# Copyright (c) Open-MMLab. All rights reserved.
import io
import os
import os.path as osp
import pkgutil
import time
import warnings
from collections import OrderedDict
from importlib import import_module
from tempfile import TemporaryDirectory

import torch
import torchvision
from torch.optim import Optimizer
from torch.utils import model_zoo
from torch.nn import functional as F

import mmcv
from mmcv.fileio import FileClient
from mmcv.fileio import load as load_file
from mmcv.parallel import is_module_wrapper
from mmcv.utils import mkdir_or_exist
from mmcv.runner import get_dist_info

from scipy import interpolate
import numpy as np
import math
import re
import copy

ENV_MMCV_HOME = 'MMCV_HOME'
ENV_XDG_CACHE_HOME = 'XDG_CACHE_HOME'
DEFAULT_CACHE_DIR = '~/.cache'


def _get_mmcv_home():
    mmcv_home = os.path.expanduser(
        os.getenv(
            ENV_MMCV_HOME,
            os.path.join(
                os.getenv(ENV_XDG_CACHE_HOME, DEFAULT_CACHE_DIR), 'mmcv')))

    mkdir_or_exist(mmcv_home)
    return mmcv_home


def load_state_dict(module, state_dict, strict=False, logger=None):
    """Load state_dict to a module.

    This method is modified from :meth:`torch.nn.Module.load_state_dict`.
    Default value for ``strict`` is set to ``False`` and the message for
    param mismatch will be shown even if strict is False.

    Args:
        module (Module): Module that receives the state_dict.
        state_dict (OrderedDict): Weights.
        strict (bool): whether to strictly enforce that the keys
            in :attr:`state_dict` match the keys returned by this module's
            :meth:`~torch.nn.Module.state_dict` function. Default: ``False``.
        logger (:obj:`logging.Logger`, optional): Logger to log the error
            message. If not specified, print function will be used.
    """
    unexpected_keys = []
    all_missing_keys = []
    err_msg = []

    metadata = getattr(state_dict, '_metadata', None)
    state_dict = state_dict.copy()
    if metadata is not None:
        state_dict._metadata = metadata

    # use _load_from_state_dict to enable checkpoint version control
    def load(module, prefix=''):
        # recursively check parallel module in case that the model has a
        # complicated structure, e.g., nn.Module(nn.Module(DDP))
        if is_module_wrapper(module):
            module = module.module
        local_metadata = {} if metadata is None else metadata.get(
            prefix[:-1], {})
        module._load_from_state_dict(state_dict, prefix, local_metadata, True,
                                     all_missing_keys, unexpected_keys,
                                     err_msg)
        for name, child in module._modules.items():
            if child is not None:
                load(child, prefix + name + '.')

    load(module)
    load = None  # break load->load reference cycle

    # ignore "num_batches_tracked" of BN layers
    missing_keys = [
        key for key in all_missing_keys if 'num_batches_tracked' not in key
    ]

    if unexpected_keys:
        err_msg.append('unexpected key in source '
                       f'state_dict: {", ".join(unexpected_keys)}\n')
    if missing_keys:
        err_msg.append(
            f'missing keys in source state_dict: {", ".join(missing_keys)}\n')

    rank, _ = get_dist_info()
    if len(err_msg) > 0 and rank == 0:
        err_msg.insert(
            0, 'The model and loaded state dict do not match exactly\n')
        err_msg = '\n'.join(err_msg)
        if strict:
            raise RuntimeError(err_msg)
        elif logger is not None:
            logger.warning(err_msg)
        else:
            print(err_msg)


def load_url_dist(url, model_dir=None, map_location="cpu"):
    """In distributed setting, this function only download checkpoint at local
    rank 0."""
    rank, world_size = get_dist_info()
    rank = int(os.environ.get('LOCAL_RANK', rank))
    if rank == 0:
        checkpoint = model_zoo.load_url(url, model_dir=model_dir, map_location=map_location)
    if world_size > 1:
        torch.distributed.barrier()
        if rank > 0:
            checkpoint = model_zoo.load_url(url, model_dir=model_dir, map_location=map_location)
    return checkpoint


