import argparse import os from pathlib import Path import tempfile import sys import cv2 import gradio as gr import numpy as np import torch from PIL import Image # print file path print(os.path.abspath(__file__)) os.environ["PYOPENGL_PLATFORM"] = "egl" os.environ["MESA_GL_VERSION_OVERRIDE"] = "4.1" os.system('pip install /home/user/app/pyrender') sys.path.append('/home/user/app/pyrender') from hamer.configs import get_config from hamer.datasets.vitdet_dataset import (DEFAULT_MEAN, DEFAULT_STD, ViTDetDataset) from hamer.models import HAMER from hamer.utils import recursive_to from hamer.utils.renderer import Renderer, cam_crop_to_full try: import detectron2 except: import os os.system('pip install --upgrade pip') os.system('pip install git+https://github.com/facebookresearch/detectron2.git@b7ff9466d174fbb7061ff6d3773cd9c372a8e56f') #try: # from vitpose_model import ViTPoseModel #except: # os.system('pip install -v -e /home/user/app/vendor/ViTPose') # from vitpose_model import ViTPoseModel from vitpose_model import ViTPoseModel OUT_FOLDER = 'demo_out' os.makedirs(OUT_FOLDER, exist_ok=True) # Setup HaMeR model LIGHT_BLUE=(0.65098039, 0.74117647, 0.85882353) DEFAULT_CHECKPOINT='_DATA/hamer_ckpts/checkpoints/hamer.ckpt' device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') model_cfg = str(Path(DEFAULT_CHECKPOINT).parent.parent / 'model_config.yaml') model_cfg = get_config(model_cfg) # Override some config values, to crop bbox correctly if (model_cfg.MODEL.BACKBONE.TYPE == 'vit') and ('BBOX_SHAPE' not in model_cfg.MODEL): model_cfg.defrost() assert model_cfg.MODEL.IMAGE_SIZE == 256, f"MODEL.IMAGE_SIZE ({model_cfg.MODEL.IMAGE_SIZE}) should be 256 for ViT backbone" model_cfg.MODEL.BBOX_SHAPE = [192,256] model_cfg.freeze() model = HAMER.load_from_checkpoint(DEFAULT_CHECKPOINT, strict=False, cfg=model_cfg).to(device) model.eval() # Load detector from detectron2.config import LazyConfig from hamer.utils.utils_detectron2 import DefaultPredictor_Lazy detectron2_cfg = LazyConfig.load(f"vendor/detectron2/projects/ViTDet/configs/COCO/cascade_mask_rcnn_vitdet_h_75ep.py") detectron2_cfg.train.init_checkpoint = "https://dl.fbaipublicfiles.com/detectron2/ViTDet/COCO/cascade_mask_rcnn_vitdet_h/f328730692/model_final_f05665.pkl" for i in range(3): detectron2_cfg.model.roi_heads.box_predictors[i].test_score_thresh = 0.25 detector = DefaultPredictor_Lazy(detectron2_cfg) # Setup the renderer renderer = Renderer(model_cfg, faces=model.mano.faces) # keypoint detector cpm = ViTPoseModel(device) import numpy as np def infer(in_pil_img, in_threshold=0.8, out_pil_img=None): open_cv_image = np.array(in_pil_img) # Convert RGB to BGR open_cv_image = open_cv_image[:, :, ::-1].copy() print("EEEEE", open_cv_image.shape) det_out = detector(open_cv_image) det_instances = det_out['instances'] valid_idx = (det_instances.pred_classes==0) & (det_instances.scores > in_threshold) pred_bboxes=det_instances.pred_boxes.tensor[valid_idx].cpu().numpy() pred_scores=det_instances.scores[valid_idx].cpu().numpy() # Detect human keypoints for each person vitposes_out = cpm.predict_pose( open_cv_image, [np.concatenate([pred_bboxes, pred_scores[:, None]], axis=1)], ) bboxes = [] is_right = [] # Use hands based on hand keypoint detections for vitposes in vitposes_out: left_hand_keyp = vitposes['keypoints'][-42:-21] right_hand_keyp = vitposes['keypoints'][-21:] # Rejecting not confident detections (this could be improved) keyp = left_hand_keyp valid = keyp[:,2] > 0.5 if sum(valid) > 3: bbox = [keyp[valid,0].min(), keyp[valid,1].min(), keyp[valid,0].max(), keyp[valid,1].max()] bboxes.append(bbox) is_right.append(0) keyp = right_hand_keyp valid = keyp[:,2] > 0.5 if sum(valid) > 3: bbox = [keyp[valid,0].min(), keyp[valid,1].min(), keyp[valid,0].max(), keyp[valid,1].max()] bboxes.append(bbox) is_right.append(1) if