Spaces:
Running
Running
Commit
Β·
3ca22c6
1
Parent(s):
cdb088d
add gene_name dropdown
Browse files- app/main.py +49 -21
app/main.py
CHANGED
|
@@ -71,7 +71,7 @@ def visualize_AF2(tf_pair, a):
|
|
| 71 |
gr.ErrorText("No such gene pair")
|
| 72 |
|
| 73 |
a = AFPairseg(strcture_dir, fasta_dir)
|
| 74 |
-
segpair.choices = list(a.pairs_data.keys())
|
| 75 |
fig1, ax1 = a.plot_plddt_gene1()
|
| 76 |
fig2, ax2 = a.plot_plddt_gene2()
|
| 77 |
fig3, ax3 = a.protein1.plot_plddt()
|
|
@@ -91,12 +91,22 @@ def update_dropdown(x, label):
|
|
| 91 |
return gr.Dropdown.update(choices=x, label=label)
|
| 92 |
|
| 93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
def load_and_plot_celltype(celltype_name, GET_CONFIG, cell):
|
| 95 |
celltype_id = cell_type_name_to_id[celltype_name]
|
| 96 |
cell = GETCellType(celltype_id, GET_CONFIG)
|
| 97 |
cell.celltype_name = celltype_name
|
|
|
|
| 98 |
gene_exp_fig = cell.plotly_gene_exp()
|
| 99 |
-
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
|
| 102 |
def plot_gene_regions(cell, gene_name, plotly=True):
|
|
@@ -139,10 +149,10 @@ if __name__ == "__main__":
|
|
| 139 |
seg_pairs = gr.State([""])
|
| 140 |
af = gr.State(None)
|
| 141 |
cell = gr.State(None)
|
|
|
|
| 142 |
|
| 143 |
gr.Markdown(
|
| 144 |
-
"""
|
| 145 |
-
# π GET: A Foundation Model of Transcription Across Human Cell Types π
|
| 146 |
|
| 147 |
Here we introduce GET, an innovative computational model aimed at understanding transcriptional regulation across 235 human fetal and adult cell types.
|
| 148 |
Built solely on chromatin accessibility and sequence data, GET exhibits unparalleled generalizability and accuracy in predicting gene expression, even in previously unstudied cell types.
|
|
@@ -154,10 +164,10 @@ Overall, GET serves as a robust, generalizable framework for understanding cell
|
|
| 154 |
|
| 155 |
Dive deep into our live demo and experience a revolution in cellular transcription like never before. Here's what you can explore:
|
| 156 |
|
| 157 |
-
π Prediction Performance: Choose your cell type and be amazed as we unveil a vivid plot comparing observed versus forecasted gene expression levels.
|
| 158 |
-
𧬠Cell-type Specific Regulatory Insights: Just pick a gene, and voilà ! Revel in intricate plots revealing the cell-type specific regulatory landscapes and motifs.
|
| 159 |
-
π Motif Correlation & Causal Subnetworks: Engage with our intuitive heatmap to witness motif correlations. Go further - choose a motif, define your subnetwork preference, set an effect size threshold, and behold the magic unfold!
|
| 160 |
-
π¬ Structural Atlas of Interactions: Step into the realm of transcription factor pairs. Experience heatmaps, pLDDT metrics, and more. And guess what? You can even download the PDB file for select segment pairs!
|
| 161 |
|
| 162 |
Stay tuned! We're set to dazzle you further as we launch our demo on Huggingface this week. Questions, thoughts, or moments of awe? Don't hesitate to reach out!
|
| 163 |
|
|
@@ -179,17 +189,29 @@ This section enables you to select different cell types and generates a plot tha
|
|
| 179 |
)
|
| 180 |
celltype_btn = gr.Button(value="Load & plot gene expression")
|
| 181 |
gene_exp_plot = gr.Plot(label="Gene expression prediction vs observation")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
# Right column: Plot gene motifs
|
| 184 |
with gr.Column():
|
| 185 |
gr.Markdown(
|
| 186 |
"""
|
| 187 |
-
|
| 188 |
|
| 189 |
In this section, you can choose a specific gene and access visualizations of its cell-type specific regulatory regions and motifs that promote gene expression. When you hover over the highlighted regions (the top 10%), you'll be able to view information about the motifs present in those regions and their corresponding scores. This feature allows for a detailed exploration of the regulatory elements influencing the expression of the selected gene.
|
| 190 |
"""
|
| 191 |
)
|
| 192 |
-
gene_name_for_region = gr.
|
| 193 |
label="Get important regions or motifs for gene:", value="BCL11A"
|
| 194 |
)
|
| 195 |
with gr.Row() as row:
|
|
@@ -258,14 +280,7 @@ You can download specific segment pair PDB files by clicking 'Get PDB.'
|
|
| 258 |
"""
|
| 259 |
)
|
| 260 |
|
| 261 |
-
|
| 262 |
-
with gr.Column():
|
| 263 |
-
protein1_plddt = gr.Plot(label="Protein 1 pLDDT")
|
| 264 |
-
interact_plddt1 = gr.Plot(label="Interact pLDDT 1")
|
| 265 |
-
with gr.Column():
|
| 266 |
-
protein2_plddt = gr.Plot(label="Protein 2 pLDDT")
|
| 267 |
-
interact_plddt2 = gr.Plot(label="Interact pLDDT 2")
|
| 268 |
-
|
| 269 |
with gr.Row() as row:
|
| 270 |
with gr.Column():
|
| 271 |
tf_pairs = gr.Dropdown(label="TF pair", choices=gene_pairs)
|
|
@@ -273,11 +288,19 @@ You can download specific segment pair PDB files by clicking 'Get PDB.'
|
|
| 273 |
heatmap = gr.Plot(label="Heatmap")
|
| 274 |
|
| 275 |
with gr.Column():
|
| 276 |
-
segpair = gr.Dropdown(label="Seg pair"
|
| 277 |
segpair_btn = gr.Button(value="Get PDB")
|
| 278 |
pdb_html = gr.HTML(label="PDB HTML")
|
| 279 |
pdb_file = gr.File(label="Download PDB")
|
| 280 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
tf_pairs_btn.click(
|
| 282 |
visualize_AF2,
|
| 283 |
inputs=[tf_pairs, af],
|
|
@@ -297,7 +320,12 @@ You can download specific segment pair PDB files by clicking 'Get PDB.'
|
|
| 297 |
celltype_btn.click(
|
| 298 |
load_and_plot_celltype,
|
| 299 |
inputs=[celltype_name, gr.State(GET_CONFIG), cell],
|
| 300 |
-
outputs=[gene_exp_plot, cell],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 301 |
)
|
| 302 |
region_plot_btn.click(
|
| 303 |
plot_gene_regions,
|
|
|
|
| 71 |
gr.ErrorText("No such gene pair")
|
| 72 |
|
| 73 |
a = AFPairseg(strcture_dir, fasta_dir)
|
| 74 |
+
# segpair.choices = list(a.pairs_data.keys())
|
| 75 |
fig1, ax1 = a.plot_plddt_gene1()
|
| 76 |
fig2, ax2 = a.plot_plddt_gene2()
|
| 77 |
fig3, ax3 = a.protein1.plot_plddt()
|
|
|
|
| 91 |
return gr.Dropdown.update(choices=x, label=label)
|
| 92 |
|
| 93 |
|
| 94 |
+
def filter_gene_records(cell, str):
|
| 95 |
+
if str == '':
|
| 96 |
+
return cell.gene_annot.groupby('gene_name')[['pred', 'obs', 'accessibility']].mean().reset_index().head(5), cell
|
| 97 |
+
df = cell.gene_annot.query(f"gene_name == '{str}'").groupby('gene_name')[['pred', 'obs', 'accessibility']].mean().reset_index().head(5)
|
| 98 |
+
return df, cell
|
| 99 |
+
|
| 100 |
def load_and_plot_celltype(celltype_name, GET_CONFIG, cell):
|
| 101 |
celltype_id = cell_type_name_to_id[celltype_name]
|
| 102 |
cell = GETCellType(celltype_id, GET_CONFIG)
|
| 103 |
cell.celltype_name = celltype_name
|
| 104 |
+
# gene_name.choices = sorted(gene_exp_table.gene_name.unique()
|
| 105 |
gene_exp_fig = cell.plotly_gene_exp()
|
| 106 |
+
gene_exp_table = cell.gene_annot.groupby('gene_name')[['pred', 'obs', 'accessibility']].mean().reset_index().head(5)
|
| 107 |
+
new_gene_dropdown = update_dropdown(sorted(cell.gene_annot.gene_name.unique()), "Gene name")
|
| 108 |
+
return gene_exp_fig, gene_exp_table, new_gene_dropdown, new_gene_dropdown, cell
|
| 109 |
+
|
| 110 |
|
| 111 |
|
| 112 |
def plot_gene_regions(cell, gene_name, plotly=True):
|
|
|
|
| 149 |
seg_pairs = gr.State([""])
|
| 150 |
af = gr.State(None)
|
| 151 |
cell = gr.State(None)
|
| 152 |
+
gene_names = gr.State([""])
|
| 153 |
|
| 154 |
gr.Markdown(
|
| 155 |
+
"""# π GET: A Foundation Model of Transcription Across Human Cell Types π
|
|
|
|
| 156 |
|
| 157 |
Here we introduce GET, an innovative computational model aimed at understanding transcriptional regulation across 235 human fetal and adult cell types.
|
| 158 |
Built solely on chromatin accessibility and sequence data, GET exhibits unparalleled generalizability and accuracy in predicting gene expression, even in previously unstudied cell types.
|
|
|
|
| 164 |
|
| 165 |
Dive deep into our live demo and experience a revolution in cellular transcription like never before. Here's what you can explore:
|
| 166 |
|
| 167 |
+
- π Prediction Performance: Choose your cell type and be amazed as we unveil a vivid plot comparing observed versus forecasted gene expression levels.
|
| 168 |
+
- 𧬠Cell-type Specific Regulatory Insights: Just pick a gene, and voilà ! Revel in intricate plots revealing the cell-type specific regulatory landscapes and motifs.
|
| 169 |
+
- π Motif Correlation & Causal Subnetworks: Engage with our intuitive heatmap to witness motif correlations. Go further - choose a motif, define your subnetwork preference, set an effect size threshold, and behold the magic unfold!
|
| 170 |
+
- π¬ Structural Atlas of Interactions: Step into the realm of transcription factor pairs. Experience heatmaps, pLDDT metrics, and more. And guess what? You can even download the PDB file for select segment pairs!
|
| 171 |
|
| 172 |
Stay tuned! We're set to dazzle you further as we launch our demo on Huggingface this week. Questions, thoughts, or moments of awe? Don't hesitate to reach out!
|
| 173 |
|
|
|
|
| 189 |
)
|
| 190 |
celltype_btn = gr.Button(value="Load & plot gene expression")
|
| 191 |
gene_exp_plot = gr.Plot(label="Gene expression prediction vs observation")
|
| 192 |
+
with gr.Row() as row:
|
| 193 |
+
gene_name = gr.Dropdown(value="BCL11A")
|
| 194 |
+
# Button to trigger the filter action
|
| 195 |
+
filter_btn = gr.Button("Filter table by gene name")
|
| 196 |
+
gene_exp_table = gr.Dataframe(
|
| 197 |
+
datatype=["str", "number", "number", "number"],
|
| 198 |
+
row_count=5,
|
| 199 |
+
col_count=(4, "fixed"),
|
| 200 |
+
label='Gene expression table',
|
| 201 |
+
max_rows=5
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
|
| 205 |
# Right column: Plot gene motifs
|
| 206 |
with gr.Column():
|
| 207 |
gr.Markdown(
|
| 208 |
"""
|
| 209 |
+
### 𧬠Cell-type specific regulatory inference
|
| 210 |
|
| 211 |
In this section, you can choose a specific gene and access visualizations of its cell-type specific regulatory regions and motifs that promote gene expression. When you hover over the highlighted regions (the top 10%), you'll be able to view information about the motifs present in those regions and their corresponding scores. This feature allows for a detailed exploration of the regulatory elements influencing the expression of the selected gene.
|
| 212 |
"""
|
| 213 |
)
|
| 214 |
+
gene_name_for_region = gr.Dropdown(
|
| 215 |
label="Get important regions or motifs for gene:", value="BCL11A"
|
| 216 |
)
|
| 217 |
with gr.Row() as row:
|
|
|
|
| 280 |
"""
|
| 281 |
)
|
| 282 |
|
| 283 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 284 |
with gr.Row() as row:
|
| 285 |
with gr.Column():
|
| 286 |
tf_pairs = gr.Dropdown(label="TF pair", choices=gene_pairs)
|
|
|
|
| 288 |
heatmap = gr.Plot(label="Heatmap")
|
| 289 |
|
| 290 |
with gr.Column():
|
| 291 |
+
segpair = gr.Dropdown(label="Seg pair")
|
| 292 |
segpair_btn = gr.Button(value="Get PDB")
|
| 293 |
pdb_html = gr.HTML(label="PDB HTML")
|
| 294 |
pdb_file = gr.File(label="Download PDB")
|
| 295 |
+
|
| 296 |
+
with gr.Row() as row:
|
| 297 |
+
with gr.Column():
|
| 298 |
+
protein1_plddt = gr.Plot(label="Protein 1 pLDDT")
|
| 299 |
+
interact_plddt1 = gr.Plot(label="Interact pLDDT 1")
|
| 300 |
+
with gr.Column():
|
| 301 |
+
protein2_plddt = gr.Plot(label="Protein 2 pLDDT")
|
| 302 |
+
interact_plddt2 = gr.Plot(label="Interact pLDDT 2")
|
| 303 |
+
|
| 304 |
tf_pairs_btn.click(
|
| 305 |
visualize_AF2,
|
| 306 |
inputs=[tf_pairs, af],
|
|
|
|
| 320 |
celltype_btn.click(
|
| 321 |
load_and_plot_celltype,
|
| 322 |
inputs=[celltype_name, gr.State(GET_CONFIG), cell],
|
| 323 |
+
outputs=[gene_exp_plot, gene_exp_table, gene_name, gene_name_for_region, cell],
|
| 324 |
+
)
|
| 325 |
+
filter_btn.click(
|
| 326 |
+
filter_gene_records,
|
| 327 |
+
inputs=[cell, gene_name],
|
| 328 |
+
outputs=[gene_exp_table, cell],
|
| 329 |
)
|
| 330 |
region_plot_btn.click(
|
| 331 |
plot_gene_regions,
|