def load_pavimodel_dist(model_path, map_location=None):
    """In distributed setting, this function only download checkpoint at local
    rank 0."""
    try:
        from pavi import modelcloud
    except ImportError:
        raise ImportError(
            'Please install pavi to load checkpoint from modelcloud.')
    rank, world_size = get_dist_info()
    rank = int(os.environ.get('LOCAL_RANK', rank))
    if rank == 0:
        model = modelcloud.get(model_path)
        with TemporaryDirectory() as tmp_dir:
            downloaded_file = osp.join(tmp_dir, model.name)
            model.download(downloaded_file)
            checkpoint = torch.load(downloaded_file, map_location=map_location)
    if world_size > 1:
        torch.distributed.barrier()
        if rank > 0:
            model = modelcloud.get(model_path)
            with TemporaryDirectory() as tmp_dir:
                downloaded_file = osp.join(tmp_dir, model.name)
                model.download(downloaded_file)
                checkpoint = torch.load(
                    downloaded_file, map_location=map_location)
    return checkpoint


def load_fileclient_dist(filename, backend, map_location):
    """In distributed setting, this function only download checkpoint at local
    rank 0."""
    rank, world_size = get_dist_info()
    rank = int(os.environ.get('LOCAL_RANK', rank))
    allowed_backends = ['ceph']
    if backend not in allowed_backends:
        raise ValueError(f'Load from Backend {backend} is not supported.')
    if rank == 0:
        fileclient = FileClient(backend=backend)
        buffer = io.BytesIO(fileclient.get(filename))
        checkpoint = torch.load(buffer, map_location=map_location)
    if world_size > 1:
        torch.distributed.barrier()
        if rank > 0:
            fileclient = FileClient(backend=backend)
            buffer = io.BytesIO(fileclient.get(filename))
            checkpoint = torch.load(buffer, map_location=map_location)
    return checkpoint


def get_torchvision_models():
    model_urls = dict()
    for _, name, ispkg in pkgutil.walk_packages(torchvision.models.__path__):
        if ispkg:
            continue
        _zoo = import_module(f'torchvision.models.{name}')
        if hasattr(_zoo, 'model_urls'):
            _urls = getattr(_zoo, 'model_urls')
            model_urls.update(_urls)
    return model_urls


def get_external_models():
    mmcv_home = _get_mmcv_home()
    default_json_path = osp.join(mmcv.__path__[0], 'model_zoo/open_mmlab.json')
    default_urls = load_file(default_json_path)
    assert isinstance(default_urls, dict)
    external_json_path = osp.join(mmcv_home, 'open_mmlab.json')
    if osp.exists(external_json_path):
        external_urls = load_file(external_json_path)
        assert isinstance(external_urls, dict)
        default_urls.update(external_urls)

    return default_urls


def get_mmcls_models():
    mmcls_json_path = osp.join(mmcv.__path__[0], 'model_zoo/mmcls.json')
    mmcls_urls = load_file(mmcls_json_path)

    return mmcls_urls


def get_deprecated_model_names():
    deprecate_json_path = osp.join(mmcv.__path__[0],
                                   'model_zoo/deprecated.json')
    deprecate_urls = load_file(deprecate_json_path)
    assert isinstance(deprecate_urls, dict)

    return deprecate_urls


def _process_mmcls_checkpoint(checkpoint):
    state_dict = checkpoint['state_dict']
    new_state_dict = OrderedDict()
    for k, v in state_dict.items():
        if k.startswith('backbone.'):
            new_state_dict[k[9:]] = v
    new_checkpoint = dict(state_dict=new_state_dict)

    return new_checkpoint


def _load_checkpoint(filename, map_location=None):
    """Load checkpoint from somewhere (modelzoo, file, url).

    Args:
        filename (str): Accept local filepath, URL, ``torchvision://xxx``,
            ``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for
            details.
        map_location (str | None): Same as :func:`torch.load`. Default: None.

