Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
fuxialexander
commited on
Commit
ยท
3ca22c6
1
Parent(s):
cdb088d
add gene_name dropdown
Browse files- app/main.py +49 -21
app/main.py
CHANGED
@@ -71,7 +71,7 @@ def visualize_AF2(tf_pair, a):
|
|
71 |
gr.ErrorText("No such gene pair")
|
72 |
|
73 |
a = AFPairseg(strcture_dir, fasta_dir)
|
74 |
-
segpair.choices = list(a.pairs_data.keys())
|
75 |
fig1, ax1 = a.plot_plddt_gene1()
|
76 |
fig2, ax2 = a.plot_plddt_gene2()
|
77 |
fig3, ax3 = a.protein1.plot_plddt()
|
@@ -91,12 +91,22 @@ def update_dropdown(x, label):
|
|
91 |
return gr.Dropdown.update(choices=x, label=label)
|
92 |
|
93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
def load_and_plot_celltype(celltype_name, GET_CONFIG, cell):
|
95 |
celltype_id = cell_type_name_to_id[celltype_name]
|
96 |
cell = GETCellType(celltype_id, GET_CONFIG)
|
97 |
cell.celltype_name = celltype_name
|
|
|
98 |
gene_exp_fig = cell.plotly_gene_exp()
|
99 |
-
|
|
|
|
|
|
|
100 |
|
101 |
|
102 |
def plot_gene_regions(cell, gene_name, plotly=True):
|
@@ -139,10 +149,10 @@ if __name__ == "__main__":
|
|
139 |
seg_pairs = gr.State([""])
|
140 |
af = gr.State(None)
|
141 |
cell = gr.State(None)
|
|
|
142 |
|
143 |
gr.Markdown(
|
144 |
-
"""
|
145 |
-
# ๐ GET: A Foundation Model of Transcription Across Human Cell Types ๐
|
146 |
|
147 |
Here we introduce GET, an innovative computational model aimed at understanding transcriptional regulation across 235 human fetal and adult cell types.
|
148 |
Built solely on chromatin accessibility and sequence data, GET exhibits unparalleled generalizability and accuracy in predicting gene expression, even in previously unstudied cell types.
|
@@ -154,10 +164,10 @@ Overall, GET serves as a robust, generalizable framework for understanding cell
|
|
154 |
|
155 |
Dive deep into our live demo and experience a revolution in cellular transcription like never before. Here's what you can explore:
|
156 |
|
157 |
-
๐ Prediction Performance: Choose your cell type and be amazed as we unveil a vivid plot comparing observed versus forecasted gene expression levels.
|
158 |
-
๐งฌ Cell-type Specific Regulatory Insights: Just pick a gene, and voilร ! Revel in intricate plots revealing the cell-type specific regulatory landscapes and motifs.
|
159 |
-
๐ Motif Correlation & Causal Subnetworks: Engage with our intuitive heatmap to witness motif correlations. Go further - choose a motif, define your subnetwork preference, set an effect size threshold, and behold the magic unfold!
|
160 |
-
๐ฌ Structural Atlas of Interactions: Step into the realm of transcription factor pairs. Experience heatmaps, pLDDT metrics, and more. And guess what? You can even download the PDB file for select segment pairs!
|
161 |
|
162 |
Stay tuned! We're set to dazzle you further as we launch our demo on Huggingface this week. Questions, thoughts, or moments of awe? Don't hesitate to reach out!
|
163 |
|
@@ -179,17 +189,29 @@ This section enables you to select different cell types and generates a plot tha
|
|
179 |
)
|
180 |
celltype_btn = gr.Button(value="Load & plot gene expression")
|
181 |
gene_exp_plot = gr.Plot(label="Gene expression prediction vs observation")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
# Right column: Plot gene motifs
|
184 |
with gr.Column():
|
185 |
gr.Markdown(
|
186 |
"""
|
187 |
-
|
188 |
|
189 |
In this section, you can choose a specific gene and access visualizations of its cell-type specific regulatory regions and motifs that promote gene expression. When you hover over the highlighted regions (the top 10%), you'll be able to view information about the motifs present in those regions and their corresponding scores. This feature allows for a detailed exploration of the regulatory elements influencing the expression of the selected gene.
|
190 |
"""
|
191 |
)
|
192 |
-
gene_name_for_region = gr.
|
193 |
label="Get important regions or motifs for gene:", value="BCL11A"
|
194 |
)
|
195 |
with gr.Row() as row:
|
@@ -258,14 +280,7 @@ You can download specific segment pair PDB files by clicking 'Get PDB.'
