploaded_file.getbuffer())
            features = extract_features(temp_audio_path)
            os.remove(temp_audio_path)
            run_prediction(features)
        elapsed_time = round(time.time() - start_time, 2)
        st.write(f"Elapsed Time: {elapsed_time} seconds")
else:
    st.markdown("### Audio Recorder")
    components.html(
        """
        <div style="text-align: center;">
            <h1>Audio Recorder</h1>
            <button id="startRecording">Start Recording</button>
            <button id="stopRecording" disabled>Stop Recording</button>
            <div id="timer">00:00</div>
        </div>
        <script>
            let recorder;
            let audioChunks = [];
            let startTime;
            let timerInterval;

            function updateTime() {
                const elapsedTime = Math.floor((Date.now() - startTime) / 1000);
                const minutes = Math.floor(elapsedTime / 60);
                const seconds = elapsedTime % 60;
                const formattedTime = `${minutes.toString().padStart(2, '0')}:${seconds.toString().padStart(2, '0')}`;
                document.getElementById('timer').textContent = formattedTime;
            }

            navigator.mediaDevices.getUserMedia({ audio: true })
                .then(stream => {
                    recorder = new MediaRecorder(stream);

                    recorder.ondataavailable = e => {
                        audioChunks.push(e.data);
                    };

                    recorder.onstart = () => {
                        startTime = Date.now();
                        timerInterval = setInterval(updateTime, 1000);
                    };

                    recorder.onstop = () => {
                        const audioBlob = new Blob(audioChunks, { type: 'audio/wav' });
                        const audioUrl = URL.createObjectURL(audioBlob);
                        const a = document.createElement('a');
                        a.href = audioUrl;
                        a.download = 'recorded_audio.wav';
                        document.body.appendChild(a);
                        a.click();
                        audioChunks = [];
                        clearInterval(timerInterval);
                    };
                })
                .catch(err => console.error('Permission to access microphone denied:', err));

            document.getElementById('startRecording').addEventListener('click', () => {
                recorder.start();
                document.getElementById('startRecording').disabled = true;
                document.getElementById('stopRecording').disabled = false;
                setTimeout(() => {
                    recorder.stop();
                    document.getElementById('startRecording').disabled = false;
                    document.getElementById('stopRecording').disabled = true;
                }, 15000); // 15 seconds
            });

            document.getElementById('stopRecording').addEventListener('click', () => {
                recorder.stop();
                document.getElementById('startRecording').disabled = false;
                document.getElementById('stopRecording').disabled = true;
            });
        </script>
        """,
        height=300,
    )

# import subprocess
# import streamlit as st
# import os
# import numpy as np
# import torchaudio
# import tensorflow as tf
# from tensorflow.keras.models import load_model
# import tensorflow_hub as hub
# import time

# # Attempt to set GPU memory growth
# try:
#     from tensorflow.compat.v1 import ConfigProto
#     from tensorflow.compat.v1 import InteractiveSession

#     config = ConfigProto()
#     config.gpu_options.allow_growth = True
#     session = InteractiveSession(config=config)
# except Exception as e:
#     st.warning(f"Could not set GPU memory growth: {e}")

# m = hub.KerasLayer('https://tfhub.dev/google/nonsemantic-speech-benchmark/trillsson4/1')

# class TransformerEncoder(tf.keras.layers.Layer):
#     def __init__(self, embed_dim, num_heads, ff_dim, rate=0.01, **kwargs):
#         super(TransformerEncoder, self).__init__(**kwargs)
#         self.embed_dim = embed_dim
#         self.num_heads = num_heads
#         self.ff_dim = ff_dim
#         self.rate = rate
#         self.att = tf.keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim)
#         self.ffn = tf.keras.Sequential([tf.keras.layers.Dense(ff_dim, activation="relu"), tf.keras.layers.Dense(embed_dim)])
#         self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
#         self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
#         self.dropout1 = tf.keras.layers.Dropout(rate)
#         self.dropout2 = tf.keras.layers.Dropout(rate)

#     def call(self, inputs, training=False):
#         attn_output = self.att(inputs, inputs)
#         attn_output = self.dropout1(attn_output, training=training)
#         out1 = self.layernorm1(inputs + attn_output)
#         ffn_output = self.ffn(out1)
#         ffn_output = self.dropout2(ffn_output, training=training)
#         return self.layernorm2(out1 + ffn_output)

#     def get_config(self):
#         config = super(TransformerEncoder, self).get_config()
#         config.update({
#             'embed_dim': self.embed_dim,
#             'num_heads': self.num_heads,
#             'ff_dim': self.ff_dim,
#             'rate': self.rate
#         })
#         return config

