Spaces:
Runtime error
Runtime error
gfartenstein
commited on
Commit
Β·
302a17b
1
Parent(s):
73ff61b
revert
Browse files
app.py
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
|
4 |
from PIL import Image
|
5 |
import numpy as np
|
6 |
from spectro import wav_bytes_from_spectrogram_image
|
7 |
-
|
8 |
from diffusers import StableDiffusionPipeline
|
9 |
from diffusers import StableDiffusionImg2ImgPipeline
|
10 |
|
@@ -28,30 +28,18 @@ def predict(prompt, negative_prompt, audio_input, duration):
|
|
28 |
# return style_transfer(prompt, negative_prompt, audio_input)
|
29 |
|
30 |
def classic(prompt, negative_prompt, duration):
|
31 |
-
|
32 |
-
|
33 |
-
response = requests.get(url)
|
34 |
-
im = Image.open(BytesIO(response.content)).convert("RGB")
|
35 |
-
# spec = pipe(prompt, negative_prompt=negative_prompt, height=512, width=512).images[0]
|
36 |
-
spec = pipe2(prompt=prompt, negative_prompt=negative_prompt, image=im, strength=0.5, guidance_scale=7).images
|
37 |
print(spec)
|
38 |
-
|
39 |
-
wav = wav_bytes_from_spectrogram_image(spec[0])
|
40 |
with open("output.wav", "wb") as f:
|
41 |
f.write(wav[0].getbuffer())
|
42 |
return spec, 'output.wav', gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
|
43 |
|
44 |
-
|
45 |
-
# pipe.safety_checker = dummy_checker
|
46 |
-
# url = "https://huggingface.co/spaces/gfartenstein/text2fart/resolve/main/rootfart-1.jpg"
|
47 |
-
# response = requests.get(url)
|
48 |
-
# init_image = Image.open(BytesIO(response.content)).convert("RGB")
|
49 |
-
# images = pipe(prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5).images
|
50 |
-
|
51 |
-
|
52 |
# spec = spectro_from_wav(audio_input)
|
53 |
# Open the image
|
54 |
-
|
55 |
# im = Image.open(spec)
|
56 |
|
57 |
|
@@ -59,37 +47,37 @@ def classic(prompt, negative_prompt, duration):
|
|
59 |
# im = image_from_spectrogram(im, 1)
|
60 |
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
#
|
75 |
-
|
76 |
|
77 |
-
#
|
78 |
-
|
79 |
|
80 |
-
#
|
81 |
-
|
82 |
|
83 |
-
#
|
84 |
-
|
85 |
|
86 |
-
#
|
87 |
-
|
88 |
|
89 |
-
#
|
90 |
-
|
91 |
|
92 |
-
|
93 |
|
94 |
title = """
|
95 |
<div style="text-align: center; max-width: 500px; margin: 0 auto;">
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
|
4 |
from PIL import Image
|
5 |
import numpy as np
|
6 |
from spectro import wav_bytes_from_spectrogram_image
|
7 |
+
|
8 |
from diffusers import StableDiffusionPipeline
|
9 |
from diffusers import StableDiffusionImg2ImgPipeline
|
10 |
|
|
|
28 |
# return style_transfer(prompt, negative_prompt, audio_input)
|
29 |
|
30 |
def classic(prompt, negative_prompt, duration):
|
31 |
+
pipe.safety_checker = dummy_checker
|
32 |
+
spec = pipe(prompt, negative_prompt=negative_prompt, height=512, width=512).images[0]
|
|
|
|
|
|
|
|
|
33 |
print(spec)
|
34 |
+
wav = wav_bytes_from_spectrogram_image(spec)
|
|
|
35 |
with open("output.wav", "wb") as f:
|
36 |
f.write(wav[0].getbuffer())
|
37 |
return spec, 'output.wav', gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
|
38 |
|
39 |
+
def style_transfer(prompt, negative_prompt, audio_input):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
# spec = spectro_from_wav(audio_input)
|
41 |
# Open the image
|
42 |
+
im = Image.open('rootfart-1.jpg')
|
43 |
# im = Image.open(spec)
|
44 |
|
45 |
|
|
|
47 |
# im = image_from_spectrogram(im, 1)
|
48 |
|
49 |
|
50 |
+
new_spectro = pipe2(prompt=prompt, image=im, strength=0.5, guidance_scale=7).images
|
51 |
+
wav = wav_bytes_from_spectrogram_image(new_spectro[0])
|
52 |
+
with open("output.wav", "wb") as f:
|
53 |
+
f.write(wav[0].getbuffer())
|
54 |
+
return new_spectro[0], 'output.wav', gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
|
55 |
|
56 |
+
def image_from_spectrogram(
|
57 |
+
spectrogram: np.ndarray, max_volume: float = 50, power_for_image: float = 0.25
|
58 |
+
) -> Image.Image:
|
59 |
+
"""
|
60 |
+
Compute a spectrogram image from a spectrogram magnitude array.
|
61 |
+
"""
|
62 |
+
# Apply the power curve
|
63 |
+
data = np.power(spectrogram, power_for_image)
|
64 |
|
65 |
+
# Rescale to 0-255
|
66 |
+
data = data * 255 / max_volume
|
67 |
|
68 |
+
# Invert
|
69 |
+
data = 255 - data
|
70 |
|
71 |
+
# Convert to a PIL image
|
72 |
+
image = Image.fromarray(data.astype(np.uint8))
|
73 |
|
74 |
+
# Flip Y
|
75 |
+
image = image.transpose(Image.FLIP_TOP_BOTTOM)
|
76 |
|
77 |
+
# Convert to RGB
|
78 |
+
image = image.convert("RGB")
|
79 |
|
80 |
+
return image
|
81 |
|
82 |
title = """
|
83 |
<div style="text-align: center; max-width: 500px; margin: 0 auto;">
|