    Returns:
        dict | OrderedDict: The loaded checkpoint. It can be either an
            OrderedDict storing model weights or a dict containing other
            information, which depends on the checkpoint.
    """
    if filename.startswith('modelzoo://'):
        warnings.warn('The URL scheme of "modelzoo://" is deprecated, please '
                      'use "torchvision://" instead')
        model_urls = get_torchvision_models()
        model_name = filename[11:]
        checkpoint = load_url_dist(model_urls[model_name])
    elif filename.startswith('torchvision://'):
        model_urls = get_torchvision_models()
        model_name = filename[14:]
        checkpoint = load_url_dist(model_urls[model_name])
    elif filename.startswith('open-mmlab://'):
        model_urls = get_external_models()
        model_name = filename[13:]
        deprecated_urls = get_deprecated_model_names()
        if model_name in deprecated_urls:
            warnings.warn(f'open-mmlab://{model_name} is deprecated in favor '
                          f'of open-mmlab://{deprecated_urls[model_name]}')
            model_name = deprecated_urls[model_name]
        model_url = model_urls[model_name]
        # check if is url
        if model_url.startswith(('http://', 'https://')):
            checkpoint = load_url_dist(model_url)
        else:
            filename = osp.join(_get_mmcv_home(), model_url)
            if not osp.isfile(filename):
                raise IOError(f'{filename} is not a checkpoint file')
            checkpoint = torch.load(filename, map_location=map_location)
    elif filename.startswith('mmcls://'):
        model_urls = get_mmcls_models()
        model_name = filename[8:]
        checkpoint = load_url_dist(model_urls[model_name])
        checkpoint = _process_mmcls_checkpoint(checkpoint)
    elif filename.startswith(('http://', 'https://')):
        checkpoint = load_url_dist(filename)
    elif filename.startswith('pavi://'):
        model_path = filename[7:]
        checkpoint = load_pavimodel_dist(model_path, map_location=map_location)
    elif filename.startswith('s3://'):
        checkpoint = load_fileclient_dist(
            filename, backend='ceph', map_location=map_location)
    else:
        if not osp.isfile(filename):
            raise IOError(f'{filename} is not a checkpoint file')
        checkpoint = torch.load(filename, map_location=map_location)
    return checkpoint


def cosine_scheduler(base_value, final_value, epochs, niter_per_ep, warmup_epochs=0,
                     start_warmup_value=0, warmup_steps=-1):
    warmup_schedule = np.array([])
    warmup_iters = warmup_epochs * niter_per_ep
    if warmup_steps > 0:
        warmup_iters = warmup_steps
    print("Set warmup steps = %d" % warmup_iters)
    if warmup_epochs > 0:
        warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters)

    iters = np.arange(epochs * niter_per_ep - warmup_iters)
    schedule = np.array(
        [final_value + 0.5 * (base_value - final_value) * (1 + math.cos(math.pi * i / (len(iters)))) for i in iters])

    schedule = np.concatenate((warmup_schedule, schedule))

    assert len(schedule) == epochs * niter_per_ep
    return schedule


def load_checkpoint(model,
                    filename,
                    map_location='cpu',
                    strict=False,
                    logger=None,
                    patch_padding='pad',
                    part_features=None
                    ):
    """Load checkpoint from a file or URI.

    Args:
        model (Module): Module to load checkpoint.
        filename (str): Accept local filepath, URL, ``torchvision://xxx``,
            ``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for
            details.
        map_location (str): Same as :func:`torch.load`.
        strict (bool): Whether to allow different params for the model and
            checkpoint.
        logger (:mod:`logging.Logger` or None): The logger for error message.
        patch_padding (str): 'pad' or 'bilinear' or 'bicubic', used for interpolate patch embed from 14x14 to 16x16