|
|
258 |
"""
|
259 |
)
|
260 |
|
261 |
-
|
262 |
-
with gr.Column():
|
263 |
-
protein1_plddt = gr.Plot(label="Protein 1 pLDDT")
|
264 |
-
interact_plddt1 = gr.Plot(label="Interact pLDDT 1")
|
265 |
-
with gr.Column():
|
266 |
-
protein2_plddt = gr.Plot(label="Protein 2 pLDDT")
|
267 |
-
interact_plddt2 = gr.Plot(label="Interact pLDDT 2")
|
268 |
-
|
269 |
with gr.Row() as row:
|
270 |
with gr.Column():
|
271 |
tf_pairs = gr.Dropdown(label="TF pair", choices=gene_pairs)
|
@@ -273,11 +288,19 @@ You can download specific segment pair PDB files by clicking 'Get PDB.'
|
|
273 |
heatmap = gr.Plot(label="Heatmap")
|
274 |
|
275 |
with gr.Column():
|
276 |
-
segpair = gr.Dropdown(label="Seg pair"
|
277 |
segpair_btn = gr.Button(value="Get PDB")
|
278 |
pdb_html = gr.HTML(label="PDB HTML")
|
279 |
pdb_file = gr.File(label="Download PDB")
|
280 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
tf_pairs_btn.click(
|
282 |
visualize_AF2,
|
283 |
inputs=[tf_pairs, af],
|
@@ -297,7 +320,12 @@ You can download specific segment pair PDB files by clicking 'Get PDB.'
|
|
297 |
celltype_btn.click(
|
298 |
load_and_plot_celltype,
|
299 |
inputs=[celltype_name, gr.State(GET_CONFIG), cell],
|
300 |
-
outputs=[gene_exp_plot, cell],
|
|
|
|
|
|
|
|
|
|
|
301 |
)
|
302 |
region_plot_btn.click(
|
303 |
plot_gene_regions,
|
|
|
71 |
gr.ErrorText("No such gene pair")
|
72 |
|
73 |
a = AFPairseg(strcture_dir, fasta_dir)
|
74 |
+
# segpair.choices = list(a.pairs_data.keys())
|
75 |
fig1, ax1 = a.plot_plddt_gene1()
|
76 |
fig2, ax2 = a.plot_plddt_gene2()
|
77 |
fig3, ax3 = a.protein1.plot_plddt()
|
|
|
91 |
return gr.Dropdown.update(choices=x, label=label)
|
92 |
|
93 |
|
94 |
+
def filter_gene_records(cell, str):
|
95 |
+
if str == '':
|
96 |
+
return cell.gene_annot.groupby('gene_name')[['pred', 'obs', 'accessibility']].mean().reset_index().head(5), cell
|
97 |
+
df = cell.gene_annot.query(f"gene_name == '{str}'").groupby('gene_name')[['pred', 'obs', 'accessibility']].mean().reset_index().head(5)
|
98 |
+
return df, cell
|
99 |
+
|
100 |
def load_and_plot_celltype(celltype_name, GET_CONFIG, cell):
|
101 |
celltype_id = cell_type_name_to_id[celltype_name]
|
102 |
cell = GETCellType(celltype_id, GET_CONFIG)
|
103 |
cell.celltype_name = celltype_name
|
104 |
+
# gene_name.choices = sorted(gene_exp_table.gene_name.unique()
|
105 |
gene_exp_fig = cell.plotly_gene_exp()
|
106 |
+
gene_exp_table = cell.gene_annot.groupby('gene_name')[['pred', 'obs', 'accessibility']].mean().reset_index().head(5)
|
107 |
+
new_gene_dropdown = update_dropdown(sorted(cell.gene_annot.gene_name.unique()), "Gene name")
|
108 |
+
return gene_exp_fig, gene_exp_table, new_gene_dropdown, new_gene_dropdown, cell
|
109 |
+
|
110 |
|
111 |
|
112 |
def plot_gene_regions(cell, gene_name, plotly=True):
|
|
|
149 |
seg_pairs = gr.State([""])
|
150 |
af = gr.State(None)
|
151 |
cell = gr.State(None)
|
152 |
+
gene_names = gr.State([""])
|
153 |
|
154 |
gr.Markdown(
|
155 |
+
"""# ๐ GET: A Foundation Model of Transcription Across Human Cell Types ๐
|
|
|
156 |
|
157 |
Here we introduce GET, an innovative computational model aimed at understanding transcriptional regulation across 235 human fetal and adult cell types.
|
158 |
Built solely on chromatin accessibility and sequence data, GET exhibits unparalleled generalizability and accuracy in predicting gene expression, even in previously unstudied cell types.