len(bboxes) == 0: return None, [] boxes = np.stack(bboxes) right = np.stack(is_right) # Run HaMeR on all detected humans dataset = ViTDetDataset(model_cfg, open_cv_image, boxes, right) dataloader = torch.utils.data.DataLoader(dataset, batch_size=8, shuffle=False, num_workers=0) all_verts = [] all_cam_t = [] all_right = [] all_mesh_paths = [] temp_name = next(tempfile._get_candidate_names()) for batch in dataloader: batch = recursive_to(batch, device) with torch.no_grad(): out = model(batch) multiplier = (2*batch['right']-1) pred_cam = out['pred_cam'] pred_cam[:,1] = multiplier*pred_cam[:,1] box_center = batch["box_center"].float() box_size = batch["box_size"].float() img_size = batch["img_size"].float() multiplier = (2*batch['right']-1) render_size = img_size scaled_focal_length = model_cfg.EXTRA.FOCAL_LENGTH / model_cfg.MODEL.IMAGE_SIZE * img_size.max() pred_cam_t = cam_crop_to_full(pred_cam, box_center, box_size, render_size, scaled_focal_length).detach().cpu().numpy() # Render the result batch_size = batch['img'].shape[0] for n in range(batch_size): # Get filename from path img_path # img_fn, _ = os.path.splitext(os.path.basename(img_path)) person_id = int(batch['personid'][n]) white_img = (torch.ones_like(batch['img'][n]).cpu() - DEFAULT_MEAN[:,None,None]/255) / (DEFAULT_STD[:,None,None]/255) input_patch = batch['img'][n].cpu() * (DEFAULT_STD[:,None,None]/255) + (DEFAULT_MEAN[:,None,None]/255) input_patch = input_patch.permute(1,2,0).numpy() verts = out['pred_vertices'][n].detach().cpu().numpy() is_right = batch['right'][n].cpu().numpy() verts[:,0] = (2*is_right-1)*verts[:,0] cam_t = pred_cam_t[n] all_verts.append(verts) all_cam_t.append(cam_t) all_right.append(is_right) # Save all meshes to disk # if args.save_mesh: if True: camera_translation = cam_t.copy() tmesh = renderer.vertices_to_trimesh(verts, camera_translation, LIGHT_BLUE, is_right=is_right) temp_path = os.path.join(f'{OUT_FOLDER}/{temp_name}_{person_id}.obj') tmesh.export(temp_path) all_mesh_paths.append(temp_path) # Render front view if len(all_verts) > 0: misc_args = dict( mesh_base_color=LIGHT_BLUE, scene_bg_color=(1, 1, 1), focal_length=scaled_focal_length, ) cam_view = renderer.render_rgba_multiple(all_verts, cam_t=all_cam_t, render_res=render_size[n], is_right=all_right, **misc_args) # Overlay image input_img = open_cv_image.astype(np.float32)[:,:,::-1]/255.0 input_img = np.concatenate([input_img, np.ones_like(input_img[:,:,:1])], axis=2) # Add alpha channel input_img_overlay = input_img[:,:,:3] * (1-cam_view[:,:,3:]) + cam_view[:,:,:3] * cam_view[:,:,3:] # convert to PIL image out_pil_img = Image.fromarray((input_img_overlay*255).astype(np.uint8)) return out_pil_img, all_mesh_paths else: return None, [] with gr.Blocks(title="HaMeR", css=".gradio-container") as demo: gr.HTML("""
HaMeR Demo
""") gr.HTML("""
You can drop an image at the top-left panel (or select one of the examples) and you will get the 3D reconstructions of the detected hands on the right. You can also download the .obj files for each hand reconstruction.
""") with gr.Row(): with gr.Column(): input_image = gr.Image(label="Input image", type="pil") with gr.Column(): output_image = gr.Image(label="Reconstructions", type="pil") output_meshes = gr.File(label="3D meshes") gr.HTML("""
""") with gr.Row(): threshold = gr.Slider(0, 1.0, value=0.6, label='Detection Threshold') send_btn = gr.Button("Infer") send_btn.click(fn=infer, inputs=[input_image, threshold], outputs=[output_image, output_meshes]) # with gr.Row(): example_images = gr.Examples([ ['/home/user/app/assets/test1.jpg'], ['/home/user/app/assets/test2.jpg'], ['/home/user/app/assets/test3.jpg'], ['/home/user/app/assets/test4.jpg'], ['/home/user/app/assets/test5.jpg'], ], inputs=[input_image, 0.6]) #demo.queue() demo.launch(debug=True) ### EOF ###