parokshsaxena commited on
Commit
ee405f9
·
1 Parent(s): a37d690

reverting readme

Browse files
Files changed (1) hide show
  1. README.md +9 -206
README.md CHANGED
@@ -1,208 +1,11 @@
1
-
2
- <div align="center">
3
- <h1>IDM-VTON: Improving Diffusion Models for Authentic Virtual Try-on in the Wild</h1>
4
-
5
- <a href='https://idm-vton.github.io'><img src='https://img.shields.io/badge/Project-Page-green'></a>
6
- <a href='https://arxiv.org/abs/2403.05139'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a>
7
- <a href='https://huggingface.co/spaces/yisol/IDM-VTON'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Demo-yellow'></a>
8
- <a href='https://huggingface.co/yisol/IDM-VTON'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue'></a>
9
-
10
-
11
- </div>
12
-
13
- This is the official implementation of the paper ["Improving Diffusion Models for Authentic Virtual Try-on in the Wild"](https://arxiv.org/abs/2403.05139).
14
-
15
- Star ⭐ us if you like it!
16
-
17
  ---
18
 
19
-
20
- ![teaser2](assets/teaser2.png)&nbsp;
21
- ![teaser](assets/teaser.png)&nbsp;
22
-
23
-
24
- ## TODO LIST
25
-
26
-
27
- - [x] demo model
28
- - [x] inference code
29
- - [ ] training code
30
-
31
-
32
-
33
- ## Requirements
34
-
35
- ```
36
- git clone https://github.com/yisol/IDM-VTON.git
37
- cd IDM-VTON
38
-
39
- conda env create -f environment.yaml
40
- conda activate idm
41
- ```
42
-
43
- ## Data preparation
44
-
45
- ### VITON-HD
46
- You can download VITON-HD dataset from [VITON-HD](https://github.com/shadow2496/VITON-HD).
47
-
48
- After download VITON-HD dataset, move vitonhd_test_tagged.json into the test folder.
49
-
50
- Structure of the Dataset directory should be as follows.
51
-
52
- ```
53
-
54
- train
55
- |-- ...
56
-
57
- test
58
- |-- image
59
- |-- image-densepose
60
- |-- agnostic-mask
61
- |-- cloth
62
- |-- vitonhd_test_tagged.json
63
-
64
- ```
65
-
66
- ### DressCode
67
- You can download DressCode dataset from [DressCode](https://github.com/aimagelab/dress-code).
68
-
69
- We provide pre-computed densepose images and captions for garments [here](https://kaistackr-my.sharepoint.com/:u:/g/personal/cpis7_kaist_ac_kr/EaIPRG-aiRRIopz9i002FOwBDa-0-BHUKVZ7Ia5yAVVG3A?e=YxkAip).
70
-
71
- We used [detectron2](https://github.com/facebookresearch/detectron2) for obtaining densepose images, refer [here](https://github.com/sangyun884/HR-VITON/issues/45) for more details.
72
-
73
- After download the DressCode dataset, place image-densepose directories and caption text files as follows.
74
-
75
- ```
76
- DressCode
77
- |-- dresses
78
- |-- images
79
- |-- image-densepose
80
- |-- dc_caption.txt
81
- |-- ...
82
- |-- lower_body
83
- |-- images
84
- |-- image-densepose
85
- |-- dc_caption.txt
86
- |-- ...
87
- |-- upper_body
88
- |-- images
89
- |-- image-densepose
90
- |-- dc_caption.txt
91
- |-- ...
92
- ```
93
-
94
-
95
- ## Inference
96
-
97
-
98
- ### VITON-HD
99
-
100
- Inference using python file with arguments,
101
-
102
- ```
103
- accelerate launch inference.py \
104
- --width 768 --height 1024 --num_inference_steps 30 \
105
- --output_dir "result" \
106
- --unpaired \
107
- --data_dir "DATA_DIR" \
108
- --seed 42 \
109
- --test_batch_size 2 \
110
- --guidance_scale 2.0
111
- ```
112
-
113
- or, you can simply run with the script file.
114
-
115
- ```
116
- sh inference.sh
117
- ```
118
-
119
- ### DressCode
120
-
121
- For DressCode dataset, put the category you want to generate images via category argument,
122
- ```
123
- accelerate launch inference_dc.py \
124
- --width 768 --height 1024 --num_inference_steps 30 \
125
- --output_dir "result" \
126
- --unpaired \
127
- --data_dir "DATA_DIR" \
128
- --seed 42
129
- --test_batch_size 2
130
- --guidance_scale 2.0
131
- --category "upper_body"
132
- ```
133
-
134
- or, you can simply run with the script file.
135
- ```
136
- sh inference.sh
137
- ```
138
-
139
- ## Start a local gradio demo <a href='https://github.com/gradio-app/gradio'><img src='https://img.shields.io/github/stars/gradio-app/gradio'></a>
140
-
141
- Download checkpoints for human parsing [here](https://huggingface.co/spaces/yisol/IDM-VTON-local/tree/main/ckpt).
142
-
143
- Place the checkpoints under the ckpt folder.
144
- ```
145
- ckpt
146
- |-- densepose
147
- |-- model_final_162be9.pkl
148
- |-- humanparsing
149
- |-- parsing_atr.onnx
150
- |-- parsing_lip.onnx
151
-
152
- |-- openpose
153
- |-- ckpts
154
- |-- body_pose_model.pth
155
-
156
- ```
157
-
158
-
159
-
160
-
161
- Run the following command:
162
-
163
- ```python
164
- python gradio_demo/app.py
165
- ```
166
-
167
-
168
-
169
-
170
-
171
-
172
- ## Acknowledgements
173
-
174
-
175
- Thanks [ZeroGPU](https://huggingface.co/zero-gpu-explorers) for providing free GPU.
176
-
177
- Thanks [IP-Adapter](https://github.com/tencent-ailab/IP-Adapter) for base codes.
178
-
179
- Thanks [OOTDiffusion](https://github.com/levihsu/OOTDiffusion) and [DCI-VTON](https://github.com/bcmi/DCI-VTON-Virtual-Try-On) for masking generation.
180
-
181
- Thanks [SCHP](https://github.com/GoGoDuck912/Self-Correction-Human-Parsing) for human segmentation.
182
-
183
- Thanks [Densepose](https://github.com/facebookresearch/DensePose) for human densepose.
184
-
185
-
186
-
187
- ## Star History
188
-
189
- [![Star History Chart](https://api.star-history.com/svg?repos=yisol/IDM-VTON&type=Date)](https://star-history.com/#yisol/IDM-VTON&Date)
190
-
191
-
192
-
193
- ## Citation
194
- ```
195
- @article{choi2024improving,
196
- title={Improving Diffusion Models for Virtual Try-on},
197
- author={Choi, Yisol and Kwak, Sangkyung and Lee, Kyungmin and Choi, Hyungwon and Shin, Jinwoo},
198
- journal={arXiv preprint arXiv:2403.05139},
199
- year={2024}
200
- }
201
- ```
202
-
203
-
204
-
205
- ## License
206
- The codes and checkpoints in this repository are under the [CC BY-NC-SA 4.0 license](https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
207
-
208
-
 
1
+ title: IDM VITON PARO
2
+ emoji: 🔥
3
+ colorFrom: red
4
+ colorTo: purple
5
+ sdk: gradio
6
+ sdk_version: 4.36.1
7
+ app_file: app.py
8
+ pinned: false
 
 
 
 
 
 
 
 
9
  ---
10
 
11
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference