import gradio as gr import os import torch from model import create_effnetb2_model from timeit import default_timer as timer # Setup class names with open("class_names.txt", 'r') as f: classes = [name.strip() for name in f] # Model and transforms model, transform = create_effnetb2_model( num_classes=len(classes) ) model.load_state_dict( torch.load( f="model_v3.pth", map_location=torch.device("cpu") ) ) # Predict function def predict(img): start_time = timer() # Transform the target image and add a batch dimension img = transform(img).unsqueeze(0) model.eval() with torch.inference_mode(): predictions = torch.softmax(model(img), dim=1) # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio) pred_labels_and_probs = {classes[i]: float(predictions[0][i]) for i in range(len(classes))} pred_time = round(timer() - start_time, 4) return pred_labels_and_probs, pred_time example_list = [["examples/" + example] for example in os.listdir("examples")] # Gradio interface title = "Weather image classification ⛅❄☔" description = "Classifies the weather conditions from an image, capable of distinguishing among 12 distinct classes." article = "See the code on [GitHub](https://github.com/georgescutelnicu/Weather-Image-Classification)." demo = gr.Interface(fn=predict, inputs=gr.Image(type="pil"), outputs=[gr.Label(num_top_classes=1, label="Predictions"), gr.Number(label="Prediction time (s)")], examples=example_list, title=title, description=description, article=article) demo.launch(debug=False, share=False)