# Copyright (c) OpenMMLab. All rights reserved. import cv2 import numpy as np from mmpose.core.post_processing import (affine_transform, fliplr_joints, get_affine_transform, get_warp_matrix, warp_affine_joints) from mmpose.datasets.builder import PIPELINES @PIPELINES.register_module() class TopDownRandomFlip: """Data augmentation with random image flip. Required keys: 'img', 'joints_3d', 'joints_3d_visible', 'center' and 'ann_info'. Modifies key: 'img', 'joints_3d', 'joints_3d_visible', 'center' and 'flipped'. Args: flip (bool): Option to perform random flip. flip_prob (float): Probability of flip. """ def __init__(self, flip_prob=0.5): self.flip_prob = flip_prob def __call__(self, results): """Perform data augmentation with random image flip.""" img = results['img'] joints_3d = results['joints_3d'] joints_3d_visible = results['joints_3d_visible'] center = results['center'] # A flag indicating whether the image is flipped, # which can be used by child class. flipped = False if np.random.rand() <= self.flip_prob: flipped = True if not isinstance(img, list): img = img[:, ::-1, :] else: img = [i[:, ::-1, :] for i in img] if not isinstance(img, list): joints_3d, joints_3d_visible = fliplr_joints( joints_3d, joints_3d_visible, img.shape[1], results['ann_info']['flip_pairs']) center[0] = img.shape[1] - center[0] - 1 else: joints_3d, joints_3d_visible = fliplr_joints( joints_3d, joints_3d_visible, img[0].shape[1], results['ann_info']['flip_pairs']) center[0] = img[0].shape[1] - center[0] - 1 results['img'] = img results['joints_3d'] = joints_3d results['joints_3d_visible'] = joints_3d_visible results['center'] = center results['flipped'] = flipped return results @PIPELINES.register_module() class TopDownHalfBodyTransform: """Data augmentation with half-body transform. Keep only the upper body or the lower body at random. Required keys: 'joints_3d', 'joints_3d_visible', and 'ann_info'. Modifies key: 'scale' and 'center'. Args: num_joints_half_body (int): Threshold of performing half-body transform. If the body has fewer number of joints (< num_joints_half_body), ignore this step. prob_half_body (float): Probability of half-body transform. """ def __init__(self, num_joints_half_body=8, prob_half_body=0.3): self.num_joints_half_body = num_joints_half_body self.prob_half_body = prob_half_body @staticmethod def half_body_transform(cfg, joints_3d, joints_3d_visible): """Get center&scale for half-body transform.""" upper_joints = [] lower_joints = [] for joint_id in range(cfg['num_joints']): if joints_3d_visible[joint_id][0] > 0: if joint_id in cfg['upper_body_ids']: upper_joints.append(joints_3d[joint_id]) else: lower_joints.append(joints_3d[joint_id]) if np.random.randn() < 0.5 and len(upper_joints) > 2: selected_joints = upper_joints elif len(lower_joints) > 2: selected_joints = lower_joints else: selected_joints = upper_joints if len(selected_joints) < 2: return None, None selected_joints = np.array(selected_joints, dtype=np.float32) center = selected_joints.mean(axis=0)[:2] left_top = np.amin(selected_joints, axis=0) right_bottom = np.amax(selected_joints, axis=0) w = right_bottom[0] - left_top[0] h = right_bottom[1] - left_top[1] aspect_ratio = cfg['image_size'][0] / cfg['image_size'][1] if w > aspect_ratio * h: h = w * 1.0 / aspect_ratio elif w < aspect_ratio * h: w = h * aspect_ratio scale = np.array([w / 200.0, h / 200.0], dtype=np.float32) scale = scale * 1.5 return center, scale def __call__(self, results): """Perform data augmentation with half-body transform.""" joints_3d = results['joints_3d'] joints_3d_visible = results['joints_3d_visible'] if (np.sum(joints_3d_visible[:, 0]) > self.num_joints_half_body and np.random.rand() < self.prob_half_body): c_half_body, s_half_body = self.half_body_transform( results['ann_info'], joints_3d, joints_3d_visible) if c_half_body is not None and s_half_body is not None: results['center'] = c_half_body results['scale'] = s_half_body return results @PIPELINES.register_module() class TopDownGetRandomScaleRotation: """Data augmentation with random scaling & rotating. Required key: 'scale'. Modifies key: 'scale' and 'rotation'. Args: rot_factor (int): Rotating to ``[-2*rot_factor, 2*rot_factor]``. scale_factor (float): Scaling to ``[1-scale_factor, 1+scale_factor]``. rot_prob (float): Probability of random rotation. """ def __init__(self, rot_factor=40, scale_factor=0.5, rot_prob=0.6): self.rot_factor = rot_factor self.scale_factor = scale_factor self.rot_prob = rot_prob def __call__(self, results): """Perform data augmentation with random scaling & rotating.""" s = results['scale'] sf = self.scale_factor rf = self.rot_factor s_factor = np.clip(np.random.randn() * sf + 1, 1 - sf, 1 + sf) s = s * s_factor r_factor = np.clip(np.random.randn() * rf, -rf * 2, rf * 2) r = r_factor if np.random.rand() <= self.rot_prob else 0 results['scale'] = s results['rotation'] = r return results @PIPELINES.register_module() class TopDownAffine: """Affine transform the image to make input. Required keys:'img', 'joints_3d', 'joints_3d_visible', 'ann_info','scale', 'rotation' and 'center'. Modified keys:'img', 'joints_3d', and 'joints_3d_visible'. Args: use_udp (bool): To use unbiased data processing. Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased Data Processing for Human Pose Estimation (CVPR 2020). """ def __init__(self, use_udp=False): self.use_udp = use_udp def __call__(self, results): image_size = results['ann_info']['image_size'] img = results['img'] joints_3d = results['joints_3d'] joints_3d_visible = results['joints_3d_visible'] c = results['center'] s = results['scale'] r = results['rotation'] if self.use_udp: trans = get_warp_matrix(r, c * 2.0, image_size - 1.0, s * 200.0) if not isinstance(img, list): img = cv2.warpAffine( img, trans, (int(image_size[0]), int(image_size[1])), flags=cv2.INTER_LINEAR) else: img = [ cv2.warpAffine( i, trans, (int(image_size[0]), int(image_size[1])), flags=cv2.INTER_LINEAR) for i in img ] joints_3d[:, 0:2] = \ warp_affine_joints(joints_3d[:, 0:2].copy(), trans) else: trans = get_affine_transform(c, s, r, image_size) if not isinstance(img, list): img = cv2.warpAffine( img, trans, (int(image_size[0]), int(image_size[1])), flags=cv2.INTER_LINEAR) else: img = [ cv2.warpAffine( i, trans, (int(image_size[0]), int(image_size[1])), flags=cv2.INTER_LINEAR) for i in img ] for i in range(results['ann_info']['num_joints']): if joints_3d_visible[i, 0] > 0.0: joints_3d[i, 0:2] = affine_transform(joints_3d[i, 0:2], trans) results['img'] = img results['joints_3d'] = joints_3d results['joints_3d_visible'] = joints_3d_visible return results @PIPELINES.register_module() class TopDownGenerateTarget: """Generate the target heatmap. Required keys: 'joints_3d', 'joints_3d_visible', 'ann_info'. Modified keys: 'target', and 'target_weight'. Args: sigma: Sigma of heatmap gaussian for 'MSRA' approach. kernel: Kernel of heatmap gaussian for 'Megvii' approach. encoding (str): Approach to generate target heatmaps. Currently supported approaches: 'MSRA', 'Megvii', 'UDP'. Default:'MSRA' unbiased_encoding (bool): Option to use unbiased encoding methods. Paper ref: Zhang et al. Distribution-Aware Coordinate Representation for Human Pose Estimation (CVPR 2020). keypoint_pose_distance: Keypoint pose distance for UDP. Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased Data Processing for Human Pose Estimation (CVPR 2020). target_type (str): supported targets: 'GaussianHeatmap', 'CombinedTarget'. Default:'GaussianHeatmap' CombinedTarget: The combination of classification target (response map) and regression target (offset map). Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased Data Processing for Human Pose Estimation (CVPR 2020). """ def __init__(self, sigma=2, kernel=(11, 11), valid_radius_factor=0.0546875, target_type='GaussianHeatmap', encoding='MSRA', unbiased_encoding=False): self.sigma = sigma self.unbiased_encoding = unbiased_encoding self.kernel = kernel self.valid_radius_factor = valid_radius_factor self.target_type = target_type self.encoding = encoding def _msra_generate_target(self, cfg, joints_3d, joints_3d_visible, sigma): """Generate the target heatmap via "MSRA" approach. Args: cfg (dict): data config joints_3d: np.ndarray ([num_joints, 3]) joints_3d_visible: np.ndarray ([num_joints, 3]) sigma: Sigma of heatmap gaussian Returns: tuple: A tuple containing targets. - target: Target heatmaps. - target_weight: (1: visible, 0: invisible) """ num_joints = cfg['num_joints'] image_size = cfg['image_size'] W, H = cfg['heatmap_size'] joint_weights = cfg['joint_weights'] use_different_joint_weights = cfg['use_different_joint_weights'] target_weight = np.zeros((num_joints, 1), dtype=np.float32) target = np.zeros((num_joints, H, W), dtype=np.float32) # 3-sigma rule tmp_size = sigma * 3 if self.unbiased_encoding: for joint_id in range(num_joints): target_weight[joint_id] = joints_3d_visible[joint_id, 0] feat_stride = image_size / [W, H] mu_x = joints_3d[joint_id][0] / feat_stride[0] mu_y = joints_3d[joint_id][1] / feat_stride[1] # Check that any part of the gaussian is in-bounds ul = [mu_x - tmp_size, mu_y - tmp_size] br = [mu_x + tmp_size + 1, mu_y + tmp_size + 1] if ul[0] >= W or ul[1] >= H or br[0] < 0 or br[1] < 0: target_weight[joint_id] = 0 if target_weight[joint_id] == 0: continue x = np.arange(0, W, 1, np.float32) y = np.arange(0, H, 1, np.float32) y = y[:, None] if target_weight[joint_id] > 0.5: target[joint_id] = np.exp(-((x - mu_x)**2 + (y - mu_y)**2) / (2 * sigma**2)) else: for joint_id in range(num_joints): target_weight[joint_id] = joints_3d_visible[joint_id, 0] feat_stride = image_size / [W, H] mu_x = int(joints_3d[joint_id][0] / feat_stride[0] + 0.5) mu_y = int(joints_3d[joint_id][1] / feat_stride[1] + 0.5) # Check that any part of the gaussian is in-bounds ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)] br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)] if ul[0] >= W or ul[1] >= H or br[0] < 0 or br[1] < 0: target_weight[joint_id] = 0 if target_weight[joint_id] > 0.5: size = 2 * tmp_size + 1 x = np.arange(0, size, 1, np.float32) y = x[:, None] x0 = y0 = size // 2 # The gaussian is not normalized, # we want the center value to equal 1 g = np.exp(-((x - x0)**2 + (y - y0)**2) / (2 * sigma**2)) # Usable gaussian range g_x = max(0, -ul[0]), min(br[0], W) - ul[0] g_y = max(0, -ul[1]), min(br[1], H) - ul[1] # Image range img_x = max(0, ul[0]), min(br[0], W) img_y = max(0, ul[1]), min(br[1], H) target[joint_id][img_y[0]:img_y[1], img_x[0]:img_x[1]] = \ g[g_y[0]:g_y[1], g_x[0]:g_x[1]] if use_different_joint_weights: target_weight = np.multiply(target_weight, joint_weights) return target, target_weight def _megvii_generate_target(self, cfg, joints_3d, joints_3d_visible, kernel): """Generate the target heatmap via "Megvii" approach. Args: cfg (dict): data config joints_3d: np.ndarray ([num_joints, 3]) joints_3d_visible: np.ndarray ([num_joints, 3]) kernel: Kernel of heatmap gaussian Returns: tuple: A tuple containing targets. - target: Target heatmaps. - target_weight: (1: visible, 0: invisible) """ num_joints = cfg['num_joints'] image_size = cfg['image_size'] W, H = cfg['heatmap_size'] heatmaps = np.zeros((num_joints, H, W), dtype='float32') target_weight = np.zeros((num_joints, 1), dtype=np.float32) for i in range(num_joints): target_weight[i] = joints_3d_visible[i, 0] if target_weight[i] < 1: continue target_y = int(joints_3d[i, 1] * H / image_size[1]) target_x = int(joints_3d[i, 0] * W / image_size[0]) if (target_x >= W or target_x < 0) \ or (target_y >= H or target_y < 0): target_weight[i] = 0 continue heatmaps[i, target_y, target_x] = 1 heatmaps[i] = cv2.GaussianBlur(heatmaps[i], kernel, 0) maxi = heatmaps[i, target_y, target_x] heatmaps[i] /= maxi / 255 return heatmaps, target_weight def _udp_generate_target(self, cfg, joints_3d, joints_3d_visible, factor, target_type): """Generate the target heatmap via 'UDP' approach. Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased Data Processing for Human Pose Estimation (CVPR 2020). Note: - num keypoints: K - heatmap height: H - heatmap width: W - num target channels: C - C = K if target_type=='GaussianHeatmap' - C = 3*K if target_type=='CombinedTarget' Args: cfg (dict): data config joints_3d (np.ndarray[K, 3]): Annotated keypoints. joints_3d_visible (np.ndarray[K, 3]): Visibility of keypoints. factor (float): kernel factor for GaussianHeatmap target or valid radius factor for CombinedTarget. target_type (str): 'GaussianHeatmap' or 'CombinedTarget'. GaussianHeatmap: Heatmap target with gaussian distribution. CombinedTarget: The combination of classification target (response map) and regression target (offset map). Returns: tuple: A tuple containing targets. - target (np.ndarray[C, H, W]): Target heatmaps. - target_weight (np.ndarray[K, 1]): (1: visible, 0: invisible) """ num_joints = cfg['num_joints'] image_size = cfg['image_size'] heatmap_size = cfg['heatmap_size'] joint_weights = cfg['joint_weights'] use_different_joint_weights = cfg['use_different_joint_weights'] target_weight = np.ones((num_joints, 1), dtype=np.float32) target_weight[:, 0] = joints_3d_visible[:, 0] if target_type.lower() == 'GaussianHeatmap'.lower(): target = np.zeros((num_joints, heatmap_size[1], heatmap_size[0]), dtype=np.float32) tmp_size = factor * 3 # prepare for gaussian size = 2 * tmp_size + 1 x = np.arange(0, size, 1, np.float32) y = x[:, None] for joint_id in range(num_joints): feat_stride = (image_size - 1.0) / (heatmap_size - 1.0) mu_x = int(joints_3d[joint_id][0] / feat_stride[0] + 0.5) mu_y = int(joints_3d[joint_id][1] / feat_stride[1] + 0.5) # Check that any part of the gaussian is in-bounds ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)] br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)] if ul[0] >= heatmap_size[0] or ul[1] >= heatmap_size[1] \ or br[0] < 0 or br[1] < 0: # If not, just return the image as is target_weight[joint_id] = 0 continue # # Generate gaussian mu_x_ac = joints_3d[joint_id][0] / feat_stride[0] mu_y_ac = joints_3d[joint_id][1] / feat_stride[1] x0 = y0 = size // 2 x0 += mu_x_ac - mu_x y0 += mu_y_ac - mu_y g = np.exp(-((x - x0)**2 + (y - y0)**2) / (2 * factor**2)) # Usable gaussian range g_x = max(0, -ul[0]), min(br[0], heatmap_size[0]) - ul[0] g_y = max(0, -ul[1]), min(br[1], heatmap_size[1]) - ul[1] # Image range img_x = max(0, ul[0]), min(br[0], heatmap_size[0]) img_y = max(0, ul[1]), min(br[1], heatmap_size[1]) v = target_weight[joint_id] if v > 0.5: target[joint_id][img_y[0]:img_y[1], img_x[0]:img_x[1]] = \ g[g_y[0]:g_y[1], g_x[0]:g_x[1]] elif target_type.lower() == 'CombinedTarget'.lower(): target = np.zeros( (num_joints, 3, heatmap_size[1] * heatmap_size[0]), dtype=np.float32) feat_width = heatmap_size[0] feat_height = heatmap_size[1] feat_x_int = np.arange(0, feat_width) feat_y_int = np.arange(0, feat_height) feat_x_int, feat_y_int = np.meshgrid(feat_x_int, feat_y_int) feat_x_int = feat_x_int.flatten() feat_y_int = feat_y_int.flatten() # Calculate the radius of the positive area in classification # heatmap. valid_radius = factor * heatmap_size[1] feat_stride = (image_size - 1.0) / (heatmap_size - 1.0) for joint_id in range(num_joints): mu_x = joints_3d[joint_id][0] / feat_stride[0] mu_y = joints_3d[joint_id][1] / feat_stride[1] x_offset = (mu_x - feat_x_int) / valid_radius y_offset = (mu_y - feat_y_int) / valid_radius dis = x_offset**2 + y_offset**2 keep_pos = np.where(dis <= 1)[0] v = target_weight[joint_id] if v > 0.5: target[joint_id, 0, keep_pos] = 1 target[joint_id, 1, keep_pos] = x_offset[keep_pos] target[joint_id, 2, keep_pos] = y_offset[keep_pos] target = target.reshape(num_joints * 3, heatmap_size[1], heatmap_size[0]) else: raise ValueError('target_type should be either ' "'GaussianHeatmap' or 'CombinedTarget'") if use_different_joint_weights: target_weight = np.multiply(target_weight, joint_weights) return target, target_weight def __call__(self, results): """Generate the target heatmap.""" joints_3d = results['joints_3d'] joints_3d_visible = results['joints_3d_visible'] assert self.encoding in ['MSRA', 'Megvii', 'UDP'] if self.encoding == 'MSRA': if isinstance(self.sigma, list): num_sigmas = len(self.sigma) cfg = results['ann_info'] num_joints = cfg['num_joints'] heatmap_size = cfg['heatmap_size'] target = np.empty( (0, num_joints, heatmap_size[1], heatmap_size[0]), dtype=np.float32) target_weight = np.empty((0, num_joints, 1), dtype=np.float32) for i in range(num_sigmas): target_i, target_weight_i = self._msra_generate_target( cfg, joints_3d, joints_3d_visible, self.sigma[i]) target = np.concatenate([target, target_i[None]], axis=0) target_weight = np.concatenate( [target_weight, target_weight_i[None]], axis=0) else: target, target_weight = self._msra_generate_target( results['ann_info'], joints_3d, joints_3d_visible, self.sigma) elif self.encoding == 'Megvii': if isinstance(self.kernel, list): num_kernels = len(self.kernel) cfg = results['ann_info'] num_joints = cfg['num_joints'] W, H = cfg['heatmap_size'] target = np.empty((0, num_joints, H, W), dtype=np.float32) target_weight = np.empty((0, num_joints, 1), dtype=np.float32) for i in range(num_kernels): target_i, target_weight_i = self._megvii_generate_target( cfg, joints_3d, joints_3d_visible, self.kernel[i]) target = np.concatenate([target, target_i[None]], axis=0) target_weight = np.concatenate( [target_weight, target_weight_i[None]], axis=0) else: target, target_weight = self._megvii_generate_target( results['ann_info'], joints_3d, joints_3d_visible, self.kernel) elif self.encoding == 'UDP': if self.target_type.lower() == 'CombinedTarget'.lower(): factors = self.valid_radius_factor channel_factor = 3 elif self.target_type.lower() == 'GaussianHeatmap'.lower(): factors = self.sigma channel_factor = 1 else: raise ValueError('target_type should be either ' "'GaussianHeatmap' or 