    Returns:
        dict or OrderedDict: The loaded checkpoint.
    """
    checkpoint = _load_checkpoint(filename, map_location)
    # OrderedDict is a subclass of dict
    if not isinstance(checkpoint, dict):
        raise RuntimeError(
            f'No state_dict found in checkpoint file {filename}')
    # get state_dict from checkpoint
    if 'state_dict' in checkpoint:
        state_dict = checkpoint['state_dict']
    elif 'model' in checkpoint:
        state_dict = checkpoint['model']
    elif 'module' in checkpoint:
        state_dict = checkpoint['module']
    else:
        state_dict = checkpoint
    # strip prefix of state_dict
    if list(state_dict.keys())[0].startswith('module.'):
        state_dict = {k[7:]: v for k, v in state_dict.items()}

    # for MoBY, load model of online branch
    if sorted(list(state_dict.keys()))[0].startswith('encoder'):
        state_dict = {k.replace('encoder.', ''): v for k, v in state_dict.items() if k.startswith('encoder.')}

    rank, _ = get_dist_info()

    if 'patch_embed.proj.weight' in state_dict:
        proj_weight = state_dict['patch_embed.proj.weight']
        orig_size = proj_weight.shape[2:]
        current_size = model.patch_embed.proj.weight.shape[2:]
        padding_size = current_size[0] - orig_size[0]
        padding_l = padding_size // 2
        padding_r = padding_size - padding_l
        if orig_size != current_size:
            if 'pad' in patch_padding:
                proj_weight = torch.nn.functional.pad(proj_weight, (padding_l, padding_r, padding_l, padding_r))
            elif 'bilinear' in patch_padding:
                proj_weight = torch.nn.functional.interpolate(proj_weight, size=current_size, mode='bilinear', align_corners=False)
            elif 'bicubic' in patch_padding:
                proj_weight = torch.nn.functional.interpolate(proj_weight, size=current_size, mode='bicubic', align_corners=False)
            state_dict['patch_embed.proj.weight'] = proj_weight

    if 'pos_embed' in state_dict:
        pos_embed_checkpoint = state_dict['pos_embed']
        embedding_size = pos_embed_checkpoint.shape[-1]
        H, W = model.patch_embed.patch_shape
        num_patches = model.patch_embed.num_patches
        num_extra_tokens = model.pos_embed.shape[-2] - num_patches
        # height (== width) for the checkpoint position embedding
        orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
        if rank == 0:
            print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, H, W))
        extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
        # only the position tokens are interpolated
        pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
        pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
        pos_tokens = torch.nn.functional.interpolate(
            pos_tokens, size=(H, W), mode='bicubic', align_corners=False)
        pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
        new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
        state_dict['pos_embed'] = new_pos_embed
    
    new_state_dict = copy.deepcopy(state_dict)
    if part_features is not None:
        current_keys = list(model.state_dict().keys())
        for key in current_keys:
            if "mlp.experts" in key:
                source_key = re.sub(r'experts.\d+.', 'fc2.', key)
                new_state_dict[key] = state_dict[source_key][-part_features:]
            elif 'fc2' in key:
                new_state_dict[key] = state_dict[key][:-part_features]

    # load state_dict
    load_state_dict(model, new_state_dict, strict, logger)
    return checkpoint


def weights_to_cpu(state_dict):
    """Copy a model state_dict to cpu.

    Args:
        state_dict (OrderedDict): Model weights on GPU.

    Returns:
        OrderedDict: Model weights on GPU.
    """
    state_dict_cpu = OrderedDict()
    for key, val in state_dict.items():
        state_dict_cpu[key] = val.cpu()
    return state_dict_cpu


def _save_to_state_dict(module, destination, prefix, keep_vars):
    """Saves module state to `destination` dictionary.

    This method is modified from :meth:`torch.nn.Module._save_to_state_dict`.

    Args:
        module (nn.Module): The module to generate state_dict.
        destination (dict): A dict where state will be stored.
        prefix (str): The prefix for parameters and buffers used in this
            module.
    """
    for name, param in module._parameters.items():
        if param is not None:
            destination[prefix + name] = param if keep_vars else param.detach()
    for name, buf in module._buffers.items():
        # remove check of _non_persistent_buffers_set to allow nn.BatchNorm2d
        if buf is not None:
            destination[prefix + name] = buf if keep_vars else buf.detach()


def get_state_dict(module, destination=None, prefix='', keep_vars=False):
    """Returns a dictionary containing a whole state of the module.