# def load_autism_model():
#     try:
#         return load_model('autism_detection_model3.h5', custom_objects={'TransformerEncoder': TransformerEncoder})
#     except Exception as e:
#         st.error(f"Error loading model: {e}")
#         return None

# model = load_autism_model()

# def extract_features(path):
#     sample_rate = 16000
#     array, fs = torchaudio.load(path)

#     array = np.array(array)
#     if array.shape[0] > 1:
#         array = np.mean(array, axis=0, keepdims=True)

#     # Truncate the audio to 10 seconds for reducing memory usage
#     array = array[:, :sample_rate * 10]

#     embeddings = m(array)['embedding']
#     embeddings.shape.assert_is_compatible_with([None, 1024])
#     embeddings = np.squeeze(np.array(embeddings), axis=0)

#     return embeddings

# def run_prediction(features):
#     try:
#         prediction = model.predict(np.expand_dims(features, axis=0))
#         autism_probability = prediction[0][1]
#         normal_probability = prediction[0][0]

#         st.subheader("Prediction Probabilities:")

#         if autism_probability > normal_probability:
#             st.markdown(
#                 f'<div style="background-color:#658EA9;padding:20px;border-radius:10px;margin-bottom:40px;">'
#                 f'<h3 style="color:black;">Autism: {autism_probability}</h3>'
#                 '</div>',
#                 unsafe_allow_html=True
#             )
#             st.markdown(
#                 f'<div style="background-color:#ADD8E6;padding:20px;border-radius:10px;margin-bottom:40px;">'
#                 f'<h3 style="color:black;">Normal: {normal_probability}</h3>'
#                 '</div>',
#                 unsafe_allow_html=True
#             )
#         else:
#             st.markdown(
#                 f'<div style="background-color:#658EA9;padding:20px;border-radius:10px;margin-bottom:40px;">'
#                 f'<h3 style="color:black;">Normal: {normal_probability}</h3>'
#                 '</div>',
#                 unsafe_allow_html=True
#             )
#             st.markdown(
#                 f'<div style="background-color:#ADD8E6;padding:20px;border-radius:10px;margin-bottom:40px;">'
#                 f'<h3 style="color:black;">Autism: {autism_probability}</h3>'
#                 '</div>',
#                 unsafe_allow_html=True
#             )

#     except tf.errors.ResourceExhaustedError as e:
#         st.error("Resource exhausted error: switching to CPU.")
#         with tf.device('/cpu:0'):
#             prediction = model.predict(np.expand_dims(features, axis=0))
#             autism_probability = prediction[0][1]
#             normal_probability = prediction[0][0]

#             st.subheader("Prediction Probabilities:")

#             if autism_probability > normal_probability:
#                 st.markdown(
#                     f'<div style="background-color:#658EA9;padding:20px;border-radius:10px;margin-bottom:40px;">'
#                     f'<h3 style="color:black;">Autism: {autism_probability}</h3>'
#                     '</div>',
#                     unsafe_allow_html=True
#                 )
#                 st.markdown(
#                     f'<div style="background-color:#ADD8E6;padding:20px;border-radius:10px;margin-bottom:40px;">'
#                     f'<h3 style="color:black;">Normal: {normal_probability}</h3>'
#                     '</div>',
#                     unsafe_allow_html=True
#                 )
#             else:
#                 st.markdown(
#                     f'<div style="background-color:#658EA9;padding:20px;border-radius:10px;margin-bottom:40px;">'
#                     f'<h3 style="color:black;">Normal: {normal_probability}</h3>'
#                     '</div>',
#                     unsafe_allow_html=True
#                 )
#                 st.markdown(
#                     f'<div style="background-color:#ADD8E6;padding:20px;border-radius:10px;margin-bottom:40px;">'
#                     f'<h3 style="color:black;">Autism: {autism_probability}</h3>'
#                     '</div>',
#                     unsafe_allow_html=True
#                 )

# st.markdown('<span style="color:black; font-size: 48px; font-weight: bold;">Neu</span> <span style="color:black; font-size: 48px; font-weight: bold;">RO:</span> <span style="color:black; font-size: 48px; font-weight: bold;">An Application for Code-Switched Autism Detection in Children</span>', unsafe_allow_html=True)

# uploaded_file = st.file_uploader("Upload an audio file (.wav)", type=["wav"])
# if uploaded_file is not None:
#     start_time = time.time()  # Record start time
#     with st.spinner('Extracting features...'):
#         # Process the uploaded file
#         temp_audio_path = os.path.join(".", "temp_audio.wav")
#         with open(temp_audio_path, "wb") as f:
#             f.write(uploaded_file.getbuffer())
#         features = extract_features(temp_audio_path)
#         os.remove(temp_audio_path)
#         run_prediction(features)
#     elapsed_time = round(time.time() - start_time, 2)
#     st.write(f"Elapsed Time: {elapsed_time} seconds")