'CombinedTarget'") if isinstance(factors, list): num_factors = len(factors) cfg = results['ann_info'] num_joints = cfg['num_joints'] W, H = cfg['heatmap_size'] target = np.empty((0, channel_factor * num_joints, H, W), dtype=np.float32) target_weight = np.empty((0, num_joints, 1), dtype=np.float32) for i in range(num_factors): target_i, target_weight_i = self._udp_generate_target( cfg, joints_3d, joints_3d_visible, factors[i], self.target_type) target = np.concatenate([target, target_i[None]], axis=0) target_weight = np.concatenate( [target_weight, target_weight_i[None]], axis=0) else: target, target_weight = self._udp_generate_target( results['ann_info'], joints_3d, joints_3d_visible, factors, self.target_type) else: raise ValueError( f'Encoding approach {self.encoding} is not supported!') if results['ann_info'].get('max_num_joints', None) is not None: W, H = results['ann_info']['heatmap_size'] padded_length = int(results['ann_info'].get('max_num_joints') - results['ann_info'].get('num_joints')) target_weight = np.concatenate([target_weight, np.zeros((padded_length, 1), dtype=np.float32)], 0) target = np.concatenate([target, np.zeros((padded_length, H, W), dtype=np.float32)], 0) results['target'] = target results['target_weight'] = target_weight results['dataset_idx'] = results['ann_info'].get('dataset_idx', 0) return results @PIPELINES.register_module() class TopDownGenerateTargetRegression: """Generate the target regression vector (coordinates). Required keys: 'joints_3d', 'joints_3d_visible', 'ann_info'. Modified keys: 'target', and 'target_weight'. """ def __init__(self): pass def _generate_target(self, cfg, joints_3d, joints_3d_visible): """Generate the target regression vector. Args: cfg (dict): data config joints_3d: np.ndarray([num_joints, 3]) joints_3d_visible: np.ndarray([num_joints, 3]) Returns: target, target_weight(1: visible, 0: invisible) """ image_size = cfg['image_size'] joint_weights = cfg['joint_weights'] use_different_joint_weights = cfg['use_different_joint_weights'] mask = (joints_3d[:, 0] >= 0) * ( joints_3d[:, 0] <= image_size[0] - 1) * (joints_3d[:, 1] >= 0) * ( joints_3d[:, 1] <= image_size[1] - 1) target = joints_3d[:, :2] / image_size target = target.astype(np.float32) target_weight = joints_3d_visible[:, :2] * mask[:, None] if use_different_joint_weights: target_weight = np.multiply(target_weight, joint_weights) return target, target_weight def __call__(self, results): """Generate the target heatmap.""" joints_3d = results['joints_3d'] joints_3d_visible = results['joints_3d_visible'] target, target_weight = self._generate_target(results['ann_info'], joints_3d, joints_3d_visible) results['target'] = target results['target_weight'] = target_weight return results @PIPELINES.register_module() class TopDownRandomTranslation: """Data augmentation with random translation. Required key: 'scale' and 'center'. Modifies key: 'center'. Note: - bbox height: H - bbox width: W Args: trans_factor (float): Translating center to ``[-trans_factor, trans_factor] * [W, H] + center``. trans_prob (float): Probability of random translation. """ def __init__(self, trans_factor=0.15, trans_prob=1.0): self.trans_factor = trans_factor self.trans_prob = trans_prob def __call__(self, results): """Perform data augmentation with random translation.""" center = results['center'] scale = results['scale'] if np.random.rand() <= self.trans_prob: # reference bbox size is [200, 200] pixels center += self.trans_factor * np.random.uniform( -1, 1, size=2) * scale * 200 results['center'] = center return results