    Both parameters and persistent buffers (e.g. running averages) are
    included. Keys are corresponding parameter and buffer names.

    This method is modified from :meth:`torch.nn.Module.state_dict` to
    recursively check parallel module in case that the model has a complicated
    structure, e.g., nn.Module(nn.Module(DDP)).

    Args:
        module (nn.Module): The module to generate state_dict.
        destination (OrderedDict): Returned dict for the state of the
            module.
        prefix (str): Prefix of the key.
        keep_vars (bool): Whether to keep the variable property of the
            parameters. Default: False.

    Returns:
        dict: A dictionary containing a whole state of the module.
    """
    # recursively check parallel module in case that the model has a
    # complicated structure, e.g., nn.Module(nn.Module(DDP))
    if is_module_wrapper(module):
        module = module.module

    # below is the same as torch.nn.Module.state_dict()
    if destination is None:
        destination = OrderedDict()
        destination._metadata = OrderedDict()
    destination._metadata[prefix[:-1]] = local_metadata = dict(
        version=module._version)
    _save_to_state_dict(module, destination, prefix, keep_vars)
    for name, child in module._modules.items():
        if child is not None:
            get_state_dict(
                child, destination, prefix + name + '.', keep_vars=keep_vars)
    for hook in module._state_dict_hooks.values():
        hook_result = hook(module, destination, prefix, local_metadata)
        if hook_result is not None:
            destination = hook_result
    return destination


def save_checkpoint(model, filename, optimizer=None, meta=None):
    """Save checkpoint to file.

    The checkpoint will have 3 fields: ``meta``, ``state_dict`` and
    ``optimizer``. By default ``meta`` will contain version and time info.

    Args:
        model (Module): Module whose params are to be saved.
        filename (str): Checkpoint filename.
        optimizer (:obj:`Optimizer`, optional): Optimizer to be saved.
        meta (dict, optional): Metadata to be saved in checkpoint.
    """
    if meta is None:
        meta = {}
    elif not isinstance(meta, dict):
        raise TypeError(f'meta must be a dict or None, but got {type(meta)}')
    meta.update(mmcv_version=mmcv.__version__, time=time.asctime())

    if is_module_wrapper(model):
        model = model.module

    if hasattr(model, 'CLASSES') and model.CLASSES is not None:
        # save class name to the meta
        meta.update(CLASSES=model.CLASSES)

    checkpoint = {
        'meta': meta,
        'state_dict': weights_to_cpu(get_state_dict(model))
    }
    # save optimizer state dict in the checkpoint
    if isinstance(optimizer, Optimizer):
        checkpoint['optimizer'] = optimizer.state_dict()
    elif isinstance(optimizer, dict):
        checkpoint['optimizer'] = {}
        for name, optim in optimizer.items():
            checkpoint['optimizer'][name] = optim.state_dict()

    if filename.startswith('pavi://'):
        try:
            from pavi import modelcloud
            from pavi.exception import NodeNotFoundError
        except ImportError:
            raise ImportError(
                'Please install pavi to load checkpoint from modelcloud.')
        model_path = filename[7:]
        root = modelcloud.Folder()
        model_dir, model_name = osp.split(model_path)
        try:
            model = modelcloud.get(model_dir)
        except NodeNotFoundError:
            model = root.create_training_model(model_dir)
        with TemporaryDirectory() as tmp_dir:
            checkpoint_file = osp.join(tmp_dir, model_name)
            with open(checkpoint_file, 'wb') as f:
                torch.save(checkpoint, f)
                f.flush()
            model.create_file(checkpoint_file, name=model_name)
    else:
        mmcv.mkdir_or_exist(osp.dirname(filename))
        # immediately flush buffer
        with open(filename, 'wb') as f:
            torch.save(checkpoint, f)
            f.flush()