|
|
|
164 |
|
165 |
Dive deep into our live demo and experience a revolution in cellular transcription like never before. Here's what you can explore:
|
166 |
|
167 |
+
- ๐ Prediction Performance: Choose your cell type and be amazed as we unveil a vivid plot comparing observed versus forecasted gene expression levels.
|
168 |
+
- ๐งฌ Cell-type Specific Regulatory Insights: Just pick a gene, and voilร ! Revel in intricate plots revealing the cell-type specific regulatory landscapes and motifs.
|
169 |
+
- ๐ Motif Correlation & Causal Subnetworks: Engage with our intuitive heatmap to witness motif correlations. Go further - choose a motif, define your subnetwork preference, set an effect size threshold, and behold the magic unfold!
|
170 |
+
- ๐ฌ Structural Atlas of Interactions: Step into the realm of transcription factor pairs. Experience heatmaps, pLDDT metrics, and more. And guess what? You can even download the PDB file for select segment pairs!
|
171 |
|
172 |
Stay tuned! We're set to dazzle you further as we launch our demo on Huggingface this week. Questions, thoughts, or moments of awe? Don't hesitate to reach out!
|
173 |
|
|
|
189 |
)
|
190 |
celltype_btn = gr.Button(value="Load & plot gene expression")
|
191 |
gene_exp_plot = gr.Plot(label="Gene expression prediction vs observation")
|
192 |
+
with gr.Row() as row:
|
193 |
+
gene_name = gr.Dropdown(value="BCL11A")
|
194 |
+
# Button to trigger the filter action
|
195 |
+
filter_btn = gr.Button("Filter table by gene name")
|
196 |
+
gene_exp_table = gr.Dataframe(
|
197 |
+
datatype=["str", "number", "number", "number"],
|
198 |
+
row_count=5,
|
199 |
+
col_count=(4, "fixed"),
|
200 |
+
label='Gene expression table',
|
201 |
+
max_rows=5
|
202 |
+
)
|
203 |
+
|
204 |
|
205 |
# Right column: Plot gene motifs
|
206 |
with gr.Column():
|
207 |
gr.Markdown(
|
208 |
"""
|
209 |
+
### ๐งฌ Cell-type specific regulatory inference
|
210 |
|
211 |
In this section, you can choose a specific gene and access visualizations of its cell-type specific regulatory regions and motifs that promote gene expression. When you hover over the highlighted regions (the top 10%), you'll be able to view information about the motifs present in those regions and their corresponding scores. This feature allows for a detailed exploration of the regulatory elements influencing the expression of the selected gene.
|
212 |
"""
|
213 |
)
|
214 |
+
gene_name_for_region = gr.Dropdown(
|
215 |
label="Get important regions or motifs for gene:", value="BCL11A"
|
216 |
)
|
217 |
with gr.Row() as row:
|
|
|
280 |
"""
|
281 |
)
|
282 |
|
283 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
with gr.Row() as row:
|
285 |
with gr.Column():
|
286 |
tf_pairs = gr.Dropdown(label="TF pair", choices=gene_pairs)
|
|
|
288 |
heatmap = gr.Plot(label="Heatmap")
|
289 |
|
290 |
with gr.Column():
|
291 |
+
segpair = gr.Dropdown(label="Seg pair")
|
292 |
segpair_btn = gr.Button(value="Get PDB")
|
293 |
pdb_html = gr.HTML(label="PDB HTML")
|
294 |
pdb_file = gr.File(label="Download PDB")
|
295 |
+
|
296 |
+
with gr.Row() as row:
|
297 |
+
with gr.Column():
|
298 |
+
protein1_plddt = gr.Plot(label="Protein 1 pLDDT")
|
299 |
+
interact_plddt1 = gr.Plot(label="Interact pLDDT 1")
|
300 |
+
with gr.Column():
|
301 |
+
protein2_plddt = gr.Plot(label="Protein 2 pLDDT")
|
302 |
+
interact_plddt2 = gr.Plot(label="Interact pLDDT 2")
|
303 |
+
|
304 |
tf_pairs_btn.click(
|
305 |
visualize_AF2,
|
306 |
inputs=[tf_pairs, af],
|
|
|
320 |
celltype_btn.click(
|
321 |
load_and_plot_celltype,
|
322 |
inputs=[celltype_name, gr.State(GET_CONFIG), cell],
|
323 |
+
outputs=[gene_exp_plot, gene_exp_table, gene_name, gene_name_for_region, cell],
|
324 |
+
)
|
325 |
+
filter_btn.click(
|
326 |
+
filter_gene_records,
|
327 |
+
inputs=[cell, gene_name],
|
328 |
+
outputs=[gene_exp_table, cell],
|
329 |
)
|
330 |
region_plot_btn.click(
|
331 |
plot_gene_regions,
|