import torch import torchvision from torch import nn def create_effnetb2_model(num_classes: int): """Creates an EfficientNetB2 model.""" # Create model and transforms weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT transforms = weights.transforms() model = torchvision.models.efficientnet_b2(weights=weights) # Freeze layers for param in model.parameters(): param.requires_grad = False # Change classifier model.classifier = nn.Sequential( nn.Dropout(p=0.3, inplace=True), nn.Linear(in_features=1408, out_features=num_classes) ) return model, transforms